ai-edge-torch-nightly 0.3.0.dev20240910__py3-none-any.whl → 0.3.0.dev20240914__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_torch/_convert/conversion.py +2 -1
- ai_edge_torch/_convert/fx_passes/__init__.py +5 -41
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +3 -4
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +3 -4
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +3 -4
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +4 -5
- ai_edge_torch/config.py +4 -1
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +35 -16
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +29 -10
- ai_edge_torch/generative/examples/gemma/gemma.py +52 -32
- ai_edge_torch/generative/examples/gemma/gemma2.py +87 -60
- ai_edge_torch/generative/examples/{experimental/gemma → openelm}/convert_to_tflite.py +16 -18
- ai_edge_torch/generative/examples/openelm/openelm.py +237 -0
- ai_edge_torch/generative/examples/{experimental/phi → phi}/convert_to_tflite.py +15 -16
- ai_edge_torch/generative/examples/{experimental/phi → phi}/phi2.py +48 -45
- ai_edge_torch/generative/examples/{experimental/tiny_llama → smollm}/convert_to_tflite.py +16 -17
- ai_edge_torch/generative/examples/smollm/smollm.py +131 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +12 -6
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +1 -1
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +20 -20
- ai_edge_torch/generative/examples/t5/t5.py +43 -30
- ai_edge_torch/generative/examples/t5/t5_attention.py +18 -13
- ai_edge_torch/generative/examples/test_models/toy_model.py +15 -13
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +75 -34
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +29 -10
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +57 -36
- ai_edge_torch/generative/fx_passes/__init__.py +4 -4
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +3 -4
- ai_edge_torch/generative/layers/attention.py +84 -73
- ai_edge_torch/generative/layers/builder.py +38 -14
- ai_edge_torch/generative/layers/feed_forward.py +26 -8
- ai_edge_torch/generative/layers/kv_cache.py +163 -51
- ai_edge_torch/generative/layers/model_config.py +61 -33
- ai_edge_torch/generative/layers/normalization.py +158 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +0 -2
- ai_edge_torch/generative/quantize/example.py +2 -2
- ai_edge_torch/generative/test/{test_experimental_ekv.py → test_kv_cache.py} +12 -24
- ai_edge_torch/generative/test/test_loader.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion.py +77 -62
- ai_edge_torch/generative/test/test_model_conversion_large.py +61 -68
- ai_edge_torch/generative/test/test_quantize.py +5 -5
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/loader.py +28 -15
- ai_edge_torch/generative/utilities/t5_loader.py +21 -20
- ai_edge_torch/odml_torch/export.py +40 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +1 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +44 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -2
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/RECORD +59 -63
- ai_edge_torch/_convert/fx_passes/_pass_base.py +0 -53
- ai_edge_torch/_convert/fx_passes/canonicalize_pass.py +0 -35
- ai_edge_torch/generative/examples/experimental/gemma/gemma.py +0 -219
- ai_edge_torch/generative/examples/experimental/tiny_llama/__init__.py +0 -14
- ai_edge_torch/generative/examples/experimental/tiny_llama/tiny_llama.py +0 -205
- ai_edge_torch/generative/examples/phi2/__init__.py +0 -14
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -67
- ai_edge_torch/generative/examples/phi2/phi2.py +0 -189
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -176
- /ai_edge_torch/generative/examples/{experimental → openelm}/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{experimental/gemma → phi}/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{experimental/phi → smollm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240910.dist-info → ai_edge_torch_nightly-0.3.0.dev20240914.dist-info}/top_level.txt +0 -0
@@ -12,13 +12,15 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
15
|
+
|
16
|
+
"""Example of building a TinyLlama model."""
|
16
17
|
|
17
18
|
import os
|
18
|
-
|
19
|
+
import pathlib
|
19
20
|
|
20
21
|
from ai_edge_torch.generative.layers import attention
|
21
22
|
from ai_edge_torch.generative.layers import builder
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
24
|
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
23
25
|
import ai_edge_torch.generative.layers.model_config as cfg
|
24
26
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
@@ -42,13 +44,12 @@ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
|
42
44
|
)
|
43
45
|
|
44
46
|
|
45
|
-
class
|
47
|
+
class TinyLlama(nn.Module):
|
46
48
|
"""A TinyLlama model built from the Edge Generative API layers."""
