ai-edge-torch-nightly 0.3.0.dev20240827__py3-none-any.whl → 0.3.0.dev20240829__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +6 -1
- ai_edge_torch/_convert/test/test_convert.py +1 -1
- ai_edge_torch/_convert/test/test_convert_composites.py +1 -1
- ai_edge_torch/_convert/test/test_convert_multisig.py +71 -31
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +1 -1
- ai_edge_torch/debug/test/test_culprit.py +1 -1
- ai_edge_torch/debug/test/test_search_model.py +1 -1
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +43 -59
- ai_edge_torch/generative/test/test_experimental_ekv.py +1 -1
- ai_edge_torch/generative/test/test_loader.py +1 -1
- ai_edge_torch/generative/test/test_model_conversion.py +1 -1
- ai_edge_torch/generative/test/test_quantize.py +1 -1
- ai_edge_torch/hlfb/test/test_mark_pattern.py +1 -1
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +1 -1
- ai_edge_torch/lowertools/odml_torch_utils.py +5 -1
- ai_edge_torch/lowertools/test_utils.py +1 -1
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +320 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +152 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +24 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +204 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +119 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +255 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +87 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/version.py +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240827.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.3.0.dev20240827.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/RECORD +46 -22
- {ai_edge_torch_nightly-0.3.0.dev20240827.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240827.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.3.0.dev20240827.dist-info → ai_edge_torch_nightly-0.3.0.dev20240829.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Utilities for building MLIR lowerings."""
|
|
16
|
+
|
|
17
|
+
import numbers
|
|
18
|
+
from typing import Any
|
|
19
|
+
from typing import Optional
|
|
20
|
+
|
|
21
|
+
from jax._src.lib.mlir import ir
|
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
|
23
|
+
import numpy as np
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def splat(val, ty, shape=tuple(), *, loc: Optional[Any] = None):
|
|
27
|
+
if isinstance(ty, ir.IntegerType):
|
|
28
|
+
if ty.width == 1:
|
|
29
|
+
attr = ir.BoolAttr.get(bool(val))
|
|
30
|
+
else:
|
|
31
|
+
attr = ir.IntegerAttr.get(ty, int(val))
|
|
32
|
+
elif isinstance(ty, ir.FloatType):
|
|
33
|
+
attr = ir.FloatAttr.get(ty, val)
|
|
34
|
+
else:
|
|
35
|
+
raise ValueError("Unsupported type: %s" % str(ty))
|
|
36
|
+
|
|
37
|
+
return stablehlo.constant(
|
|
38
|
+
ir.DenseElementsAttr.get_splat(
|
|
39
|
+
ir.RankedTensorType.get(shape, ty),
|
|
40
|
+
attr,
|
|
41
|
+
),
|
|
42
|
+
loc=loc,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def get_common_broadcast_shape(
|
|
47
|
+
shape_1: list[int], shape_2: list[int]
|
|
48
|
+
) -> Optional[list[int]]:
|
|
49
|
+
if not shape_1 and not shape_2:
|
|
50
|
+
return None
|
|
51
|
+
|
|
52
|
+
shape_1 = shape_1 if shape_1 else [1]
|
|
53
|
+
shape_2 = shape_2 if shape_2 else [1]
|
|
54
|
+
|
|
55
|
+
length_diff = abs(len(shape_1) - len(shape_2))
|
|
56
|
+
if len(shape_1) < len(shape_2):
|
|
57
|
+
shape_1 = [1] * length_diff + shape_1
|
|
58
|
+
elif len(shape_1) > len(shape_2):
|
|
59
|
+
shape_2 = [1] * length_diff + shape_2
|
|
60
|
+
|
|
61
|
+
common_broadcast_shape = []
|
|
62
|
+
for idx in reversed(range(len(shape_1))):
|
|
63
|
+
dim_size1 = shape_1[idx]
|
|
64
|
+
dim_size2 = shape_2[idx]
|
|
65
|
+
|
|
66
|
+
if dim_size1 == dim_size2:
|
|
67
|
+
common_broadcast_shape.insert(0, dim_size1)
|
|
68
|
+
elif dim_size1 == 1 or dim_size2 == 1:
|
|
69
|
+
common_broadcast_shape.insert(0, max(dim_size1, dim_size2))
