ai-edge-torch-nightly 0.3.0.dev20240828__py3-none-any.whl → 0.3.0.dev20240829__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ai-edge-torch-nightly might be problematic. Click here for more details.

Files changed (45) hide show
  1. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +6 -1
  2. ai_edge_torch/_convert/test/test_convert.py +1 -1
  3. ai_edge_torch/_convert/test/test_convert_composites.py +1 -1
  4. ai_edge_torch/_convert/test/test_convert_multisig.py +1 -1
  5. ai_edge_torch/_convert/test/test_to_channel_last_io.py +1 -1
  6. ai_edge_torch/debug/test/test_culprit.py +1 -1
  7. ai_edge_torch/debug/test/test_search_model.py +1 -1
  8. ai_edge_torch/generative/test/test_experimental_ekv.py +1 -1
  9. ai_edge_torch/generative/test/test_loader.py +1 -1
  10. ai_edge_torch/generative/test/test_model_conversion.py +1 -1
  11. ai_edge_torch/generative/test/test_quantize.py +1 -1
  12. ai_edge_torch/hlfb/test/test_mark_pattern.py +1 -1
  13. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +1 -1
  14. ai_edge_torch/lowertools/odml_torch_utils.py +5 -1
  15. ai_edge_torch/lowertools/test_utils.py +1 -1
  16. ai_edge_torch/odml_torch/__init__.py +20 -0
  17. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  18. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  19. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  20. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  21. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  22. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  23. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  24. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  25. ai_edge_torch/odml_torch/export.py +320 -0
  26. ai_edge_torch/odml_torch/export_utils.py +168 -0
  27. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  28. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +152 -0
  29. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  30. ai_edge_torch/odml_torch/lowerings/__init__.py +24 -0
  31. ai_edge_torch/odml_torch/lowerings/_basic.py +204 -0
  32. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  33. ai_edge_torch/odml_torch/lowerings/_convolution.py +119 -0
  34. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +255 -0
  35. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  36. ai_edge_torch/odml_torch/lowerings/registry.py +87 -0
  37. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  38. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  39. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  40. ai_edge_torch/version.py +1 -1
  41. {ai_edge_torch_nightly-0.3.0.dev20240828.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/METADATA +1 -1
  42. {ai_edge_torch_nightly-0.3.0.dev20240828.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/RECORD +45 -21
  43. {ai_edge_torch_nightly-0.3.0.dev20240828.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/LICENSE +0 -0
  44. {ai_edge_torch_nightly-0.3.0.dev20240828.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/WHEEL +0 -0
  45. {ai_edge_torch_nightly-0.3.0.dev20240828.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,255 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import functools
16
+ import logging
17
+
18
+ from ai_edge_torch.odml_torch import jax_bridge
19
+ import torch
20
+ import torch_xla2.ops.jaten # Import to load torch_xla2 ops
21
+ import torch_xla2.ops.ops_registry # Import to load torch_xla2 ops
22
+
23
+ from . import registry
24
+
25
+
26
+ @functools.cache