|
47
49
|
|
48
50
|
def __init__(self, config: cfg.ModelConfig):
|
49
51
|
super().__init__()
|
50
52
|
|
51
|
-
self.config = config
|
52
53
|
# Construct model layers.
|
53
54
|
self.lm_head = nn.Linear(
|
54
55
|
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
@@ -56,18 +57,20 @@ class TinyLLamma(nn.Module):
|
|
56
57
|
self.tok_embedding = nn.Embedding(
|
57
58
|
config.vocab_size, config.embedding_dim, padding_idx=0
|
58
59
|
)
|
60
|
+
# TinyLlama has only one block config.
|
61
|
+
block_config = config.block_config(0)
|
59
62
|
self.transformer_blocks = nn.ModuleList(
|
60
|
-
attention.TransformerBlock(
|
63
|
+
attention.TransformerBlock(block_config, config)
|
64
|
+
for _ in range(config.num_layers)
|
61
65
|
)
|
62
66
|
self.final_norm = builder.build_norm(
|
63
67
|
config.embedding_dim,
|
64
68
|
config.final_norm_config,
|
65
69
|
)
|
70
|
+
attn_config = block_config.attn_config
|
66
71
|
self.rope_cache = attn_utils.build_rope_cache(
|
67
72
|
size=config.kv_cache_max,
|
68
|
-
dim=int(
|
69
|
-
config.attn_config.rotary_percentage * config.attn_config.head_dim
|
70
|
-
),
|
73
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
71
74
|
base=10_000,
|
72
75
|
condense_ratio=1,
|
73
76
|
dtype=torch.float32,
|
@@ -80,16 +83,22 @@ class TinyLLamma(nn.Module):
|
|
80
83
|
)
|
81
84
|
self.config = config
|
82
85
|
|
83
|
-
# The model's forward function takes in additional k/v cache tensors
|
84
|
-
# and returns the updated k/v cache tensors to the caller.
|
85
|
-
# This can be eliminated if we handle k/v cache updates inside the model itself.
|
86
86
|
@torch.inference_mode
|
87
|
-
def forward(
|
88
|
-
|
87
|
+
def forward(
|
88
|
+
self,
|
89
|
+
tokens: torch.Tensor,
|
90
|
+
input_pos: torch.Tensor,
|
91
|
+
kv_cache: kv_utils.KVCache,
|
92
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
93
|
+
_, seq_len = tokens.size()
|
89
94
|
assert self.config.max_seq_len >= seq_len, (
|
90
95
|
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
91
96
|
f" {self.config.max_seq_len}"
|
92
97
|
)
|
98
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
99
|
+
"The number of transformer blocks and the number of KV cache entries"
|
100
|
+
" must be the same."
