ai-edge-torch-nightly 0.3.0.dev20240909__py3-none-any.whl → 0.3.0.dev20240910__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/_convert/test/test_convert.py +35 -13
- ai_edge_torch/odml_torch/lowerings/_convolution.py +196 -74
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +0 -1
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240910.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240910.dist-info}/RECORD +9 -9
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240910.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240910.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240909.dist-info → ai_edge_torch_nightly-0.3.0.dev20240910.dist-info}/top_level.txt +0 -0
@@ -25,6 +25,7 @@ from ai_edge_torch.testing import model_coverage
|
|
25
25
|
import numpy as np
|
26
26
|
import tensorflow as tf
|
27
27
|
import torch
|
28
|
+
from torch import nn
|
28
29
|
import torchvision
|
29
30
|
|
30
31
|
from absl.testing import absltest as googletest
|
@@ -51,7 +52,7 @@ class TestConvert(googletest.TestCase):
|
|
51
52
|
def test_convert_add(self):
|
52
53
|
"""Tests conversion of a simple Add module."""
|
53
54
|
|
54
|
-
class Add(
|
55
|
+
class Add(nn.Module):
|
55
56
|
|
56
57
|
def forward(self, a, b):
|
57
58
|
return a + b
|
@@ -70,7 +71,7 @@ class TestConvert(googletest.TestCase):
|
|
70
71
|
def test_convert_dot_add(self):
|
71
72
|
"""Tests conversion of a matrix multiplication followed by an add."""
|
72
73
|
|
73
|
-
class DotAdd(
|
74
|
+
class DotAdd(nn.Module):
|
74
75
|
|
75
76
|
def forward(self, a, b, c):
|
76
77
|
return a @ b + c
|
@@ -99,7 +100,7 @@ class TestConvert(googletest.TestCase):
|
|
99
100
|
def test_signature_args_ordering(self):
|
100
101
|
"""Tests conversion of a model with more than 10 arguments."""
|
101
102
|
|
102
|
-
class AddChainWith11Args(
|
103
|
+
class AddChainWith11Args(nn.Module):
|
103
104
|
"""A model with 11 arguments."""
|
104
105
|
|
105
106
|
def forward(
|
@@ -152,7 +153,7 @@ class TestConvert(googletest.TestCase):
|
|
152
153
|
def test_multi_output_model(self):
|
153
154
|
"""Tests conversion of a model that returns multiple outputs."""
|
154
155
|
|
155
|
-
class BasicAddModelWithMultipleOutputs(
|
156
|
+
class BasicAddModelWithMultipleOutputs(nn.Module):
|
156
157
|
"""A model that returns multiple outputs."""
|
157
158
|
|
158
159
|
def forward(self, arg0, arg1):
|
@@ -176,7 +177,7 @@ class TestConvert(googletest.TestCase):
|
|
176
177
|
def test_12_outputs_model(self):
|
177
178
|
"""Tests conversion of a model that returns more than 10 outputs."""
|
178
179
|
|
179
|
-
class BasicAddModelWithMultipleOutputs(
|
180
|
+
class BasicAddModelWithMultipleOutputs(nn.Module):
|
180
181
|
"""A model that returns multiple outputs."""
|
181
182
|
|
182
183
|
def forward(self, arg0, arg1):
|
@@ -245,7 +246,7 @@ class TestConvert(googletest.TestCase):
|
|
245
246
|
def test_convert_add_converter_flags(self):
|
246
247
|
"""Tests conversion of an add module setting a tflite converter flag."""
|
247
248
|
|
248
|
-
class Add(
|
249
|
+
class Add(nn.Module):
|
249
250
|
|
250
251
|
def forward(self, a, b):
|
251
252
|
return a + b
|
@@ -267,6 +268,27 @@ class TestConvert(googletest.TestCase):
|
|
267
268
|
)
|
268
269
|
self.assertTrue(os.path.isdir(ir_dump_path))
|
269
270
|
|
271
|
+
def test_convert_conv_transpose_batch_norm(self):
|
272
|
+
"""Tests conversion of a model with ConvTranspose2d and BatchNorm2d."""