|
|
70
|
+
else:
|
|
71
|
+
return None
|
|
72
|
+
|
|
73
|
+
return common_broadcast_shape
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def get_broadcast_dimensions(
|
|
77
|
+
shape_from: list[int], shape_to: list[int]
|
|
78
|
+
) -> list[int]:
|
|
79
|
+
assert get_common_broadcast_shape(shape_from, shape_to) == shape_to
|
|
80
|
+
|
|
81
|
+
ret = []
|
|
82
|
+
for val in range(len(shape_to) - len(shape_from), len(shape_to)):
|
|
83
|
+
ret.append(val)
|
|
84
|
+
|
|
85
|
+
return ir.DenseI64ArrayAttr.get(np.asarray(ret, np.int64))
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def broadcast_args_if_needed(
|
|
89
|
+
val_1: ir.Value, val_2: ir.Value
|
|
90
|
+
) -> tuple[Optional[ir.Value], Optional[ir.Value]]:
|
|
91
|
+
broadcast_shape = get_common_broadcast_shape(
|
|
92
|
+
val_1.type.shape, val_2.type.shape
|
|
93
|
+
)
|
|
94
|
+
if broadcast_shape is None:
|
|
95
|
+
return None, None
|
|
96
|
+
|
|
97
|
+
new_val_1, new_val_2 = val_1, val_2
|
|
98
|
+
|
|
99
|
+
if val_1.type.shape != broadcast_shape:
|
|
100
|
+
new_val_1 = stablehlo.broadcast_in_dim(
|
|
101
|
+
result=ir.RankedTensorType.get(
|
|
102
|
+
broadcast_shape, val_1.type.element_type
|
|
103
|
+
),
|
|
104
|
+
operand=val_1,
|
|
105
|
+
broadcast_dimensions=get_broadcast_dimensions(
|
|
106
|
+
val_1.type.shape, broadcast_shape
|
|
107
|
+
),
|
|
108
|
+
)
|
|
109
|
+
if val_2.type.shape != broadcast_shape:
|
|
110
|
+
new_val_2 = stablehlo.broadcast_in_dim(
|
|
111
|
+
result=ir.RankedTensorType.get(
|
|
112
|
+
broadcast_shape, val_2.type.element_type
|
|
113
|
+
),
|
|
114
|
+
operand=val_2,
|
|
115
|
+
broadcast_dimensions=get_broadcast_dimensions(
|
|
116
|
+
val_2.type.shape, broadcast_shape
|
|
117
|
+
),
|
|
118
|
+
)
|
|
119
|
+
return new_val_1, new_val_2
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
def upcast_to_same_type(*vals: ir.Value):
|
|
123
|
+
if not vals:
|
|
124
|
+
return None
|
|
125
|
+
if len(vals) == 1:
|
|
126
|
+
return vals[0]
|
|
127
|
+
|
|
128
|
+
def get_priority(ty: ir.Type):
|
|
129
|
+
priorities = [
|
|
130
|
+
ir.IntegerType.get_signless(1),
|
|
131
|
+
ir.IntegerType.get_signless(16),
|
|
132
|
+
ir.IntegerType.get_signless(32),
|
|
133
|
+
ir.IntegerType.get_signless(64),
|
|
134
|
+
ir.F16Type,
|
|
135
|
+
ir.F32Type,
|
|
136
|
+
ir.F64Type,
|
|
137
|
+
]
|
|
138
|
+
for i, tycls in enumerate(priorities):
|
|
139
|
+
if tycls.isinstance(ty):
|
|
140
|
+
return i
|
|
141
|
+
raise ValueError("Unsupported type: %s" % str(ty))
|
|
142
|
+
|
|
143
|
+
cast_tycls = type(max([v.type.element_type for v in vals], key=get_priority))
|
|
144
|
+
new_vals = []
|
|
145
|
+
for val in vals:
|
|
146
|
+
if not cast_tycls.isinstance(val.type.element_type):
|
|
147
|
+
val = stablehlo.convert(
|
|
148
|
+
ir.RankedTensorType.get(val.type.shape, cast_tycls.get()), val
|
|
149
|
+
)
|
|
150
|
+
new_vals.append(val)
|
|
151
|
+
return tuple(new_vals)
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def minmax(ty: ir.Type) -> tuple[numbers.Number, numbers.Number]:
|
|
155
|
+
if isinstance(ty, ir.IntegerType):
|
|
156
|
+
if ty.is_unsigned:
|
|
157
|
+
return (0, 1 << ty.width)
|
|
158
|
+
else:
|
|
159
|
+
return (-(1 << (ty.width - 1)), (1 << (ty.width - 1)) - 1)
|
|
160
|
+
elif isinstance(ty, ir.F16Type):
|
|
161
|
+
return (np.finfo(np.float16).min, np.finfo(np.float16).max)
|
|
162
|
+
elif isinstance(ty, ir.F32Type):
|
|
163
|
+
return (np.finfo(np.float32).min, np.finfo(np.float32).max)
|
|
164
|
+
elif isinstance(ty, ir.F64Type):
|
|
165
|
+
return (np.finfo(np.float64).min, np.finfo(np.float64).max)
|
|
166
|
+
else:
|
|
167
|
+
raise ValueError("Unsupported type: %s" % ty)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
def convert_int_to_float(t: ir.Value) -> ir.Value:
|
|
171
|
+
"""Converts an input with type ir.IntegerType to an ir.FloatType of equivalent width."""