|
101
|
+
)
|
93
102
|
|
94
103
|
cos, sin = self.rope_cache
|
95
104
|
cos = cos.index_select(0, input_pos)
|
@@ -97,16 +106,20 @@ class TinyLLamma(nn.Module):
|
|
97
106
|
mask = self.mask_cache.index_select(2, input_pos)
|
98
107
|
mask = mask[:, :, :, : self.config.kv_cache_max]
|
99
108
|
|
100
|
-
#
|
101
|
-
x = self.tok_embedding(
|
109
|
+
# token embeddings of shape (b, t, n_embd)
|
110
|
+
x = self.tok_embedding(tokens)
|
102
111
|
|
103
|
-
|
104
|
-
|
112
|
+
updated_kv_entires = []
|
113
|
+
for i, block in enumerate(self.transformer_blocks):
|
114
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
115
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
116
|
+
if kv_entry:
|
117
|
+
updated_kv_entires.append(kv_entry)
|
118
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
|
105
119
|
|
106
120
|
x = self.final_norm(x)
|
107
|
-
|
108
|
-
|
109
|
-
return res
|
121
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
122
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
110
123
|
|
111
124
|
|
112
125
|
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
@@ -131,55 +144,63 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
|
131
144
|
intermediate_size=5632,
|
132
145
|
)
|
133
146
|
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
147
|
+
block_config = cfg.TransformerBlockConfig(
|
148
|
+
attn_config=attn_config,
|
149
|
+
ff_config=ff_config,
|
150
|
+
pre_attention_norm_config=norm_config,
|
151
|
+
post_attention_norm_config=norm_config,
|
152
|
+
)
|
134
153
|
config = cfg.ModelConfig(
|
135
154
|
vocab_size=32000,
|
136
155
|
num_layers=22,
|
137
156
|
max_seq_len=2048,
|
138
157
|
embedding_dim=2048,
|
139
158
|
kv_cache_max_len=kv_cache_max_len,
|
140
|
-
|
141
|
-
ff_config=ff_config,
|
142
|
-
pre_attention_norm_config=norm_config,
|
143
|
-
post_attention_norm_config=norm_config,
|
159
|
+
block_configs=block_config,
|
144
160
|
final_norm_config=norm_config,
|
145
161
|
enable_hlfb=True,
|
146
162
|
)
|
147
163
|
return config
|
148
164
|
|
149
165
|
|
150
|
-
def get_fake_model_config() -> cfg.ModelConfig:
|
151
|
-
config = get_model_config()
|
166
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
167
|
+
config = get_model_config(**kwargs)
|
152
168
|
config.vocab_size = 128
|
153
169
|
config.num_layers = 2
|
154
|
-
config.
|
170
|
+
# TinyLlama has only one block config.
|
171
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
155
172
|
return config
|
156
173
|
|
157
174
|
|
158
175
|
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
159
176
|
config = get_model_config(**kwargs)
|
160
|
-
model =
|
177
|
+
model = TinyLlama(config)
|
161
178
|
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
162
179
|
loader.load(model)
|
180
|
+
model.eval()
|
163
181
|
return model
|
164
182
|
|
165
183
|
|
166
|
-
def define_and_run() -> None:
|
184
|
+
def define_and_run(checkpoint_path: str) -> None:
|
167
185
|
"""Instantiates and runs a TinyLlama model."""
|
168
186
|
|
169
|
-
current_dir = Path(__file__).parent.resolve()
|
187
|
+
current_dir = pathlib.Path(__file__).parent.resolve()
|
170
188
|
tiny_llama_goldens = torch.load(current_dir / "tiny_llama_lm_logits.pt")
|
171
189
|
kv_cache_max_len = 1024
|
172
|
-
checkpoint_path = os.path.join(Path.home(), "Downloads/llm_data/tiny_llama")
|
173
190
|
model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
|
174
191
|
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
175
|
-
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.
|
192
|
+
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
176
193
|
tokens[0, :4] = idx
|
177
|
-
input_pos = torch.arange(0, kv_cache_max_len)
|
178
|
-
|
194
|
+
input_pos = torch.arange(0, kv_cache_max_len, dtype=torch.int)
|
195
|
+
kv = kv_utils.KVCache.from_model_config(model.config)
|
196
|
+
output = model.forward(tokens, input_pos, kv)
|
179
197
|
assert torch.allclose(
|
180
|
-
tiny_llama_goldens,
|
198
|
+
tiny_llama_goldens, output["logits"][0, idx.shape[1] - 1, :], atol=1e-02
|
181
199
|
)
|
182
200
|
|
183
201
|
|
184
202
|
if __name__ == "__main__":
|
185
|
-
|
203
|
+
input_checkpoint_path = os.path.join(
|
204
|
+
pathlib.Path.home(), "Downloads/llm_data/tiny_llama"
|
205
|
+
)
|
206
|
+
define_and_run(input_checkpoint_path)
|
@@ -12,16 +12,16 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
from ai_edge_torch
|
16
|
-
from ai_edge_torch.