27
+ def _log_usage(op):
28
+ logging.warning("Use jax lowering: %s", str(op))
29
+
30
+
31
+ def lower_by_jax(op, ir_input_names=None):
32
+ def inner(lowering):
33
+ bridged = jax_bridge.wrap(lowering, ir_input_names)
34
+
35
+ @registry.lower(op)
36
+ def _jax_lowering(lctx, *args, **kwargs):
37
+ _log_usage(op)
38
+ return bridged(lctx, *args, **kwargs)
39
+
40
+ return lowering
41
+
42
+ return inner
43
+
44
+
45
+ _TORCH_XLA2_IMPLS = {
46
+ key: val.func
47
+ for key, val in torch_xla2.ops.ops_registry.all_aten_ops.items()
48
+ if val.is_jax_function
49
+ }
50
+
51
+
52
+ def lower_by_torch_xla2(op):
53
+ return lower_by_jax(op)(_TORCH_XLA2_IMPLS[op])
54
+
55
+
56
+ lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool2d)
57
+ lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool3d)
58
+ lower_by_torch_xla2(torch.ops.aten._cdist_forward)
59
+ lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
60
+ lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
61
+ lower_by_torch_xla2(torch.ops.aten._log_softmax)
62
+ lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit)
63
+ lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit_no_training)
64
+ lower_by_torch_xla2(torch.ops.aten._pdist_forward)
65
+ lower_by_torch_xla2(torch.ops.aten._softmax)
66
+ lower_by_torch_xla2(torch.ops.aten._to_copy)
67
+ lower_by_torch_xla2(torch.ops.aten._unsafe_index)
68
+ lower_by_torch_xla2(torch.ops.aten._unsafe_view)
69
+ lower_by_torch_xla2(torch.ops.aten.abs)
70
+ lower_by_torch_xla2(torch.ops.aten.acos)
71
+ lower_by_torch_xla2(torch.ops.aten.acosh)
72
+ lower_by_torch_xla2(torch.ops.aten.add.Scalar)
73
+ lower_by_torch_xla2(torch.ops.aten.add.Tensor)
74
+ lower_by_torch_xla2(torch.ops.aten.addbmm.default)
75
+ lower_by_torch_xla2(torch.ops.aten.addmm)
76
+ lower_by_torch_xla2(torch.ops.aten.addmv)
77
+ lower_by_torch_xla2(torch.ops.aten.alias)
78
+ lower_by_torch_xla2(torch.ops.aten.allclose)
79
+ lower_by_torch_xla2(torch.ops.aten.amax)
80
+ lower_by_torch_xla2(torch.ops.aten.amin)
81
+ lower_by_torch_xla2(torch.ops.aten.any)
82
+ lower_by_torch_xla2(torch.ops.aten.arange.default)
83
+ lower_by_torch_xla2(torch.ops.aten.arange.start)
84
+ lower_by_torch_xla2(torch.ops.aten.arange.start_step)
85
+ lower_by_torch_xla2(torch.ops.aten.argmax)
86
+ lower_by_torch_xla2(torch.ops.aten.argmin)
87
+ lower_by_torch_xla2(torch.ops.aten.as_strided)
88
+ lower_by_torch_xla2(torch.ops.aten.as_strided_copy)
89
+ lower_by_torch_xla2(torch.ops.aten.asin)
90
+ lower_by_torch_xla2(torch.ops.aten.asinh)
91
+ lower_by_torch_xla2(torch.ops.aten.atan)
92
+ lower_by_torch_xla2(torch.ops.aten.atan2)
93
+ lower_by_torch_xla2(torch.ops.aten.atanh)
94
+ lower_by_torch_xla2(torch.ops.aten.avg_pool2d)
95
+ lower_by_torch_xla2(torch.ops.aten.avg_pool3d)
96
+ lower_by_torch_xla2(torch.ops.aten.bitwise_and)
97
+ lower_by_torch_xla2(torch.ops.aten.bitwise_not)
98
+ lower_by_torch_xla2(torch.ops.aten.bitwise_or)
99
+ lower_by_torch_xla2(torch.ops.aten.bitwise_xor)
100
+ lower_by_torch_xla2(torch.ops.aten.bmm)
101
+ lower_by_torch_xla2(torch.ops.aten.cat)
102
+ lower_by_torch_xla2(torch.ops.aten.ceil)
103
+ lower_by_torch_xla2(torch.ops.aten.clamp.Tensor)
104
+ lower_by_torch_xla2(torch.ops.aten.clamp.default)
105
+ lower_by_torch_xla2(torch.ops.aten.clone)
106
+ lower_by_torch_xla2(torch.ops.aten.clone.default)
107
+ lower_by_torch_xla2(torch.ops.aten.constant_pad_nd)
108
+ lower_by_torch_xla2(torch.ops.aten.convolution)
109
+ lower_by_torch_xla2(torch.ops.aten.cos)