|
|
172
|
+
elty = t.type.element_type
|
|
173
|
+
if not isinstance(elty, ir.IntegerType):
|
|
174
|
+
raise ValueError(
|
|
175
|
+
"Expected input with integer type, received %s" % type(elty)
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
if elty.width == 32:
|
|
179
|
+
return stablehlo.convert(
|
|
180
|
+
ir.RankedTensorType.get(t.type.shape, ir.F32Type.get()), t
|
|
181
|
+
)
|
|
182
|
+
elif elty.width == 64:
|
|
183
|
+
return stablehlo.convert(
|
|
184
|
+
ir.RankedTensorType.get(t.type.shape, ir.F64Type.get()), t
|
|
185
|
+
)
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
from jax._src.lib.mlir import ir
|
|
16
|
+
from jax._src.lib.mlir import passmanager
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def run_pass(pipeline, module: ir.Module):
|
|
20
|
+
pm = passmanager.PassManager.parse(pipeline)
|
|
21
|
+
pm.run(module.operation)
|
|
22
|
+
return module
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def canonicalize(module: ir.Module):
|
|
26
|
+
return run_pass("builtin.module(canonicalize)", module)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def cse(module: ir.Module):
|
|
30
|
+
return run_pass("builtin.module(cse)", module)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def inline(module: ir.Module):
|
|
34
|
+
return run_pass("builtin.module(inline)", module)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def strip_debuginfo(module: ir.Module):
|
|
38
|
+
return run_pass("builtin.module(strip-debuginfo)", module)
|
|
@@ -0,0 +1,194 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""APIs to convert lowered MLIR from PyTorch to TensorFlow and TFLite artifacts."""
|
|
16
|
+
|
|
17
|
+
import re
|
|
18
|
+
import tempfile
|
|
19
|
+
|
|
20
|
+
import tensorflow as tf
|
|
21
|
+
import torch
|
|
22
|
+
|
|
23
|
+
from tensorflow.compiler.tf2xla.python import xla as tfxla
|
|
24
|
+
|
|
25
|
+
from . import export
|
|
26
|
+
from . import export_utils
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def torch_dtype_to_tf(dtype):
|
|
30
|
+
return {
|
|
31
|
+
torch.double: tf.float64,
|
|
32
|
+
torch.float32: tf.float32,
|
|
33
|
+
torch.half: tf.float16,
|
|
34
|
+
torch.long: tf.int64,
|
|
35
|
+
torch.int32: tf.int32,
|
|
36
|
+
torch.int16: tf.int16,
|
|
37
|
+
torch.bool: tf.bool,
|
|
38
|
+
}.get(dtype)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _get_shape_with_dynamic(signature: export.VariableSignature):
|
|
42
|
+
return [
|
|
43
|
+
None if export_utils.is_torch_dynamic(s) else s for s in signature.shape
|
|
44
|
+
]
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _mangle_tf_root_scope_name(name):
|
|
48
|
+
r"""Build the mangled name for tf.Variable.
|
|
49
|
+
|
|
50
|
+
TF has more restricted constrain on the variable names at root scope. Root
|
|
51
|
+
scope name constrain: [A-Za-z0-9.][A-Za-z0-9_.\\-/]* Non-root scope name
|
|
52
|
+
constrain: [A-Za-z0-9_.\\-/]*
|
|
53
|
+
https://github.com/tensorflow/tensorflow/blob/51b601fa6bb7e801c0b6ae73c25580e40a8b5745/tensorflow/python/framework/ops.py#L3301-L3302
|
|
54
|
+
The state_dict key doesn't have such constrain, the name need to be mangled
|
|
55
|
+
when a root-scoped TF variable is created.
|
|
56
|
+
|
|
57
|
+
FX Graph Node may contain characters other than [A-Za-z0-9_.\\-/], replace
|
|
58
|
+
offending characters with '_'.
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
name: the tensor name to be mangled.
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
Mangled name in str.
|
|
65
|
+
"""
|
|
66
|
+
if name[0] in "._\\-/":
|
|
67
|
+
name = "k" + name
|
|
68
|
+
name = re.sub(r"[^^\w\-/\\]+", "_", name)
|
|
69
|
+
return name
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def _build_tf_state_dict(
|
|
73
|
+
lowered: export.MlirLowered,
|
|
74
|
+
) -> dict[str, tf.Variable]:
|
|
75
|
+
"""Build a dictionary of tf.Variable from the state_dict in lowered."""
|
|
76
|
+
tf_state_dict = {}
|
|
77
|
+
for sig in lowered.input_signature:
|
|
78
|
+
if sig.input_spec.is_parameter:
|
|
79
|
+
name = sig.input_spec.name
|
|
80
|
+
tf_state_dict[name] = tf.Variable(
|
|
81
|
+
lowered.state_dict[name].detach().numpy(),
|
|
82
|
+
trainable=False,
|
|
83
|
+
name=_mangle_tf_root_scope_name(name),
|
|
84
|
+
)
|
|
85
|
+
return tf_state_dict
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def _extract_call_args(
|
|
89
|
+
lowered: export.MlirLowered,
|
|
90
|
+
args,
|
|
91
|
+
tf_state_dict: dict[str, tf.Variable],
|
|
92
|
+
):
|
|
93
|
+
"""Extract the flattened inputs to built tf.function."""