|
17
|
-
from ai_edge_torch.generative.fx_passes.remove_sdpa_zero_mask_pass import RemoveSDPACompositeZeroMaskPass
|
15
|
+
from ai_edge_torch import fx_pass_base
|
16
|
+
from ai_edge_torch.fx_pass_base import CanonicalizePass
|
17
|
+
from ai_edge_torch.generative.fx_passes.remove_sdpa_zero_mask_pass import RemoveSDPACompositeZeroMaskPass
|
18
18
|
import torch
|
19
19
|
|
20
20
|
|
21
21
|
def run_generative_passes(
|
22
22
|
exported_program: torch.export.ExportedProgram,
|
23
23
|
) -> torch.export.ExportedProgram:
|
24
|
-
return run_passes(
|
24
|
+
return fx_pass_base.run_passes(
|
25
25
|
exported_program,
|
26
26
|
[
|
27
27
|
RemoveSDPACompositeZeroMaskPass(),
|
@@ -12,13 +12,12 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
from ai_edge_torch import fx_pass_base
|
15
16
|
from ai_edge_torch import lowertools
|
16
|
-
from ai_edge_torch._convert.fx_passes._pass_base import ExportedProgramPassBase
|
17
|
-
from ai_edge_torch._convert.fx_passes._pass_base import ExportedProgramPassResult
|
18
17
|
import torch
|
19
18
|
|
20
19
|
|
21
|
-
class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
|
20
|
+
class RemoveSDPACompositeZeroMaskPass(fx_pass_base.ExportedProgramPassBase):
|
22
21
|
|
23
22
|
def is_zero_tensor_node(self, node: torch.fx.Node):
|
24
23
|
return node.target == torch.ops.aten.zeros.default
|
@@ -48,4 +47,4 @@ class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
|
|
48
47
|
|
49
48
|
exported_program.graph_module.graph.lint()
|
50
49
|
exported_program.graph_module.recompile()
|
51
|
-
return ExportedProgramPassResult(exported_program, True)
|
50
|
+
return fx_pass_base.ExportedProgramPassResult(exported_program, True)
|
@@ -12,16 +12,16 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
# Common building blocks for Attention layer.
|
16
15
|
|
17
|
-
|
16
|
+
"""Common building blocks for Attention layer."""
|
18
17
|
|
19
|
-
import
|
20
|
-
|
18
|
+
from typing import Optional, Tuple, Union
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import builder
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers import scaled_dot_product_attention as sdpa
|
21
23
|
import ai_edge_torch.generative.layers.model_config as cfg
|
22
24
|
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
23
|
-
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention # NOQA
|
24
|
-
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention_with_hlfb # NOQA
|
25
25
|
import torch
|
26
26
|
from torch import nn
|
27
27
|
|
@@ -55,29 +55,35 @@ def _embed_rope(
|
|
55
55
|
|
56
56
|
class TransformerBlock(nn.Module):
|
57
57
|
|
58
|
-
def __init__(
|
58
|
+
def __init__(
|
59
|
+
self,
|
60
|
+
config: cfg.TransformerBlockConfig,
|
61
|
+
model_config: cfg.ModelConfig,
|
62
|
+
) -> None:
|
59
63
|
"""Initialize an instance of the TransformerBlock.
|
60
64
|
|
61
65
|
Args:
|
62
|
-
config (cfg.
|
63
|
-
block.
|
66
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
67
|
+
transformer block.
|
68
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
69
|
+
this transformer block belongs to.
|
64
70
|
"""
|
65
|
-
|
66
71
|
super().__init__()
|
67
72
|
self.pre_atten_norm = builder.build_norm(
|
68
|
-
|
73
|
+
model_config.embedding_dim,
|
74
|
+
config.pre_attention_norm_config,
|
69
75
|
)
|
70
76
|
self.atten_func = CausalSelfAttention(
|
71
|
-
|
72
|
-
|
77
|
+
model_config.batch_size,
|
78
|
+
model_config.embedding_dim,
|
73
79
|
config.attn_config,
|
74
|
-
|
75
|
-
config.enable_hlfb,
|
80
|
+
model_config.enable_hlfb,
|
76
81
|
)
|
77
82
|
self.post_atten_norm = builder.build_norm(
|
78
|
-
|
83
|
+
model_config.embedding_dim,
|
84
|
+
config.post_attention_norm_config,
|
79
85
|
)
|
80
|
-
self.ff = builder.build_ff(
|
86
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
81
87
|
self.config = config
|
82
88
|
|
83
89
|
def forward(
|
@@ -86,7 +92,8 @@ class TransformerBlock(nn.Module):
|
|
86
92
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
87
93
|
mask: Optional[torch.Tensor] = None,
|
88
94
|
input_pos: Optional[torch.Tensor] = None,
|
89
|
-
|
95
|
+
kv_cache: kv_utils.KVCacheEntry = None,
|
96
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
90
97
|
"""Forward function of the TransformerBlock.