|
273
|
+
|
274
|
+
channels = 2
|
275
|
+
size = 2
|
276
|
+
torch_model = nn.Sequential(
|
277
|
+
nn.ConvTranspose2d(
|
278
|
+
channels, channels, 1, stride=2, dilation=1, bias=False
|
279
|
+
),
|
280
|
+
nn.BatchNorm2d(channels),
|
281
|
+
)
|
282
|
+
|
283
|
+
torch_model.eval()
|
284
|
+
sample_input = (torch.rand(1, channels, size, size),)
|
285
|
+
edge_model = ai_edge_torch.convert(torch_model, sample_input)
|
286
|
+
|
287
|
+
result = model_coverage.compare_tflite_torch(
|
288
|
+
edge_model, torch_model, sample_input
|
289
|
+
)
|
290
|
+
self.assertTrue(result)
|
291
|
+
|
270
292
|
@googletest.skipIf(
|
271
293
|
not config.Config.use_torch_xla,
|
272
294
|
reason="Shape polymorphism is not yet support with odml_torch.",
|
@@ -274,7 +296,7 @@ class TestConvert(googletest.TestCase):
|
|
274
296
|
def test_convert_model_with_dynamic_batch(self):
|
275
297
|
"""Test converting a simple model with dynamic batch size."""
|
276
298
|
|
277
|
-
class SampleModel(
|
299
|
+
class SampleModel(nn.Module):
|
278
300
|
|
279
301
|
def __init__(self):
|
280
302
|
super().__init__()
|
@@ -304,7 +326,7 @@ class TestConvert(googletest.TestCase):
|
|
304
326
|
def test_convert_model_with_kwargs(self):
|
305
327
|
"""Test converting a simple model with sample_kwargs."""
|
306
328
|
|
307
|
-
class SampleModel(
|
329
|
+
class SampleModel(nn.Module):
|
308
330
|
|
309
331
|
def forward(self, x, y):
|
310
332
|
return x + y
|
@@ -323,7 +345,7 @@ class TestConvert(googletest.TestCase):
|
|
323
345
|
def test_convert_model_with_args_kwargs(self):
|
324
346
|
"""Test converting a simple model with both sample_args and sample_kwargs."""
|
325
347
|
|
326
|
-
class SampleModel(
|
348
|
+
class SampleModel(nn.Module):
|
327
349
|
|
328
350
|
def forward(self, x, y):
|
329
351
|
return x + y
|
@@ -343,7 +365,7 @@ class TestConvert(googletest.TestCase):
|
|
343
365
|
def test_convert_model_with_args_nested_kwargs_1(self):
|
344
366
|
"""Test converting a simple model with both sample_args and nested sample_kwargs."""
|
345
367
|
|
346
|
-
class SampleModel(
|
368
|
+
class SampleModel(nn.Module):
|
347
369
|
|
348
370
|
def forward(self, x: torch.Tensor, y: torch.Tensor, z: TestContainer1):
|
349
371
|
return x + y + z.data_1 + z.data_2[0] + z.data_2[1]
|
@@ -370,7 +392,7 @@ class TestConvert(googletest.TestCase):
|
|
370
392
|
def test_convert_model_with_args_nested_kwargs_2(self):
|
371
393
|
"""Test converting a simple model with both sample_args and nested sample_kwargs."""
|
372
394
|
|
373
|
-
class SampleModel(
|
395
|
+
class SampleModel(nn.Module):
|
374
396
|
|
375
397
|
def forward(self, x, y, z):
|
376
398
|
return x + y + z.data_1 + z.data_2[0][0] + z.data_2[1]
|
@@ -397,7 +419,7 @@ class TestConvert(googletest.TestCase):
|
|
397
419
|
def test_convert_model_with_args_nested_kwargs_3(self):
|
398
420
|
"""Test converting a simple model with both sample_args and nested sample_kwargs."""
