ai-edge-torch-nightly 0.2.0.dev20240617__py3-none-any.whl → 0.2.0.dev20240625__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/convert/conversion.py +2 -0
- ai_edge_torch/debug/__init__.py +1 -0
- ai_edge_torch/debug/culprit.py +70 -29
- ai_edge_torch/debug/test/test_search_model.py +50 -0
- ai_edge_torch/generative/fx_passes/__init__.py +31 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +47 -0
- {ai_edge_torch_nightly-0.2.0.dev20240617.dist-info → ai_edge_torch_nightly-0.2.0.dev20240625.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.2.0.dev20240617.dist-info → ai_edge_torch_nightly-0.2.0.dev20240625.dist-info}/RECORD +11 -8
- {ai_edge_torch_nightly-0.2.0.dev20240617.dist-info → ai_edge_torch_nightly-0.2.0.dev20240625.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240617.dist-info → ai_edge_torch_nightly-0.2.0.dev20240625.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240617.dist-info → ai_edge_torch_nightly-0.2.0.dev20240625.dist-info}/top_level.txt +0 -0
|
@@ -30,6 +30,7 @@ from ai_edge_torch.convert.fx_passes import CanonicalizePass
|
|
|
30
30
|
from ai_edge_torch.convert.fx_passes import InjectMlirDebuginfoPass
|
|
31
31
|
from ai_edge_torch.convert.fx_passes import OptimizeLayoutTransposesPass
|
|
32
32
|
from ai_edge_torch.convert.fx_passes import run_passes
|
|
33
|
+
from ai_edge_torch.generative.fx_passes import run_generative_passes
|
|
33
34
|
from ai_edge_torch.quantize import quant_config as qcfg
|
|
34
35
|
|
|
35
36
|
os.environ["EXPERIMENTAL_XLA_UNBOUNDED_DYNAMISM"] = "1"
|
|
@@ -38,6 +39,7 @@ os.environ["EXPERIMENTAL_XLA_UNBOUNDED_DYNAMISM"] = "1"
|
|
|
38
39
|
def _run_convert_passes(
|
|
39
40
|
exported_program: ExportedProgram,
|
|
40
41
|
) -> ExportedProgram:
|
|
42
|
+
exported_program = run_generative_passes(exported_program)
|
|
41
43
|
return run_passes(
|
|
42
44
|
exported_program,
|
|
43
45
|
[
|
ai_edge_torch/debug/__init__.py
CHANGED
ai_edge_torch/debug/culprit.py
CHANGED
|
@@ -21,7 +21,7 @@ import io
|
|
|
21
21
|
import operator
|
|
22
22
|
import os
|
|
23
23
|
import sys
|
|
24
|
-
from typing import Any, Generator, List, Optional, Tuple
|
|
24
|
+
from typing import Any, Callable, Generator, List, Optional, Tuple, Union
|
|
25
25
|
|
|
26
26
|
from functorch.compile import minifier as fx_minifier
|
|
27
27
|
import torch
|
|
@@ -85,10 +85,9 @@ def _tensor_to_buffer(t: torch.Tensor):
|
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
@dataclasses.dataclass
|
|
88
|
-
class
|
|
88
|
+
class SearchResult:
|
|
89
89
|
graph_module: torch.fx.GraphModule
|
|
90
90
|
inputs: Tuple[Any]
|
|
91
|
-
_runtime_errors: bool
|
|
92
91
|
|
|
93
92
|
@property
|
|
94
93
|
def graph(self) -> torch.fx.Graph:
|
|
@@ -98,6 +97,11 @@ class Culprit:
|
|
|
98
97
|
def graph(self, fx_g: torch.fx.Graph):
|
|
99
98
|
self.graph_module.graph = fx_g
|
|
100
99
|
|
|
100
|
+
|
|
101
|
+
@dataclasses.dataclass
|
|
102
|
+
class Culprit(SearchResult):
|
|
103
|
+
_runtime_errors: bool
|
|
104
|
+
|
|
101
105
|
@property
|
|
102
106
|
def stack_traces(self) -> List[str]:
|
|
103
107
|
stack_traces = set()
|
|
@@ -342,42 +346,42 @@ def _fx_minifier_checker(fx_gm, inputs, runtime_errors=False):
|
|
|
342
346
|
return False
|
|
343
347
|
|
|
344
348
|
|
|
345
|
-
def
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
runtime_errors: bool = False,
|
|
349
|
+
def _search_model(
|
|
350
|
+
predicate_f: Callable[[torch.fx.GraphModule, List[Any]], bool],
|
|
351
|
+
model: Union[torch.export.ExportedProgram, torch.nn.Module],
|
|
352
|
+
export_args: Tuple[Any] = None,
|
|
350
353
|
*,
|
|
354
|
+
max_granularity: Optional[int] = None,
|
|
351
355
|
enable_fx_minifier_logging: bool = False,
|
|
352
|
-
) -> Generator[
|
|
353
|
-
"""Finds
|
|
356
|
+
) -> Generator[SearchResult, None, None]:
|
|
357
|
+
"""Finds subgraphs in the torch model that satify a certain predicate function provided by the users.