|
91
98
|
|
92
99
|
Args:
|
@@ -94,24 +101,34 @@ class TransformerBlock(nn.Module):
|
|
94
101
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
95
102
|
mask (torch.Tensor): the optional mask tensor.
|
96
103
|
input_pos (torch.Tensor): the optional input position tensor.
|
104
|
+
kv_cache (KVCacheEntry): the optional kv cache entry.
|
97
105
|
|
98
106
|
Returns:
|
99
|
-
output activation from this transformer block
|
107
|
+
output activation from this transformer block, and updated kv cache (if
|
108
|
+
passed in).
|
100
109
|
"""
|
101
|
-
|
110
|
+
kv = None
|
102
111
|
if self.config.parallel_residual:
|
103
112
|
x_norm = self.pre_atten_norm(x)
|
104
|
-
|
113
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
114
|
+
if kv_cache is None:
|
115
|
+
attn_out = atten_func_out
|
116
|
+
else:
|
117
|
+
attn_out, kv = atten_func_out
|
105
118
|
ff_out = self.ff(x_norm)
|
106
119
|
output = x + attn_out + ff_out
|
107
120
|
else:
|
108
121
|
x_norm = self.pre_atten_norm(x)
|
109
|
-
|
122
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
123
|
+
if kv_cache is None:
|
124
|
+
attn_out = atten_func_out
|
125
|
+
else:
|
126
|
+
attn_out, kv = atten_func_out
|
110
127
|
x = x + attn_out
|
111
128
|
x_norm = self.post_atten_norm(x)
|
112
129
|
output = x + self.ff(x_norm)
|
113
130
|
|
114
|
-
return output
|
131
|
+
return output if kv is None else (output, kv)
|
115
132
|
|
116
133
|
|
117
134
|
class CausalSelfAttention(nn.Module):
|
@@ -121,7 +138,6 @@ class CausalSelfAttention(nn.Module):
|
|
121
138
|
batch_size: int,
|
122
139
|
dim: int,
|
123
140
|
config: cfg.AttentionConfig,
|
124
|
-
kv_cache_max: int,
|
125
141
|
enable_hlfb: bool,
|
126
142
|
) -> None:
|
127
143
|
"""Initialize an instance of CausalSelfAttention.
|
@@ -130,12 +146,9 @@ class CausalSelfAttention(nn.Module):
|
|
130
146
|
batch_size (int): batch size of the input tensor.
|
131
147
|
dim (int): causal attention's input/output dimmension.
|
132
148
|
config (cfg.AttentionConfig): attention specific configurations.
|
133
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if
|
134
|
-
enabled.
|
135
149
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
136
150
|
"""
|
137
151
|
super().__init__()
|
138
|
-
self.config = config
|
139
152
|
self.kv_cache = None
|
140
153
|
self.batch_size = batch_size
|
141
154
|
qkv_shape = (
|
@@ -147,21 +160,17 @@ class CausalSelfAttention(nn.Module):
|
|
147
160
|
self.output_projection = nn.Linear(
|
148
161
|
output_shape, dim, bias=config.output_proj_use_bias
|
149
162
|
)
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
if enable_hlfb:
|
162
|
-
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
163
|
-
else:
|
164
|
-
self.sdpa_func = scaled_dot_product_attention
|
163
|
+
self.query_norm = builder.build_norm(
|
164
|
+
config.head_dim, config.query_norm_config
|
165
|
+
)
|
166
|
+
self.key_norm = builder.build_norm(config.head_dim, config.key_norm_config)
|
167
|
+
self.config = config
|
168
|
+
self.enable_hlfb = enable_hlfb
|
169
|
+
self.sdpa_func = (
|
170
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
171
|
+
if enable_hlfb
|
172
|
+
else sdpa.scaled_dot_product_attention
|
173
|
+
)
|
165
174
|
|
166
175
|
def forward(
|
167
176
|
self,
|
@@ -169,7 +178,8 @@ class CausalSelfAttention(nn.Module):
|
|
169
178
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
170
179
|
mask: Optional[torch.Tensor] = None,
|
171
180
|
input_pos: Optional[torch.Tensor] = None,
|
172
|
-
|
181
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
182
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
173
183
|
"""Forward function of the CausalSelfAttention layer, which can support
|
174
184
|
|
175
185
|
MQA, GQA and MHA.