|
399
421
|
|
400
|
-
class SampleModel(
|
422
|
+
class SampleModel(nn.Module):
|
401
423
|
|
402
424
|
def forward(self, x, y, z):
|
403
425
|
return x + y + z.data_1 + z.data_2[0]["foo"] + z.data_2[1]
|
@@ -424,7 +446,7 @@ class TestConvert(googletest.TestCase):
|
|
424
446
|
def test_convert_model_non_flat_output_dict(self):
|
425
447
|
"""Test converting a model with non-flat output structure."""
|
426
448
|
|
427
|
-
class SampleModel(
|
449
|
+
class SampleModel(nn.Module):
|
428
450
|
|
429
451
|
def forward(self, x, y, z):
|
430
452
|
return {"x": x, "y": TestContainer1(data_1=y, data_2=[y, z])}
|
@@ -12,22 +12,171 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
"""Provides lowering for coreaten to
|
15
|
+
"""Provides lowering for coreaten to stablehlo for Convolution."""
|
16
16
|
|
17
17
|
import math
|
18
18
|
from typing import Optional
|
19
19
|
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
20
21
|
from jax._src.lib.mlir import ir
|
21
22
|
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
22
23
|
import torch
|
23
24
|
|
24
|
-
|
25
|
+
|
26
|
+
def make_padding(padding):
|
27
|
+
"""Change the padding from pytorch to stablehlo style.
|
28
|
+
|
29
|
+
Stablehlo allows start and end padding for each dimension while aten only
|
30
|
+
allows symmetric padding and so only has one number per dimension.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
padding: The padding of the convolution
|
34
|
+
|
35
|
+
Returns:
|
36
|
+
The padding in stablehlo style
|
37
|
+
"""
|
38
|
+
return tuple((p, p) for p in padding)
|
39
|
+
|
40
|
+
|
41
|
+
def create_conv_dimension_numbers(lhs, transposed: bool = False):
|
42
|
+
"""Create the dimension numbers for the convolution.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
lhs: The input tensor
|
46
|
+
transposed: Whether the convolution is transposed
|
47
|
+
|
48
|
+
Returns:
|
49
|
+
The dimension numbers for the convolution
|
50
|
+
"""
|
51
|
+
num_spatial_dims = len(lhs.type.shape) - 2
|
52
|
+
spatial_dimensions = []
|
53
|
+
for i in range(0, num_spatial_dims):
|
54
|
+
spatial_dimensions.append(i + 2)
|
55
|
+
|
56
|
+
# Regular kernels are OIHW
|
57
|
+
# TransposedConv kernels are IOHW
|
58
|
+
dimension_numbers = stablehlo.ConvDimensionNumbers.get(
|
59
|
+
input_batch_dimension=0,
|
60
|
+
input_feature_dimension=1,
|
61
|
+
input_spatial_dimensions=spatial_dimensions,
|
62
|
+
kernel_input_feature_dimension=0 if transposed else 1,
|
63
|
+
kernel_output_feature_dimension=1 if transposed else 0,
|
64
|
+
kernel_spatial_dimensions=spatial_dimensions,
|
65
|
+
output_batch_dimension=0,
|
66
|
+
output_feature_dimension=1,
|
67
|
+
output_spatial_dimensions=spatial_dimensions,
|
68
|
+
)
|
69
|
+
return dimension_numbers
|
70
|
+
|
71
|
+
|
72
|
+
def infer_output_shape(
|
73
|
+
lhs,
|
74
|
+
rhs,
|
75
|
+
stride,
|
76
|
+
dilation,
|
77
|
+
padding,
|
78
|
+
transposed: bool = False,
|
79
|
+
output_padding: list[int] = 0,
|
80
|
+
):
|
81
|
+
"""Infer the output shape of the convolution.