110
+ lower_by_torch_xla2(torch.ops.aten.cosh)
111
+ lower_by_torch_xla2(torch.ops.aten.cumsum)
112
+ lower_by_torch_xla2(torch.ops.aten.detach)
113
+ lower_by_torch_xla2(torch.ops.aten.diagonal)
114
+ lower_by_torch_xla2(torch.ops.aten.div)
115
+ lower_by_torch_xla2(torch.ops.aten.dot)
116
+ lower_by_torch_xla2(torch.ops.aten.embedding)
117
+ lower_by_torch_xla2(torch.ops.aten.empty)
118
+ lower_by_torch_xla2(torch.ops.aten.eq)
119
+ lower_by_torch_xla2(torch.ops.aten.erf)
120
+ lower_by_torch_xla2(torch.ops.aten.exp)
121
+ lower_by_torch_xla2(torch.ops.aten.expand)
122
+ lower_by_torch_xla2(torch.ops.aten.expand_copy)
123
+ lower_by_torch_xla2(torch.ops.aten.expm1)
124
+ lower_by_torch_xla2(torch.ops.aten.fill)
125
+ lower_by_torch_xla2(torch.ops.aten.flip)
126
+ lower_by_torch_xla2(torch.ops.aten.floor)
127
+ lower_by_torch_xla2(torch.ops.aten.fmod)
128
+ lower_by_torch_xla2(torch.ops.aten.full)
129
+ lower_by_torch_xla2(torch.ops.aten.full_like)
130
+ lower_by_torch_xla2(torch.ops.aten.gather)
131
+ lower_by_torch_xla2(torch.ops.aten.ge)
132
+ lower_by_torch_xla2(torch.ops.aten.gelu)
133
+ lower_by_torch_xla2(torch.ops.aten.glu)
134
+ lower_by_torch_xla2(torch.ops.aten.glu.default)
135
+ lower_by_torch_xla2(torch.ops.aten.gt)
136
+ lower_by_torch_xla2(torch.ops.aten.hardtanh)
137
+ lower_by_torch_xla2(torch.ops.aten.index)
138
+ lower_by_torch_xla2(torch.ops.aten.index.Tensor)
139
+ lower_by_torch_xla2(torch.ops.aten.index_copy)
140
+ lower_by_torch_xla2(torch.ops.aten.index_put)
141
+ lower_by_torch_xla2(torch.ops.aten.index_select)
142
+ lower_by_torch_xla2(torch.ops.aten.isinf)
143
+ lower_by_torch_xla2(torch.ops.aten.isnan)
144
+ lower_by_torch_xla2(torch.ops.aten.le)
145
+ lower_by_torch_xla2(torch.ops.aten.leaky_relu)
146
+ lower_by_torch_xla2(torch.ops.aten.lift_fresh_copy)
147
+ lower_by_torch_xla2(torch.ops.aten.linalg_vector_norm)
148
+ lower_by_torch_xla2(torch.ops.aten.log)
149
+ lower_by_torch_xla2(torch.ops.aten.log10)
150
+ lower_by_torch_xla2(torch.ops.aten.log1p)
151
+ lower_by_torch_xla2(torch.ops.aten.log2)
152
+ lower_by_torch_xla2(torch.ops.aten.logical_and)
153
+ lower_by_torch_xla2(torch.ops.aten.logical_not)
154
+ lower_by_torch_xla2(torch.ops.aten.logical_or)
155
+ lower_by_torch_xla2(torch.ops.aten.logical_xor)
156
+ lower_by_torch_xla2(torch.ops.aten.lt)
157
+ lower_by_torch_xla2(torch.ops.aten.max)
158
+ lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices)
159
+ lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
160
+ lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
161
+ lower_by_torch_xla2(torch.ops.aten.max_pool3d_with_indices)
162
+ lower_by_torch_xla2(torch.ops.aten.maximum)
163
+ lower_by_torch_xla2(torch.ops.aten.mean)
164
+ lower_by_torch_xla2(torch.ops.aten.min)
165
+ lower_by_torch_xla2(torch.ops.aten.minimum)
166
+ lower_by_torch_xla2(torch.ops.aten.mm)
167
+ lower_by_torch_xla2(torch.ops.aten.mul.Scalar)
168
+ lower_by_torch_xla2(torch.ops.aten.mul.Tensor)
169
+ lower_by_torch_xla2(torch.ops.aten.native_batch_norm)
170
+ lower_by_torch_xla2(torch.ops.aten.native_group_norm)
171
+ lower_by_torch_xla2(torch.ops.aten.native_layer_norm)
172
+ lower_by_torch_xla2(torch.ops.aten.native_layer_norm_backward)
173
+ lower_by_torch_xla2(torch.ops.aten.ne)
174
+ lower_by_torch_xla2(torch.ops.aten.neg)
175
+ lower_by_torch_xla2(torch.ops.aten.nonzero)
176
+ lower_by_torch_xla2(torch.ops.aten.outer)
177
+ lower_by_torch_xla2(torch.ops.aten.permute)
178
+ lower_by_torch_xla2(torch.ops.aten.permute_copy)