|
@@ -179,9 +189,11 @@ class CausalSelfAttention(nn.Module):
|
|
179
189
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
180
190
|
mask (torch.Tensor): the optional mask tensor.
|
181
191
|
input_pos (torch.Tensor): the optional input position tensor.
|
192
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
182
193
|
|
183
194
|
Returns:
|
184
|
-
output activation from this self attention layer
|
195
|
+
output activation from this self attention layer, and the updated
|
196
|
+
KV Cach Entry (if passed in).
|
185
197
|
"""
|
186
198
|
# Batch size, sequence length, embedding dimensionality.
|
187
199
|
B, T, E = x.size()
|
@@ -216,6 +228,9 @@ class CausalSelfAttention(nn.Module):
|
|
216
228
|
dim=-1,
|
217
229
|
)
|
218
230
|
|
231
|
+
q = self.query_norm(q)
|
232
|
+
k = self.key_norm(k)
|
233
|
+
|
219
234
|
q = q.reshape(B, T, -1, self.config.head_dim)
|
220
235
|
k = k.reshape(B, T, -1, self.config.head_dim)
|
221
236
|
v = v.reshape(B, T, -1, self.config.head_dim)
|
@@ -224,9 +239,11 @@ class CausalSelfAttention(nn.Module):
|
|
224
239
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
225
240
|
q, k = _embed_rope(q, k, n_elem, rope)
|
226
241
|
|
227
|
-
if
|
228
|
-
|
229
|
-
|
242
|
+
if kv_cache is not None:
|
243
|
+
kv_cache = kv_utils.update(
|
244
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
245
|
+
)
|
246
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
230
247
|
|
231
248
|
y = self.sdpa_func(
|
232
249
|
q,
|
@@ -240,7 +257,7 @@ class CausalSelfAttention(nn.Module):
|
|
240
257
|
|
241
258
|
# Compute the output projection.
|
242
259
|
y = self.output_projection(y)
|
243
|
-
return y
|
260
|
+
return y if kv_cache is None else (y, kv_cache)
|
244
261
|
|
245
262
|
|
246
263
|
class SelfAttention(CausalSelfAttention):
|
@@ -251,16 +268,19 @@ class SelfAttention(CausalSelfAttention):
|
|
251
268
|
x: torch.Tensor,
|
252
269
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
253
270
|
input_pos: Optional[torch.Tensor] = None,
|
254
|
-
|
271
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
272
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
255
273
|
"""Forward function of the SelfAttention layer, which can support MQA, GQA and MHA.
|
256
274
|
|
257
275
|
Args:
|
258
276
|
x (torch.Tensor): the input tensor.
|
259
277
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
260
278
|
input_pos (torch.Tensor): the optional input position tensor.
|
279
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
261
280
|
|
262
281
|
Returns:
|
263
|
-
output activation from this self attention layer
|
282
|
+
output activation from this self attention layer, and the updated
|
283
|
+
KV Cach Entry (if passed in).
|
264
284
|
"""
|
265
285
|
B, T, _ = x.size()
|
266
286
|
return super().forward(
|
@@ -279,9 +299,8 @@ class CrossAttention(nn.Module):
|
|
279
299
|
query_dim: int,
|
280
300
|
cross_dim: int,
|
281
301
|
config: cfg.AttentionConfig,
|
282
|
-
kv_cache_max: int,
|
283
302
|
enable_hlfb: bool,
|
284
|
-
)
|
303
|
+
):
|
285
304
|
"""Initialize an instance of CrossAttention.