|
82
|
+
|
83
|
+
Args:
|
84
|
+
lhs: The input tensor
|
85
|
+
rhs: The kernel tensor
|
86
|
+
stride: The stride of the convolution (dilation of input in transposed conv)
|
87
|
+
dilation: The kernel dilation of the convolution
|
88
|
+
padding: The padding of the convolution
|
89
|
+
transposed: Whether the convolution is transposed
|
90
|
+
output_padding: The output padding of the convolution
|
91
|
+
|
92
|
+
Returns:
|
93
|
+
The output shape of the convolution
|
94
|
+
"""
|
95
|
+
lhs_type: ir.RankedTensorType = lhs.type
|
96
|
+
lhs_shape: list[int] = lhs_type.shape
|
97
|
+
rhs_shape: list[int] = rhs.type.shape
|
98
|
+
|
99
|
+
# Input layout is: (N)CHW and Kernel layout is: (O)IHW for regular conv
|
100
|
+
# Input layout is: (N)CHW and Kernel layout is: I(O)HW for transposed conv
|
101
|
+
output_shape = (
|
102
|
+
[lhs_shape[0], rhs_shape[1]]
|
103
|
+
if transposed
|
104
|
+
else [lhs_shape[0], rhs_shape[0]]
|
105
|
+
)
|
106
|
+
num_spatial_dims = len(lhs.type.shape) - 2
|
107
|
+
|
108
|
+
# looping over the spatial dims (skipping the first 2 dims which are
|
109
|
+
# batch and features)
|
110
|
+
for spatial_dim in range(0, num_spatial_dims):
|
111
|
+
dim = spatial_dim + 2
|
112
|
+
dim_size = lhs_shape[dim]
|
113
|
+
kernel_dim_size = rhs_shape[dim]
|
114
|
+
|
115
|
+
if transposed:
|
116
|
+
output_dim_size = (
|
117
|
+
(dim_size - 1) * stride[spatial_dim]
|
118
|
+
- 2 * padding[spatial_dim]
|
119
|
+
+ dilation[spatial_dim] * (kernel_dim_size - 1)
|
120
|
+
+ output_padding[spatial_dim]
|
121
|
+
+ 1
|
122
|
+
)
|
123
|
+
else:
|
124
|
+
output_dim_size = math.floor(
|
125
|
+
(
|
126
|
+
(
|
127
|
+
dim_size
|
128
|
+
+ 2 * padding[spatial_dim]
|
129
|
+
- dilation[spatial_dim] * (kernel_dim_size - 1)
|
130
|
+
- 1
|
131
|
+
)
|
132
|
+
/ stride[spatial_dim]
|
133
|
+
)
|
134
|
+
+ 1
|
135
|
+
)
|
136
|
+
|
137
|
+
output_shape.append(output_dim_size)
|
138
|
+
|
139
|
+
return output_shape
|
140
|
+
|
141
|
+
|
142
|
+
def build_transpose_conv(
|
143
|
+
lctx,
|
144
|
+
output_type: ir.RankedTensorType,
|
145
|
+
lhs: ir.Value,
|
146
|
+
rhs: ir.Value,
|
147
|
+
stride: list[int],
|
148
|
+
padding: list[int],
|
149
|
+
dilation: list[int],
|
150
|
+
output_padding: list[int],
|
151
|
+
groups: int,
|
152
|
+
):
|
153
|
+
lhs_type: ir.RankedTensorType = lhs.type
|
154
|
+
num_spatial_dims = len(lhs_type.shape) - 2
|
155
|
+
rhs = stablehlo.reverse(rhs, list(range(2, 2 + num_spatial_dims)))