179
+ lower_by_torch_xla2(torch.ops.aten.pixel_shuffle)
180
+ lower_by_torch_xla2(torch.ops.aten.pow)
181
+ lower_by_torch_xla2(torch.ops.aten.prod)
182
+ lower_by_torch_xla2(torch.ops.aten.rand)
183
+ lower_by_torch_xla2(torch.ops.aten.randn)
184
+ lower_by_torch_xla2(torch.ops.aten.reciprocal)
185
+ lower_by_torch_xla2(torch.ops.aten.reflection_pad1d)
186
+ lower_by_torch_xla2(torch.ops.aten.relu)
187
+ lower_by_torch_xla2(torch.ops.aten.remainder)
188
+ lower_by_torch_xla2(torch.ops.aten.repeat)
189
+ lower_by_torch_xla2(torch.ops.aten.reshape)
190
+ lower_by_torch_xla2(torch.ops.aten.roll)
191
+ lower_by_torch_xla2(torch.ops.aten.round)
192
+ lower_by_torch_xla2(torch.ops.aten.rsqrt)
193
+ lower_by_torch_xla2(torch.ops.aten.scalar_tensor)
194
+ lower_by_torch_xla2(torch.ops.aten.scatter.src)
195
+ lower_by_torch_xla2(torch.ops.aten.scatter.value)
196
+ lower_by_torch_xla2(torch.ops.aten.scatter_add)
197
+ lower_by_torch_xla2(torch.ops.aten.scatter_reduce)
198
+ lower_by_torch_xla2(torch.ops.aten.select)
199
+ lower_by_torch_xla2(torch.ops.aten.select_copy)
200
+ lower_by_torch_xla2(torch.ops.aten.select_scatter)
201
+ lower_by_torch_xla2(torch.ops.aten.sigmoid)
202
+ lower_by_torch_xla2(torch.ops.aten.sign)
203
+ lower_by_torch_xla2(torch.ops.aten.silu)
204
+ lower_by_torch_xla2(torch.ops.aten.sin)
205
+ lower_by_torch_xla2(torch.ops.aten.sinh)
206
+ lower_by_torch_xla2(torch.ops.aten.slice)
207
+ lower_by_torch_xla2(torch.ops.aten.slice_copy)
208
+ lower_by_torch_xla2(torch.ops.aten.slice_scatter)
209
+ lower_by_torch_xla2(torch.ops.aten.sort)
210
+ lower_by_torch_xla2(torch.ops.aten.split)
211
+ lower_by_torch_xla2(torch.ops.aten.split_copy)
212
+ lower_by_torch_xla2(torch.ops.aten.split_with_sizes)
213
+ lower_by_torch_xla2(torch.ops.aten.sqrt)
214
+ lower_by_torch_xla2(torch.ops.aten.squeeze)
215
+ lower_by_torch_xla2(torch.ops.aten.squeeze_copy)
216
+ lower_by_torch_xla2(torch.ops.aten.stack)
217
+ lower_by_torch_xla2(torch.ops.aten.sub.Scalar)
218
+ lower_by_torch_xla2(torch.ops.aten.sub.Tensor)
219
+ lower_by_torch_xla2(torch.ops.aten.sum)
220
+ lower_by_torch_xla2(torch.ops.aten.sym_size)
221
+ lower_by_torch_xla2(torch.ops.aten.t)
222
+ lower_by_torch_xla2(torch.ops.aten.tan)
223
+ lower_by_torch_xla2(torch.ops.aten.tanh)
224
+ lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
225
+ lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
226
+ lower_by_torch_xla2(torch.ops.aten.to.device)
227
+ lower_by_torch_xla2(torch.ops.aten.to.device)
228
+ lower_by_torch_xla2(torch.ops.aten.to.dtype)
229
+ lower_by_torch_xla2(torch.ops.aten.topk)
230
+ lower_by_torch_xla2(torch.ops.aten.transpose)
231
+ lower_by_torch_xla2(torch.ops.aten.transpose_copy)
232
+ lower_by_torch_xla2(torch.ops.aten.triu)
233
+ lower_by_torch_xla2(torch.ops.aten.true_divide)
234
+ lower_by_torch_xla2(torch.ops.aten.trunc)
235
+ lower_by_torch_xla2(torch.ops.aten.unbind)
236
+ lower_by_torch_xla2(torch.ops.aten.unbind_copy)
237
+ lower_by_torch_xla2(torch.ops.aten.unsqueeze)
238
+ lower_by_torch_xla2(torch.ops.aten.unsqueeze.default)
239
+ lower_by_torch_xla2(torch.ops.aten.unsqueeze_copy)
240
+ lower_by_torch_xla2(torch.ops.aten.var.correction)
241
+ lower_by_torch_xla2(torch.ops.aten.var_mean.correction)
242
+ lower_by_torch_xla2(torch.ops.aten.view)
243
+ lower_by_torch_xla2(torch.ops.aten.view_as_complex)
244
+ lower_by_torch_xla2(torch.ops.aten.view_as_real)
245
+ lower_by_torch_xla2(torch.ops.aten.view_copy)
246