|
|
354
358
|
|
|
355
359
|
Args:
|
|
356
|
-
|
|
357
|
-
|
|
358
|
-
|
|
360
|
+
predicate_f: a predicate function the users specify.
|
|
361
|
+
It takes a FX (sub)graph and the inputs to this graph,
|
|
362
|
+
return True if the graph satisfies the predicate,
|
|
363
|
+
return False otherwise.
|
|
364
|
+
model: model in which to search subgraph.
|
|
365
|
+
export_args: A set of args to trace the model with,
|
|
366
|
+
i.e. model(*args) must run.
|
|
359
367
|
max_granularity - FX minifier arg. The maximum granularity (number of nodes)
|
|
360
368
|
in the returned ATen FX subgraph of the culprit.
|
|
361
|
-
|
|
362
|
-
with converted model.
|
|
363
|
-
enable_fx_minifier_logging: If true, allows the underlying FX minifier to log
|
|
364
|
-
the progress.
|
|
369
|
+
enable_fx_minifier_logging: If true, allows the underlying FX minifier to log the progress.
|
|
365
370
|
"""
|
|
366
371
|
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
372
|
+
if isinstance(model, torch.nn.Module):
|
|
373
|
+
try:
|
|
374
|
+
ep = torch.export.export(model, export_args)
|
|
375
|
+
except Exception as err:
|
|
376
|
+
raise ValueError(
|
|
377
|
+
"Your model is not exportable by torch.export.export. Please modify your model to be torch-exportable first."
|
|
378
|
+
) from err
|
|
379
|
+
else:
|
|
380
|
+
ep = model
|
|
373
381
|
|
|
374
382
|
fx_gm, fx_inputs = utils.exported_program_to_fx_graph_module_and_inputs(ep)
|
|
375
383
|
fx_gm = _normalize_getitem_nodes(fx_gm)
|
|
376
384
|
|
|
377
|
-
fx_minifier_checker = functools.partial(
|
|
378
|
-
_fx_minifier_checker, runtime_errors=runtime_errors
|
|
379
|
-
)
|
|
380
|
-
|
|
381
385
|
# HACK: temporarily disable XLA_HLO_DEBUG so that fx_minifier won't dump
|
|
382
386
|
# intermediate stablehlo files to storage.
|
|
383
387
|
# https://github.com/pytorch/pytorch/blob/main/torch/_functorch/fx_minifier.py#L440
|
|
@@ -405,13 +409,13 @@ def find_culprits(
|
|
|
405
409
|
raw_min_fx_gm, raw_min_inputs = fx_minifier(
|
|
406
410
|
fx_gm,
|
|
407
411
|
fx_inputs,
|
|
408
|
-
|
|
412
|
+
predicate_f,
|
|
409
413
|
max_granularity=max_granularity,
|
|
410
414
|
)
|
|
411
415
|
|
|
412
416
|
min_fx_gm, min_inputs = _normalize_minified_fx_gm(raw_min_fx_gm, raw_min_inputs)
|
|
413
417
|
found_culprits_num += 1
|
|
414
|
-
yield
|
|
418
|
+
yield SearchResult(min_fx_gm, min_inputs)
|
|
415
419
|
|
|
416
420
|
fx_gm, fx_inputs = _erase_sub_gm_from_gm(
|
|
417
421
|
fx_gm, fx_inputs, raw_min_fx_gm, raw_min_inputs
|
|
@@ -421,3 +425,40 @@ def find_culprits(
|
|
|
421
425
|
if str(e) == "Input graph did not fail the tester" and found_culprits_num > 0:
|
|
422
426
|
break
|
|
423
427
|
raise e
|
|
428
|
+
|
|
429
|
+
|
|
430
|
+
def find_culprits(
|
|
431
|
+
torch_model: torch.nn.Module,
|
|
432
|
+
args: Tuple[Any],
|
|
433
|
+
max_granularity: Optional[int] = None,
|
|
434
|
+
runtime_errors: bool = False,
|
|
435
|
+
*,
|
|
436
|
+
enable_fx_minifier_logging: bool = False,
|
|
437
|
+
) -> Generator[Culprit, None, None]:
|
|
438
|
+
"""Finds culprits in the AI Edge Torch model conversion.