|
156
|
+
|
157
|
+
kernel_size = rhs.type.shape
|
158
|
+
# We need to additional padding on the input to get the right output size.
|
159
|
+
adjusted_padding = [
|
160
|
+
dilation[dim] * (kernel_size[dim + 2] - 1) - padding[dim]
|
161
|
+
for dim in range(num_spatial_dims)
|
162
|
+
]
|
163
|
+
return stablehlo.convolution(
|
164
|
+
result=output_type,
|
165
|
+
lhs=lhs,
|
166
|
+
rhs=rhs,
|
167
|
+
dimension_numbers=create_conv_dimension_numbers(lhs, True),
|
168
|
+
feature_group_count=groups,
|
169
|
+
batch_group_count=1,
|
170
|
+
padding=make_padding(adjusted_padding),
|
171
|
+
lhs_dilation=stride,
|
172
|
+
rhs_dilation=dilation,
|
173
|
+
)
|
25
174
|
|
26
175
|
|
27
176
|
# convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride,
|
28
177
|
# SymInt[] padding, SymInt[] dilation, bool transposed,
|
29
178
|
# SymInt[] output_padding, SymInt groups) -> Tensor
|
30
|
-
|
179
|
+
@registry.lower(torch.ops.aten.convolution)
|
31
180
|
def _aten_convolution(
|
32
181
|
lctx,
|
33
182
|
lhs: ir.Value,
|
@@ -40,80 +189,53 @@ def _aten_convolution(
|
|
40
189
|
output_padding: list[int],
|
41
190
|
groups: int,
|
42
191
|
):
|
43
|
-
if transposed:
|
44
|
-
raise NotImplementedError("Transposed convolution is not implemented.")
|
45
192
|
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
# allows symmetric padding and so only has one number per dimension.
|
51
|
-
def make_padding(padding):
|
52
|
-
return tuple((p, p) for p in padding)
|
53
|
-
|
54
|
-
def create_conv_dimension_numbers():
|
55
|
-
num_spatial_dims = len(lhs.type.shape) - 2
|
56
|
-
spatial_dimensions = []
|
57
|
-
for i in range(0, num_spatial_dims):
|
58
|
-
spatial_dimensions.append(i + 2)
|
59
|
-
|
60
|
-
dimension_numbers = stablehlo.ConvDimensionNumbers.get(
|
61
|
-
input_batch_dimension=0,
|
62
|
-
input_feature_dimension=1,
|
63
|
-
input_spatial_dimensions=spatial_dimensions,
|
64
|
-
kernel_input_feature_dimension=1,
|
65
|
-
kernel_output_feature_dimension=0,
|
66
|
-
kernel_spatial_dimensions=spatial_dimensions,
|
67
|
-
output_batch_dimension=0,
|
68
|
-
output_feature_dimension=1,
|
69
|
-
output_spatial_dimensions=spatial_dimensions,
|
193
|
+
# TODO(b/365559296) Add support for output_padding
|
194
|
+
if any(output_padding):
|
195
|
+
raise NotImplementedError(
|
196
|
+
"Output padding on convolution is not implemented."