+ lower_by_torch_xla2(torch.ops.aten.where.ScalarOther)
247
+ lower_by_torch_xla2(torch.ops.aten.where.ScalarSelf)
248
+ lower_by_torch_xla2(torch.ops.aten.where.self)
249
+ lower_by_torch_xla2(torch.ops.prims.broadcast_in_dim)
250
+ lower_by_torch_xla2(torch.ops.prims.var)
251
+
252
+
253
+ @lower_by_jax(torch.ops.aten.copy, ir_input_names=["src"])
254
+ def _aten_copy(self, src, **kwargs):
255
+ return _TORCH_XLA2_IMPLS[torch.ops.aten.copy](self, src)
@@ -0,0 +1,42 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Define context object for export and MLIR lowerings."""
16
+
17
+ import dataclasses
18
+ from jax._src.lib.mlir import ir
19
+ import torch
20
+
21
+
22
+ @dataclasses.dataclass
23
+ class LoweringContext:
24
+ """The context object used in export interpreter and MLIR lowerings."""
25
+
26
+ ir_context: ir.Context
27
+ ir_module: ir.Module
28
+ ir_location: ir.Location = None
29
+ node: torch.fx.Node = None
30
+
31
+ @property
32
+ def ctx(self):
33
+ """Shortcut for ir_context."""
34
+ return self.ir_context
35
+
36
+ @property
37
+ def loc(self):
38
+ """Shortcut for ir_location."""
39
+ return self.ir_location
40
+
41
+ def replace(self, **kwargs):
42
+ return dataclasses.replace(self, **kwargs)
@@ -0,0 +1,87 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Torch op decompositions and MLIR lowerings registry."""
16
+
17
+ from typing import Any, Callable
18
+
19
+ import torch
20
+
21
+ from . import context
22
+
23
+
24
+ class LoweringRegistry:
25
+ """Registry object for torch op decompositions and to-MLIR lowerings."""
26
+
27
+ def __init__(self):
28
+ self.registered_ops = {}
29
+ self.decompositions = {}
30
+
31
+ def lookup(self, op_or_name):
32
+ candidate = self._get_lowering(op_or_name)
33
+ if candidate is None:
34
+ if isinstance(op_or_name, torch._ops.OpOverloadPacket):
35
+ candidate = self._get_lowering(op_or_name.default)
36
+ if isinstance(op_or_name, torch._ops.OpOverload):
37
+ candidate = self._get_lowering(op_or_name.overloadpacket)
38
+ return candidate
39
+
40
+ def _get_lowering(self, op):
41
+ candidate = self.registered_ops.get(op)
42
+ return candidate
43
+
44
+ def register(self, op, lowering):
45
+ if isinstance(op, torch._ops.OpOverloadPacket):
46
+ ops = [getattr(op, overload) for overload in op.overloads()]
47
+ else:
48
+ ops = [op]
49
+
50
+ for op in ops:
51
+ self.registered_ops[op] = lowering
52
+
53
+
54
+ global_registry = LoweringRegistry()
55
+ global_registry.decompositions.update(
56
+ torch._decomp.get_decompositions([
57
+ torch.ops.aten.upsample_nearest2d,
58
+ torch.ops.aten._native_batch_norm_legit.no_stats,
59
+ torch.ops.aten._adaptive_avg_pool2d,
60
+ torch.ops.aten._adaptive_avg_pool3d,
61
+ torch.ops.aten.grid_sampler_2d,
62
+ torch.ops.aten.native_dropout,
63
+ torch.ops.aten.reflection_pad1d,
64
+ torch.ops.aten.reflection_pad2d,
65
+ torch.ops.aten.reflection_pad3d,
66
+ torch.ops.aten.replication_pad1d,
67
+ torch.ops.aten.replication_pad2d,
68
+ torch.ops.aten.replication_pad3d,
69
+ torch.ops.aten.addmm,
70
+ ])
71
+ )
72
+
73
+
74
+ def lookup(op):
75
+ return global_registry.lookup(op)
76
+
77
+
78
+ def lower(op):
79
+ def inner(lowering: Callable[[context.LoweringContext, ...], Any]):
80
+ global_registry.register(op, lowering)
81
+ return lowering
82
+
83
+ return inner
84
+
85
+
86
+ def decompositions():
87
+ return global_registry.decompositions
@@ -0,0 +1,185 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Utilities for building MLIR lowerings."""