|
286
305
|
|
287
306
|
Args:
|
@@ -289,8 +308,6 @@ class CrossAttention(nn.Module):
|
|
289
308
|
query_dim (int): query tensor's dimension.
|
290
309
|
cross_dim (int): cross attention's dimensions, for key and value tensors.
|
291
310
|
config (cfg.AttentionConfig): attention specific configurations.
|
292
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if
|
293
|
-
enabled.
|
294
311
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
295
312
|
"""
|
296
313
|
super().__init__()
|
@@ -309,21 +326,11 @@ class CrossAttention(nn.Module):
|
|
309
326
|
query_dim, query_dim, bias=config.output_proj_use_bias
|
310
327
|
)
|
311
328
|
|
312
|
-
self.
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
kv_cache_max,
|
318
|
-
config.num_query_groups,
|
319
|
-
self.config.head_dim,
|
320
|
-
enable_hlfb,
|
321
|
-
)
|
322
|
-
|
323
|
-
if enable_hlfb:
|
324
|
-
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
325
|
-
else:
|
326
|
-
self.sdpa_func = scaled_dot_product_attention
|
329
|
+
self.sdpa_func = (
|
330
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
331
|
+
if enable_hlfb
|
332
|
+
else sdpa.scaled_dot_product_attention
|
333
|
+
)
|
327
334
|
|
328
335
|
def forward(
|
329
336
|
self,
|
@@ -332,6 +339,7 @@ class CrossAttention(nn.Module):
|
|
332
339
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
333
340
|
mask: Optional[torch.Tensor] = None,
|
334
341
|
input_pos: Optional[torch.Tensor] = None,
|
342
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
335
343
|
):
|
336
344
|
"""Forward function of the CrossAttention layer.
|
337
345
|
|
@@ -342,6 +350,7 @@ class CrossAttention(nn.Module):
|
|
342
350
|
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape
|
343
351
|
[B, n_heads, target_seq_len, source_seq_len].
|
344
352
|
input_pos (torch.Tensor): the optional input position tensor.
|
353
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
345
354
|
|
346
355
|
Returns:
|
347
356
|
output activation from this cross attention layer.
|
@@ -363,9 +372,11 @@ class CrossAttention(nn.Module):
|
|
363
372
|
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
364
373
|
q, k = _embed_rope(q, k, n_elem, rope)
|
365
374
|
|
366
|
-
if
|
367
|
-
|
368
|
-
|
375
|
+
if kv_cache is not None:
|
376
|
+
kv_cache = kv_utils.update(
|
377
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
378
|
+
)
|
379
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
369
380
|
if mask is None:
|
370
381
|
mask = torch.zeros(
|
371
382
|
(batch_size, 1, target_seq_len, source_seq_len), dtype=torch.float32
|
@@ -375,4 +386,4 @@ class CrossAttention(nn.Module):
|
|
375
386
|
|
376
387
|
# Compute the output projection.
|
377
388
|
y = self.output_projection(y)
|
378
|
-
return y
|
389
|
+
return y if kv_cache is None else (y, kv_cache)
|
@@ -13,6 +13,8 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
# Builder class for individual components.
|
16
|
+
from typing import Callable
|
17
|
+
|
16
18
|
import ai_edge_torch.generative.layers.feed_forward as feed_forward
|
17
19
|
import ai_edge_torch.generative.layers.model_config as cfg
|
18
20
|
import ai_edge_torch.generative.layers.normalization as normalization
|
@@ -21,20 +23,34 @@ from torch import nn
|
|
21
23
|
import torch.nn.functional as F
|
22
24
|
|
23
25
|
|
24
|
-
|
25
|
-
|
26
|
+
def build_glu(
|
27
|
+
act: Callable[[torch.Tensor], torch.Tensor], gate_is_front: bool = False
|
28
|
+
) -> Callable[[torch.Tensor], torch.Tensor]:
|
29
|
+
"""Builds an activation function with GLU (Gated Linear Unit).