|
70
197
|
)
|
71
|
-
return dimension_numbers
|
72
|
-
|
73
|
-
def infer_output_shape():
|
74
|
-
lhs_type: ir.RankedTensorType = lhs.type
|
75
|
-
lhs_shape: list[int] = lhs_type.shape
|
76
|
-
rhs_shape: list[int] = rhs.type.shape
|
77
|
-
|
78
|
-
# Input layout is: (N)CHW and Kernel layout is: (O)IHW
|
79
|
-
output_shape = [lhs_shape[0], rhs_shape[0]]
|
80
|
-
num_spatial_dims = len(lhs.type.shape) - 2
|
81
|
-
|
82
|
-
# looping over the spatial dims (skipping the first 2 dims which are
|
83
|
-
# batch and features)
|
84
|
-
for spatial_dim in range(0, num_spatial_dims):
|
85
|
-
dim_size = lhs_shape[spatial_dim + 2]
|
86
|
-
kernel_dim_size = rhs_shape[spatial_dim + 2]
|
87
|
-
|
88
|
-
# for example, a dilation of 2 increases the dimension size by 2
|
89
|
-
dim_size *= dilation[spatial_dim]
|
90
|
-
|
91
|
-
# padding added to both sides
|
92
|
-
dim_size += 2 * padding[spatial_dim]
|
93
|
-
|
94
|
-
output_dim_size = math.ceil(
|
95
|
-
(dim_size - kernel_dim_size + 1) / stride[spatial_dim]
|
96
|
-
)
|
97
|
-
|
98
|
-
output_shape.append(output_dim_size)
|
99
|
-
|
100
|
-
return output_shape
|
101
198
|
|
102
199
|
lhs_type: ir.RankedTensorType = lhs.type
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
rhs=rhs,
|
110
|
-
dimension_numbers=create_conv_dimension_numbers(),
|
111
|
-
feature_group_count=groups,
|
112
|
-
batch_group_count=1,
|
113
|
-
window_strides=stride,
|
114
|
-
padding=make_padding(padding),
|
115
|
-
lhs_dilation=(1,) * len(stride),
|
116
|
-
rhs_dilation=dilation,
|
200
|
+
output_shape = infer_output_shape(
|
201
|
+
lhs, rhs, stride, dilation, padding, transposed, output_padding
|
202
|
+
)
|
203
|
+
output_type = ir.RankedTensorType.get(
|
204
|
+
output_shape,
|
205
|
+
lhs_type.element_type,
|
117
206
|
)
|
118
207
|
|
119
|
-
|
208
|
+
if transposed:
|
209
|
+
res = build_transpose_conv(
|
210
|
+
lctx,
|
211
|
+
output_type,
|
212
|
+
lhs,
|
213
|
+
rhs,
|
214
|
+
stride,
|
215
|
+
padding,
|
216
|
+
dilation,
|
217
|
+
output_padding,
|
218
|
+
groups,
|
219
|
+
)
|
220
|
+
else:
|
221
|
+
res = stablehlo.convolution(
|
222
|
+
result=output_type,
|
223
|
+
lhs=lhs,
|
224
|
+
rhs=rhs,
|
225
|
+
dimension_numbers=create_conv_dimension_numbers(lhs),
|
226
|
+
feature_group_count=groups,
|
227
|
+
batch_group_count=1,
|
228
|
+
window_strides=stride,
|
229
|
+
padding=make_padding(padding),
|
230
|
+
rhs_dilation=dilation,
|
231
|
+
)
|
232
|
+
|
233
|
+
if bias is not None:
|
234
|
+
# broadcast [C] to [NCHW]
|
235
|
+
broadcasted_bias = stablehlo.broadcast_in_dim(output_type, bias, [1])
|
236
|
+
res = stablehlo.add(
|
237
|
+
lhs=res,
|
238
|
+
rhs=broadcasted_bias,
|
239
|
+
)
|
240
|
+
|
241
|
+
return res
|
@@ -105,7 +105,6 @@ lower_by_torch_xla2(torch.ops.aten.clamp.default)
|
|
105
105
|
lower_by_torch_xla2(torch.ops.aten.clone)
|
106
106
|
lower_by_torch_xla2(torch.ops.aten.clone.default)
|
107
107
|
lower_by_torch_xla2(torch.ops.aten.constant_pad_nd)
|
108
|
-
lower_by_torch_xla2(torch.ops.aten.convolution)
|
109
108
|
lower_by_torch_xla2(torch.ops.aten.cos)
|
110
109
|
lower_by_torch_xla2(torch.ops.aten.cosh)
|
111
110
|
lower_by_torch_xla2(torch.ops.aten.cumsum)
|
ai_edge_torch/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: ai-edge-torch-nightly
|
3
|
-
Version: 0.3.0.