16
+
17
+ import numbers
18
+ from typing import Any
19
+ from typing import Optional
20
+
21
+ from jax._src.lib.mlir import ir
22
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
23
+ import numpy as np
24
+
25
+
26
+ def splat(val, ty, shape=tuple(), *, loc: Optional[Any] = None):
27
+ if isinstance(ty, ir.IntegerType):
28
+ if ty.width == 1:
29
+ attr = ir.BoolAttr.get(bool(val))
30
+ else:
31
+ attr = ir.IntegerAttr.get(ty, int(val))
32
+ elif isinstance(ty, ir.FloatType):
33
+ attr = ir.FloatAttr.get(ty, val)
34
+ else:
35
+ raise ValueError("Unsupported type: %s" % str(ty))
36
+
37
+ return stablehlo.constant(
38
+ ir.DenseElementsAttr.get_splat(
39
+ ir.RankedTensorType.get(shape, ty),
40
+ attr,
41
+ ),
42
+ loc=loc,
43
+ )
44
+
45
+
46
+ def get_common_broadcast_shape(
47
+ shape_1: list[int], shape_2: list[int]
48
+ ) -> Optional[list[int]]:
49
+ if not shape_1 and not shape_2:
50
+ return None
51
+
52
+ shape_1 = shape_1 if shape_1 else [1]
53
+ shape_2 = shape_2 if shape_2 else [1]
54
+
55
+ length_diff = abs(len(shape_1) - len(shape_2))
56
+ if len(shape_1) < len(shape_2):
57
+ shape_1 = [1] * length_diff + shape_1
58
+ elif len(shape_1) > len(shape_2):
59
+ shape_2 = [1] * length_diff + shape_2
60
+
61
+ common_broadcast_shape = []
62
+ for idx in reversed(range(len(shape_1))):
63
+ dim_size1 = shape_1[idx]
64
+ dim_size2 = shape_2[idx]
65
+
66
+ if dim_size1 == dim_size2:
67
+ common_broadcast_shape.insert(0, dim_size1)
68
+ elif dim_size1 == 1 or dim_size2 == 1:
69
+ common_broadcast_shape.insert(0, max(dim_size1, dim_size2))
70
+ else:
71
+ return None
72
+
73
+ return common_broadcast_shape
74
+
75
+
76
+ def get_broadcast_dimensions(
77
+ shape_from: list[int], shape_to: list[int]
78
+ ) -> list[int]:
79
+ assert get_common_broadcast_shape(shape_from, shape_to) == shape_to
80
+
81
+ ret = []
82
+ for val in range(len(shape_to) - len(shape_from), len(shape_to)):
83
+ ret.append(val)
84
+
85
+ return ir.DenseI64ArrayAttr.get(np.asarray(ret, np.int64))
86
+
87
+
88
+ def broadcast_args_if_needed(
89
+ val_1: ir.Value, val_2: ir.Value
90
+ ) -> tuple[Optional[ir.Value], Optional[ir.Value]]:
91
+ broadcast_shape = get_common_broadcast_shape(
92
+ val_1.type.shape, val_2.type.shape
93
+ )
94
+ if broadcast_shape is None:
95
+ return None, None
96
+
97
+ new_val_1, new_val_2 = val_1, val_2
98
+
99
+ if val_1.type.shape != broadcast_shape:
100
+ new_val_1 = stablehlo.broadcast_in_dim(
101
+ result=ir.RankedTensorType.get(
102
+ broadcast_shape, val_1.type.element_type
103
+ ),
104
+ operand=val_1,
105
+ broadcast_dimensions=get_broadcast_dimensions(
106
+ val_1.type.shape, broadcast_shape
107
+ ),
108
+ )
109
+ if val_2.type.shape != broadcast_shape:
110
+ new_val_2 = stablehlo.broadcast_in_dim(
111
+ result=ir.RankedTensorType.get(
112
+ broadcast_shape, val_2.type.element_type
113
+ ),
114
+ operand=val_2,
115
+ broadcast_dimensions=get_broadcast_dimensions(
116
+ val_2.type.shape, broadcast_shape