|
|
94
|
+
call_args = []
|
|
95
|
+
for sig in lowered.input_signature:
|
|
96
|
+
if sig.input_spec.is_user_input:
|
|
97
|
+
call_args.append(args[sig.input_spec.i])
|
|
98
|
+
elif sig.input_spec.is_parameter:
|
|
99
|
+
name = sig.input_spec.name
|
|
100
|
+
call_args.append(tf_state_dict[name])
|
|
101
|
+
return call_args
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
def _wrap_as_tf_func(lowered, tf_state_dict):
|
|
105
|
+
"""Build tf.function from lowered and tf_state_dict."""
|
|
106
|
+
|
|
107
|
+
def inner(*args):
|
|
108
|
+
t_outs = [torch_dtype_to_tf(sig.dtype) for sig in lowered.output_signature]
|
|
109
|
+
s_outs = [_get_shape_with_dynamic(sig) for sig in lowered.output_signature]
|
|
110
|
+
call_args = _extract_call_args(lowered, args, tf_state_dict)
|
|
111
|
+
return tfxla.call_module(
|
|
112
|
+
tuple(call_args),
|
|
113
|
+
version=5,
|
|
114
|
+
Tout=t_outs, # dtype information
|
|
115
|
+
Sout=s_outs, # Shape information
|
|
116
|
+
function_list=[],
|
|
117
|
+
module=lowered.module_bytecode,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
return inner
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def _make_input_signatures(
|
|
124
|
+
lowered: export.MlirLowered,
|
|
125
|
+
) -> list[tf.TensorSpec]:
|
|
126
|
+
"""Build the input signatures in tf.TensorSpec for building tf.function."""
|
|
127
|
+
user_input_signature = sorted(
|
|
128
|
+
[sig for sig in lowered.input_signature if sig.input_spec.is_user_input],
|
|
129
|
+
key=lambda sig: sig.input_spec.i,
|
|
130
|
+
)
|
|
131
|
+
tf_signatures = []
|
|
132
|
+
|
|
133
|
+
for sig in user_input_signature:
|
|
134
|
+
shape = _get_shape_with_dynamic(sig)
|
|
135
|
+
tf_signatures.append(
|
|
136
|
+
tf.TensorSpec(
|
|
137
|
+
shape=shape,
|
|
138
|
+
dtype=torch_dtype_to_tf(sig.dtype),
|
|
139
|
+
name=f"args_{sig.input_spec.i}",
|
|
140
|
+
)
|
|
141
|
+
)
|
|
142
|
+
return tf_signatures
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def mlir_to_tf_function(lowered: export.MlirLowered):
|
|
146
|
+
"""Convert the MLIR lowered to a executable tf.function."""
|
|
147
|
+
tf_state_dict = _build_tf_state_dict(lowered)
|
|
148
|
+
return tf.function(
|
|
149
|
+
_wrap_as_tf_func(lowered, tf_state_dict),
|
|
150
|
+
input_signature=_make_input_signatures(lowered),
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def mlir_to_flatbuffer(lowered: export.MlirLowered):
|
|
155
|
+
"""Convert the MLIR lowered to a TFLite flatbuffer binary."""
|
|
156
|
+
tf_state_dict = _build_tf_state_dict(lowered)
|
|
157
|
+
signature_names = [tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
|
|
158
|
+
tf_signatures = [_make_input_signatures(lowered)]
|
|
159
|
+
tf_functions = [_wrap_as_tf_func(lowered, tf_state_dict)]
|
|
160
|
+
|
|
161
|
+
tf_module = tf.Module()
|
|
162
|
+
tf_module.f = []
|
|
163
|
+
|
|
164
|
+
for tf_sig, func in zip(tf_signatures, tf_functions):
|
|
165
|
+
tf_module.f.append(
|
|
166
|
+
tf.function(
|
|
167
|
+
func,
|
|
168
|
+
input_signature=tf_sig,
|
|
169
|
+
)
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
tf_module._variables = list(tf_state_dict.values())
|
|
173
|
+
|
|
174
|
+
tf_concrete_funcs = [
|
|
175
|
+
func.get_concrete_function(*tf_sig)
|
|
176
|
+
for func, tf_sig in zip(tf_module.f, tf_signatures)
|
|
177
|
+
]