|
30
|
+
|
31
|
+
If gate_is_front is True,
|
32
|
+
f(x) = act(x) * y
|
33
|
+
otherwise,
|
34
|
+
f(x) = x * act(y),
|
35
|
+
where x is the first half of the input and y is the second half of the input.
|
36
|
+
|
37
|
+
Args:
|
38
|
+
act (Callable[[torch.Tensor], torch.Tensor]): activation function to apply
|
39
|
+
to the gate.
|
40
|
+
gate_is_front: whether the gate is in front half of the input. Other part is
|
41
|
+
the output in GLU.
|
26
42
|
|
27
|
-
|
28
|
-
|
43
|
+
Returns:
|
44
|
+
A callable activation function with GLU.
|
29
45
|
"""
|
30
46
|
|
31
|
-
def
|
32
|
-
|
33
|
-
|
47
|
+
def _glu(x):
|
48
|
+
x, y = x.chunk(2, dim=-1)
|
49
|
+
if gate_is_front:
|
50
|
+
return act(x) * y
|
51
|
+
return x * act(y)
|
34
52
|
|
35
|
-
|
36
|
-
x, gate = self.proj(x).chunk(2, dim=-1)
|
37
|
-
return x * F.gelu(gate)
|
53
|
+
return _glu
|
38
54
|
|
39
55
|
|
40
56
|
def build_norm(dim: int, config: cfg.NormalizationConfig):
|
@@ -59,9 +75,11 @@ def build_norm(dim: int, config: cfg.NormalizationConfig):
|
|
59
75
|
zero_centered_gamma=config.zero_centered,
|
60
76
|
)
|
61
77
|
elif config.type == cfg.NormalizationType.LAYER_NORM:
|
62
|
-
return
|
78
|
+
return normalization.LayerNorm(dim, config.epsilon, config.enable_hlfb)
|
63
79
|
elif config.type == cfg.NormalizationType.GROUP_NORM:
|
64
|
-
return
|
80
|
+
return normalization.GroupNorm(
|
81
|
+
config.group_num, dim, config.epsilon, config.enable_hlfb
|
82
|
+
)
|
65
83
|
else:
|
66
84
|
raise ValueError("Unsupported norm type.")
|
67
85
|
|
@@ -71,7 +89,7 @@ def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
71
89
|
|
72
90
|
Args:
|
73
91
|
dim (int): dimension of the input tensor.
|
74
|
-
config (`
|
92
|
+
config (`FeedForwardConfig` object): the model configuration.
|
75
93
|
|
76
94
|
Returns:
|
77
95
|
The constructed `nn.Module` feedforward layer.
|
@@ -97,6 +115,10 @@ def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
97
115
|
hidden_dim=config.intermediate_size,
|
98
116
|
activation=activation,
|
99
117
|
use_bias=config.use_bias,
|
118
|
+
use_glu=(
|
119
|
+
config.activation.type == cfg.ActivationType.GE_GLU
|
120
|
+
or config.activation.type == cfg.ActivationType.SILU_GLU
|
121
|
+
),
|
100
122
|
pre_ff_norm=pre_ff_norm,
|
101
123
|
post_ff_norm=post_ff_norm,
|
102
124
|
)
|
@@ -127,8 +149,10 @@ def get_activation(config: cfg.ActivationConfig):
|
|
127
149
|
# See: https://github.com/hendrycks/GELUs
|
128
150
|
return lambda x: x * F.sigmoid(1.702 * x)
|
129
151
|
elif config.type == cfg.ActivationType.GE_GLU:
|
130
|
-
return
|
152
|
+
return build_glu(F.gelu, config.gate_is_front)
|
131
153
|
elif config.type == cfg.ActivationType.RELU:
|
132
154
|
return F.relu
|
155
|
+
elif config.type == cfg.ActivationType.SILU_GLU:
|
156
|
+
return build_glu(F.silu, config.gate_is_front)
|
133
157
|
else:
|
134
158
|
raise ValueError("Unsupported activation type.")
|