117
+ ),
118
+ )
119
+ return new_val_1, new_val_2
120
+
121
+
122
+ def upcast_to_same_type(*vals: ir.Value):
123
+ if not vals:
124
+ return None
125
+ if len(vals) == 1:
126
+ return vals[0]
127
+
128
+ def get_priority(ty: ir.Type):
129
+ priorities = [
130
+ ir.IntegerType.get_signless(1),
131
+ ir.IntegerType.get_signless(16),
132
+ ir.IntegerType.get_signless(32),
133
+ ir.IntegerType.get_signless(64),
134
+ ir.F16Type,
135
+ ir.F32Type,
136
+ ir.F64Type,
137
+ ]
138
+ for i, tycls in enumerate(priorities):
139
+ if tycls.isinstance(ty):
140
+ return i
141
+ raise ValueError("Unsupported type: %s" % str(ty))
142
+
143
+ cast_tycls = type(max([v.type.element_type for v in vals], key=get_priority))
144
+ new_vals = []
145
+ for val in vals:
146
+ if not cast_tycls.isinstance(val.type.element_type):
147
+ val = stablehlo.convert(
148
+ ir.RankedTensorType.get(val.type.shape, cast_tycls.get()), val
149
+ )
150
+ new_vals.append(val)
151
+ return tuple(new_vals)
152
+
153
+
154
+ def minmax(ty: ir.Type) -> tuple[numbers.Number, numbers.Number]:
155
+ if isinstance(ty, ir.IntegerType):
156
+ if ty.is_unsigned:
157
+ return (0, 1 << ty.width)
158
+ else:
159
+ return (-(1 << (ty.width - 1)), (1 << (ty.width - 1)) - 1)
160
+ elif isinstance(ty, ir.F16Type):
161
+ return (np.finfo(np.float16).min, np.finfo(np.float16).max)
162
+ elif isinstance(ty, ir.F32Type):
163
+ return (np.finfo(np.float32).min, np.finfo(np.float32).max)
164
+ elif isinstance(ty, ir.F64Type):
165
+ return (np.finfo(np.float64).min, np.finfo(np.float64).max)
166
+ else:
167
+ raise ValueError("Unsupported type: %s" % ty)
168
+
169
+
170
+ def convert_int_to_float(t: ir.Value) -> ir.Value:
171
+ """Converts an input with type ir.IntegerType to an ir.FloatType of equivalent width."""
172
+ elty = t.type.element_type
173
+ if not isinstance(elty, ir.IntegerType):
174
+ raise ValueError(
175
+ "Expected input with integer type, received %s" % type(elty)
176
+ )
177
+
178
+ if elty.width == 32:
179
+ return stablehlo.convert(
180
+ ir.RankedTensorType.get(t.type.shape, ir.F32Type.get()), t
181
+ )
182
+ elif elty.width == 64:
183
+ return stablehlo.convert(
184
+ ir.RankedTensorType.get(t.type.shape, ir.F64Type.get()), t
185
+ )
@@ -0,0 +1,38 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from jax._src.lib.mlir import ir
16
+ from jax._src.lib.mlir import passmanager
17
+
18
+
19
+ def run_pass(pipeline, module: ir.Module):
20
+ pm = passmanager.PassManager.parse(pipeline)
21
+ pm.run(module.operation)
22
+ return module
23
+
24
+
25
+ def canonicalize(module: ir.Module):
26
+ return run_pass("builtin.module(canonicalize)", module)
27
+
28
+
29
+ def cse(module: ir.Module):
30
+ return run_pass("builtin.module(cse)", module)
31
+
32
+
33
+ def inline(module: ir.Module):
34
+ return run_pass("builtin.module(inline)", module)
35
+
36
+
37
+ def strip_debuginfo(module: ir.Module):
38
+ return run_pass("builtin.module(strip-debuginfo)", module)