|
|
178
|
+
|
|
179
|
+
# We need to temporarily save since TFLite's from_concrete_functions does not
|
|
180
|
+
# allow providing names for each of the concrete functions.
|
|
181
|
+
with tempfile.TemporaryDirectory() as temp_dir_path:
|
|
182
|
+
tf.saved_model.save(
|
|
183
|
+
tf_module,
|
|
184
|
+
temp_dir_path,
|
|
185
|
+
signatures={
|
|
186
|
+
sig_name: tf_concrete_funcs[idx]
|
|
187
|
+
for idx, sig_name in enumerate(signature_names)
|
|
188
|
+
},
|
|
189
|
+
)
|
|
190
|
+
|
|
191
|
+
converter = tf.lite.TFLiteConverter.from_saved_model(temp_dir_path)
|
|
192
|
+
tflite_model = converter.convert()
|
|
193
|
+
|
|
194
|
+
return tflite_model
|
ai_edge_torch/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ai-edge-torch-nightly
|
|
3
|
-
Version: 0.3.0.
|
|
3
|
+
Version: 0.3.0.dev20240829
|
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
|
@@ -2,7 +2,7 @@ ai_edge_torch/__init__.py,sha256=48qP37uHT90YPs4eIUQxCiWVwqGEX3idCUs6mQKvX1U,116
|
|
|
2
2
|
ai_edge_torch/config.py,sha256=PCd9PVrbUNeVIUDFUCnW4goDWU4bjouK28yMYU6VOi0,877
|
|
3
3
|
ai_edge_torch/conftest.py,sha256=r0GTrhMRhlmOGrrkvumHN8hkmyug6WvF60vWq8wRIBI,758
|
|
4
4
|
ai_edge_torch/model.py,sha256=7tox6sdFIlCYPLDYpjFcD8cPTSivURCL_VV6-Dt5Sfc,4910
|
|
5
|
-
ai_edge_torch/version.py,sha256=
|
|
5
|
+
ai_edge_torch/version.py,sha256=OF9oSdUOGcmdEp2HSZmEIeCPlRhL3cpviHc_dExhcX8,706
|
|
6
6
|
ai_edge_torch/_convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
7
7
|
ai_edge_torch/_convert/conversion.py,sha256=kcv_QgNgeyDmrqwdzHicGNP68w6zF7GJg7YkMEIXp4Q,3759
|
|
8
8
|
ai_edge_torch/_convert/conversion_utils.py,sha256=Sr8qXVcTwc-ZnZmK7yxVrIOOp1S_vNrwzC0zUvLTI2o,2160
|
|
@@ -18,7 +18,7 @@ ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py,sha256=WKI8V9-V50
|
|
|
18
18
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py,sha256=lxnoH-WGLeiQIF8XjMGodjiZEFTxucl7g05N7MR9OPk,796
|
|
19
19
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py,sha256=DIfrWDZ1ufAN_uH-oW3k66jTciY7DlLDAb6UKMN14zE,7528
|
|
20
20
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py,sha256=4RyGUwR22bZqkn_TnptenFJodc_Q43f4_SBG7gmTbos,1621
|
|
21
|
-
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py,sha256=
|
|
21
|
+
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py,sha256=e_JWgGFOSUI9DUtmod396GNH9uJNd2VBL0DXGjbg-cE,12702
|
|
22
22
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py,sha256=bsYnudRlXp1PJlu4GF25KSogSkBGQPSaecBrUTONKaw,1031
|
|
23
23
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py,sha256=HXTDEP6_Z0I0s58H6I0yHz9qrkOxptIjKhxywfe8F80,10637
|
|
24
24
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py,sha256=YLMttMg5PdvXTtQ8lxpKb434UGVvYVALV1-xeuH4UGc,2131
|
|
@@ -26,16 +26,16 @@ ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitio
|
|
|
26
26
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py,sha256=L_x8BrF7UDah-SYl-pG11I6CIckdU9kBTUHcmwW4cts,2420
|
|
27
27
|
ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py,sha256=mzfL9cf0qBnpmxM_OlMQFvQsEZV2B_Mia9yEJV4J7rI,7135
|
|
28
28
|
ai_edge_torch/_convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
29
|
-
ai_edge_torch/_convert/test/test_convert.py,sha256=
|
|
30
|
-
ai_edge_torch/_convert/test/test_convert_composites.py,sha256=
|
|
31
|
-
ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=
|
|
32
|
-
ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=
|
|
29
|
+
ai_edge_torch/_convert/test/test_convert.py,sha256=pUYSXuqFg8CAeJ8JkoYf7S0RDLRPVuZUwVOd0xObM6w,14411
|
|
30
|
+
ai_edge_torch/_convert/test/test_convert_composites.py,sha256=BCIODgxMI_3MxMLfNWYMGjcz-al-J3z5eDHCiZJXNwY,7992
|
|
31
|
+
ai_edge_torch/_convert/test/test_convert_multisig.py,sha256=6_C2R9--KyNR7_oezZIAfyTSR97tOeEWy4XGcbSxBDE,5778
|
|
32
|
+
ai_edge_torch/_convert/test/test_to_channel_last_io.py,sha256=1o-gUiwzIuO67FNAJ8DeyKv8fVUeZVNNNwofNVDjYeU,3024
|
|
33
33
|
ai_edge_torch/debug/__init__.py,sha256=N05Mmvi41KgSuK0JhuMejERESgP8QekiGdp9_PEyuKU,742
|
|
34
34
|
ai_edge_torch/debug/culprit.py,sha256=7UYVpVWpiCXbMAyThVtHt_kc_poT7sCTh5UUPvcycgk,14832
|
|
35
35
|
ai_edge_torch/debug/utils.py,sha256=vOAL4t6Lj47uhKapfEsc_WHmvwew3eKO9hSJyzvPXnU,1625
|
|
36
36
|
ai_edge_torch/debug/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
37
|
-
ai_edge_torch/debug/test/test_culprit.py,sha256=
|
|
38
|
-
ai_edge_torch/debug/test/test_search_model.py,sha256
|
|
37
|
+
ai_edge_torch/debug/test/test_culprit.py,sha256=SLX4rC-5Dlna8MWHhGRNe72K71AHTFufDrWLlFQn50c,3773
|
|
38
|
+
ai_edge_torch/debug/test/test_search_model.py,sha256=-RuU0QsjqkfzZF2IbeA55MoeVOawhbgiSEu96PmioPE,1668
|
|
39
39
|
ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
40
40
|
ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
41
41
|
ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
@@ -64,7 +64,7 @@ ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py,sha256=7
|
|
|
64
64
|
ai_edge_torch/generative/examples/stable_diffusion/decoder.py,sha256=slieF2-QcDCwd4DRZ7snsZIphT97IXpp4plRRsRSwL8,13983
|
|
65
65
|
ai_edge_torch/generative/examples/stable_diffusion/diffusion.py,sha256=7oUIJ6HO0vmlhFdkXpqGm9KTB-eM4Ob9VrHSDlIGFOg,30926
|
|
66
66
|
ai_edge_torch/generative/examples/stable_diffusion/encoder.py,sha256=CAPsW84A8f00nS6fLFeh_XUjCPsDCA5UxHOUsMrLfSU,3450
|
|
67
|
-
ai_edge_torch/generative/examples/stable_diffusion/pipeline.py,sha256=
|
|
67
|
+
ai_edge_torch/generative/examples/stable_diffusion/pipeline.py,sha256=x9lEEENGNbpx6VTf_LTVudd9d6bs9tLvFUKTl252zEY,8623
|
|
68
68
|
ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py,sha256=xychak9hdLd6ieXBYEwrK2BkF8NRZWZSSCijIsESpBA,3420
|
|
69
69
|
ai_edge_torch/generative/examples/stable_diffusion/util.py,sha256=XIXIB0vCvQKOGyIyiZeiIA5DLeSXjkudywvJS4FK7AM,2431
|
|
70
70
|
ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py,sha256=uQWKzCD_49ackNFrt50H04dkDXxfAwUCtMWWQre5SVE,830
|
|
@@ -109,10 +109,10 @@ ai_edge_torch/generative/quantize/supported_schemes.py,sha256=FjdycEOvxRgBmQdZVu
|
|
|
109
109
|
ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
110
110
|
ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/translate_recipe.py,sha256=sSHc_4hUEvi-3KmqbpqWbrRKBjCI1AOctM3dr2EH3vk,5263
|
|
111
111
|
ai_edge_torch/generative/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
112
|
-
ai_edge_torch/generative/test/test_experimental_ekv.py,sha256=
|
|
113
|
-
ai_edge_torch/generative/test/test_loader.py,sha256=
|
|
114
|
-
ai_edge_torch/generative/test/test_model_conversion.py,sha256
|
|
115
|
-
ai_edge_torch/generative/test/test_quantize.py,sha256=
|
|
112
|
+