|
3
|
+
Version: 0.3.0.dev20240910
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
@@ -2,7 +2,7 @@ ai_edge_torch/__init__.py,sha256=48qP37uHT90YPs4eIUQxCiWVwqGEX3idCUs6mQKvX1U,116
|
|
2
2
|
ai_edge_torch/config.py,sha256=PCd9PVrbUNeVIUDFUCnW4goDWU4bjouK28yMYU6VOi0,877
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
4
4
|
ai_edge_torch/model.py,sha256=NYV6Mkaje_ditIEI_s_7nLP_-8i4kbGM8nRzieVkbUI,5397
|
5
|
-
ai_edge_torch/version.py,sha256=
|
5
|
+
ai_edge_torch/version.py,sha256=e4sh_RFYgNHGoVuOeICnFZtLu1MQCNv7qpq94nKFarU,706
|
6
6
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
7
7
|
ai_edge_torch/_convert/conversion.py,sha256=kcv_QgNgeyDmrqwdzHicGNP68w6zF7GJg7YkMEIXp4Q,3759
|
8
8
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
@@ -26,7 +26,7 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
|
|
26
26
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py,sha256=L_x8BrF7UDah-SYl-pG11I6CIckdU9kBTUHcmwW4cts,2420
|
27
27
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
|
28
28
|
ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
29
|
-
ai_edge_torch/_convert/test/test_convert.py,sha256=
|
29
|
+
ai_edge_torch/_convert/test/test_convert.py,sha256=FSufFZEeTLBpUnzE1Iy-LvNN0mhDynWMNg7Mei8RpLQ,14973
|
30
30
|
ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
|
31
31
|
ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
|
32
32
|
ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
|
@@ -148,8 +148,8 @@ ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7i
|
|
148
148
|
ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=GqYk6oBJw7KWeG4_6gxSu_OvYhjJcC2FpGzWPPEdH6w,933
|
149
149
|
ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=wV8AUK8dvjLUy3qjqw_IxpiYVDWUMPNZRfi3XYE_hDs,6972
|
150
150
|
ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
|
151
|
-
ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=
|
152
|
-
ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=
|
151
|
+
ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=v1VdKmL8YLJv3PR9VgyNghO83A25PpTzY2ZUAJqlq3Q,6847
|
152
|
+
ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=s-cT_tIQHu7w5hXl8MCixRxLlHplpXW-UCzHT9TY--o,10621
|
153
153
|
ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
|
154
154
|
ai_edge_torch/odml_torch/lowerings/registry.py,sha256=ES3x_RJ22T5rlmMrlomex2DdcZbhlyVJ7_HS3rjz3Uk,2851
|
155
155
|
ai_edge_torch/odml_torch/lowerings/utils.py,sha256=NczqpsSd3Fn7yVcPC3qllemiZxxDAZgcW1T5l8-W9fE,5593
|
@@ -161,8 +161,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
161
161
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
162
162
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
163
163
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
164
|
-
ai_edge_torch_nightly-0.3.0.
|
165
|
-
ai_edge_torch_nightly-0.3.0.
|
166
|
-
ai_edge_torch_nightly-0.3.0.
|
167
|
-
ai_edge_torch_nightly-0.3.0.
|
168
|
-
ai_edge_torch_nightly-0.3.0.
|
164
|
+
ai_edge_torch_nightly-0.3.0.dev20240910.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
165
|
+
ai_edge_torch_nightly-0.3.0.dev20240910.dist-info/METADATA,sha256=WFNExTO6eF-tAWPmDdQDlr9dvplcoNB0uPdVxSNXYHk,1859
|
166
|
+
ai_edge_torch_nightly-0.3.0.dev20240910.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
167
|
+
ai_edge_torch_nightly-0.3.0.dev20240910.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
168
|
+
ai_edge_torch_nightly-0.3.0.dev20240910.dist-info/RECORD,,
|
File without changes
|
File without changes
|