ai_edge_torch/generative/test/test_experimental_ekv.py,sha256=8qv_eVtJW9GPvBEf2hPQe3tpdJ33XShya6MCX1FqrZM,4355
|
|
113
|
+
ai_edge_torch/generative/test/test_loader.py,sha256=_y5EHGgoNOmCuYonsB81UJScHVsTAQXUVd44czMAw6k,3379
|
|
114
|
+
ai_edge_torch/generative/test/test_model_conversion.py,sha256=-RBTQSERP4szm8s8s_WRmGF3mWZA5E2w2QNtl2MqORw,8475
|
|
115
|
+
ai_edge_torch/generative/test/test_quantize.py,sha256=JEsk9SAkHK0SFm44K_quISc5yBBS6yvtBP1MDyFHdFw,5344
|
|
116
116
|
ai_edge_torch/generative/utilities/__init__.py,sha256=-_jxnnFnCgnTU4oTm4MnRsvL5lqhomBNdFBbqfmfHPo,720
|
|
117
117
|
ai_edge_torch/generative/utilities/loader.py,sha256=QFZ2lkeoYQ9MZ1CAFVxBHG4OT192SH74UtJCvbDsdeI,12727
|
|
118
118
|
ai_edge_torch/generative/utilities/stable_diffusion_loader.py,sha256=pKp3AMSbS3otCvgwJRF5M1l4JRNKk-aCKimXzIMSrds,35679
|
|
@@ -122,14 +122,38 @@ ai_edge_torch/hlfb/mark_pattern/__init__.py,sha256=cjTprggj_cuktSCm7-A25e7Shop3k
|
|
|
122
122
|
ai_edge_torch/hlfb/mark_pattern/passes.py,sha256=pjkKcI1nHECPluAt87cFBrt1DP0f3ge7rHq1NhCkBIE,1936
|
|
123
123
|
ai_edge_torch/hlfb/mark_pattern/pattern.py,sha256=uiYRfzD1T8deCEAGfdAFusRbI41m14zeTt0Lz5lNT3M,9808
|
|
124
124
|
ai_edge_torch/hlfb/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
125
|
-
ai_edge_torch/hlfb/test/test_mark_pattern.py,sha256=
|
|
126
|
-
ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py,sha256=
|
|
125
|
+
ai_edge_torch/hlfb/test/test_mark_pattern.py,sha256=ivq0eVjuf31idfNY0E12F4FxdkSI9hwYXapLJBkIf8Q,4831
|
|
126
|
+
ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py,sha256=j8WpeS-mz3Zr4I7p7NwanQzkQNeH0asZ7lz5y7twgQ4,8447
|
|
127
127
|
ai_edge_torch/lowertools/__init__.py,sha256=A8WBXvWtuFYYWtNTqPD7waVntLaSVAnSMwx5ugjZBIw,761
|
|
128
128
|
ai_edge_torch/lowertools/_shim.py,sha256=ilL7x1ebUBj1clg7bagrX4y_nVSHiGrvDrOVfuTeenE,3039
|
|
129
129
|
ai_edge_torch/lowertools/common_utils.py,sha256=Z7p-ivOHtddktpnHrlDm_dSoTxJOdEjFXIGQbzjgwQo,4504
|
|
130
|
-
ai_edge_torch/lowertools/odml_torch_utils.py,sha256=
|
|
131
|
-
ai_edge_torch/lowertools/test_utils.py,sha256=
|
|
130
|
+
ai_edge_torch/lowertools/odml_torch_utils.py,sha256=GKfW1X-QSFffQdVlBuD-bNpP265xcdUlfBY3-9I4f_o,7447
|
|
131
|
+
ai_edge_torch/lowertools/test_utils.py,sha256=bPgc2iXX16KYtMNvmsRdKfrCY6UJmcfitfCOvHoD7Oc,1930
|
|
132
132
|
ai_edge_torch/lowertools/torch_xla_utils.py,sha256=-SRm9YNsIGsaVd5Cyp2PP-tdLBJH8EDoMFAa2y89a1w,9043
|
|
133
|
+
ai_edge_torch/odml_torch/__init__.py,sha256=S8jOzE9nLof-6es3XDiGJRN-9H_XTxsVm9dE7lD3RWo,812
|
|
134
|
+
ai_edge_torch/odml_torch/_torch_future.py,sha256=jSYHf1CMTJzMizPMbu2b39hAt0ZTR6gQLq67GMe9KTo,2336
|
|
135
|
+
ai_edge_torch/odml_torch/_torch_library.py,sha256=Lw1gqL2HWNRspdTwNhIkYAHDyafHedHtkXyKKxn-Wss,805
|
|
136
|
+
ai_edge_torch/odml_torch/export.py,sha256=hIGT-JKYbIa6e_G0AD-k4MSTIAMGdHC1hNHMn9CxsYw,10467
|
|
137
|
+
ai_edge_torch/odml_torch/export_utils.py,sha256=q84U69ZQ82hLXw-xncJ8IW-K71Xux-NWlzZTs7hdZWA,5127
|
|
138
|
+
ai_edge_torch/odml_torch/tf_integration.py,sha256=lTFJPPEijLPFmn6qq2jbpVTQOo0YaOTK36kK6rCiyIE,5956
|
|
139
|
+
ai_edge_torch/odml_torch/composite/__init__.py,sha256=71GM_gDZxJyo38ZSoYSwhZX3xKA9rknO93JS9kw9w_c,778
|
|
140
|
+
ai_edge_torch/odml_torch/composite/mark_tensor.py,sha256=U--rwl-XkWKgkdXCXDn6yySug8FR66o1YFUAIoSaWW4,3523
|
|
141
|
+
ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py,sha256=2Y52E_gLeoXpMcPpV-svXsgN3JbEIjnPVjm0xkpTUdQ,3319
|
|
142
|
+
ai_edge_torch/odml_torch/debuginfo/__init__.py,sha256=9ag6-WWRG50rPCtIV7OpIokEKu2YRyGlMZZqVPWUH6g,762
|
|
143
|
+
ai_edge_torch/odml_torch/debuginfo/_build.py,sha256=1xCXOs3-9UcsOyLFH0uyQwLu7c06iYFTo0NQ7Ckbl2I,1465
|
|
144
|
+
ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py,sha256=IvOBQyROI9WHS3umHRxsDW-1YElU9BPWzKtJA2eKWOI,1739
|
|
145
|
+
ai_edge_torch/odml_torch/jax_bridge/__init__.py,sha256=Jco5zvejxuyl9xHQxZICAKbkgH7x38qPlwUUpD7S15Q,730
|
|
146
|
+
ai_edge_torch/odml_torch/jax_bridge/_wrap.py,sha256=hXvhKtbH7lGytm6QZOKpTmaLJN3kfENBcSIKQ39ReXA,5478
|
|
147
|
+
ai_edge_torch/odml_torch/jax_bridge/utils.py,sha256=T8isGc896VrHZ6c_L5pYmLpolQ7ibcOlgWfPuVFPzIg,2264
|
|
148
|
+
ai_edge_torch/odml_torch/lowerings/__init__.py,sha256=GqYk6oBJw7KWeG4_6gxSu_OvYhjJcC2FpGzWPPEdH6w,933
|
|
149
|
+
ai_edge_torch/odml_torch/lowerings/_basic.py,sha256=wV8AUK8dvjLUy3qjqw_IxpiYVDWUMPNZRfi3XYE_hDs,6972
|
|
150
|
+
ai_edge_torch/odml_torch/lowerings/_batch_norm.py,sha256=PaLI0BB6pdBW1VyfW8VTOT_Be-ZcqYdNOsyfzKfq8Cg,2064
|
|
151
|
+
ai_edge_torch/odml_torch/lowerings/_convolution.py,sha256=B6BILeu-UlwGB1O6g7111X1TaIFznsfxXrB72ygBsBA,3885
|
|
152
|
+
ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py,sha256=I0Y4IK7Zap8m6xfxMw7DfQ9Mg4htKOoypdHVAMHqx9c,10669
|
|
153
|
+
ai_edge_torch/odml_torch/lowerings/context.py,sha256=jslcCv7r_HtImSRTxJwHAUV_QCu9Jub51lovmoBkmFA,1295
|
|
154
|
+
ai_edge_torch/odml_torch/lowerings/registry.py,sha256=dcnxq8vV9rxSQqXkjSg9it7l6oP_sdfH8kIZdQNkQ_4,2653
|
|
155
|
+
ai_edge_torch/odml_torch/lowerings/utils.py,sha256=NczqpsSd3Fn7yVcPC3qllemiZxxDAZgcW1T5l8-W9fE,5593
|
|
156
|
+
ai_edge_torch/odml_torch/passes/__init__.py,sha256=AVwIwUTMx7rXacKjGy4kwrtMd3XB2v_ncdc40KOjUqQ,1245
|
|
133
157
|
ai_edge_torch/quantize/__init__.py,sha256=aB5dXot04bqyUhpsDFvxt9CIi15QAC4euvqOndJ0XLU,714
|
|
134
158
|
ai_edge_torch/quantize/pt2e_quantizer.py,sha256=CKIEhs9jCcna64qj1jFH9zEbMbRdyeGV_TmSqEBPjes,15741
|
|
135
159
|
ai_edge_torch/quantize/pt2e_quantizer_utils.py,sha256=eARD1LxLi5m7Z0n_psAkeX_AtUp4fNkE--oECBfivv4,36208
|
|
@@ -137,8 +161,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=U0KisSW-uZkoMJcy-ZP9W57p3tsa594fr9
|
|
|
137
161
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
138
162
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
|
139
163
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=UPB448aMDUyC0HNYVqio2rcJPnDN0tBQMP08J6vPYew,4718
|
|
140
|
-
ai_edge_torch_nightly-0.3.0.
|
|
141
|
-
ai_edge_torch_nightly-0.3.0.
|
|
142
|
-
ai_edge_torch_nightly-0.3.0.
|
|
143
|
-
ai_edge_torch_nightly-0.3.0.
|
|
144
|
-
ai_edge_torch_nightly-0.3.0.
|
|
164
|
+
ai_edge_torch_nightly-0.3.0.dev20240829.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
165
|
+
ai_edge_torch_nightly-0.3.0.dev20240829.dist-info/METADATA,sha256=LrexCNdY177vrp17WaGa53bxHH9vuZXT64O5by4HE6Y,1878
|
|
166
|
+
ai_edge_torch_nightly-0.3.0.dev20240829.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
|
167
|
+
ai_edge_torch_nightly-0.3.0.dev20240829.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
|
168
|
+
ai_edge_torch_nightly-0.3.0.dev20240829.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|