|
|
439
|
+
|
|
440
|
+
Args:
|
|
441
|
+
torch_model: model to export and save
|
|
442
|
+
args: A set of args to trace the model with, i.e.
|
|
443
|
+
torch_model(*args) must run
|
|
444
|
+
max_granularity - FX minifier arg. The maximum granularity (number of nodes)
|
|
445
|
+
in the returned ATen FX subgraph of the culprit.
|
|
446
|
+
runtime_errors: If true, find culprits for Python runtime errors
|
|
447
|
+
with converted model.
|
|
448
|
+
enable_fx_minifier_logging: If true, allows the underlying FX minifier to log the progress.
|
|
449
|
+
"""
|
|
450
|
+
|
|
451
|
+
fx_minifier_checker = functools.partial(
|
|
452
|
+
_fx_minifier_checker, runtime_errors=runtime_errors
|
|
453
|
+
)
|
|
454
|
+
|
|
455
|
+
for search_result in _search_model(
|
|
456
|
+
fx_minifier_checker,
|
|
457
|
+
torch_model,
|
|
458
|
+
args,
|
|
459
|
+
max_granularity=max_granularity,
|
|
460
|
+
enable_fx_minifier_logging=enable_fx_minifier_logging,
|
|
461
|
+
):
|
|
462
|
+
yield Culprit(
|
|
463
|
+
search_result.graph_module, search_result.inputs, _runtime_errors=runtime_errors
|
|
464
|
+
)
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
import unittest
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
|
|
21
|
+
from ai_edge_torch.debug import _search_model
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class TestSearchModel(unittest.TestCase):
|
|
25
|
+
|
|
26
|
+
def test_search_model_with_ops(self):
|
|
27
|
+
class MultipleOpsModel(torch.nn.Module):
|
|
28
|
+
|
|
29
|
+
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
|
30
|
+
sub_0 = x - 1
|
|
31
|
+
add_0 = y + 1
|
|
32
|
+
mul_0 = x * y
|
|
33
|
+
add_1 = sub_0 + add_0
|
|
34
|
+
mul_1 = add_0 * mul_0
|
|
35
|
+
sub_1 = add_1 - mul_1
|
|
36
|
+
return sub_1
|
|
37
|
+
|
|
38
|
+
model = MultipleOpsModel().eval()
|
|
39
|
+
args = (torch.rand(10), torch.rand(10))
|
|
40
|
+
|
|
41
|
+
def find_subgraph_with_sub(fx_gm, inputs):
|
|
42
|
+
return torch.ops.aten.sub.Tensor in [n.target for n in fx_gm.graph.nodes]
|
|
43
|
+
|
|
44
|
+
results = list(_search_model(find_subgraph_with_sub, model, args))
|
|
45
|
+
self.assertEqual(len(results), 2)
|
|
46
|
+
self.assertIn(torch.ops.aten.sub.Tensor, [n.target for n in results[0].graph.nodes])
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
if __name__ == "__main__":
|
|
50
|
+
unittest.main()
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from ai_edge_torch.convert.fx_passes import CanonicalizePass
|
|
18
|
+
from ai_edge_torch.convert.fx_passes import run_passes
|
|
19
|
+
from ai_edge_torch.generative.fx_passes.remove_sdpa_zero_mask_pass import RemoveSDPACompositeZeroMaskPass # NOQA
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def run_generative_passes(
|
|
23
|
+
exported_program: torch.export.ExportedProgram,
|
|
24
|
+
) -> torch.export.ExportedProgram:
|
|
25
|
+
return run_passes(
|
|
26
|
+
exported_program,
|
|
27
|
+
[
|
|
28
|
+
RemoveSDPACompositeZeroMaskPass(),
|
|
29
|
+
CanonicalizePass(),
|
|
30
|
+
],
|
|
31
|
+
)
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassBase
|
|
18
|
+
from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassResult # NOQA
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
|
|
22
|
+
|
|
23
|
+
def is_zero_tensor_node(self, node: torch.fx.Node):
|
|
24
|
+
return node.target == torch.ops.aten.zeros.default
|
|
25
|
+
|
|
26
|
+
def call(self, exported_program: torch.export.ExportedProgram):
|
|
27
|
+
graph = exported_program.graph_module.graph
|
|
28
|
+
for node in graph.nodes:
|
|
29
|
+
if not (
|
|
30
|
+
node.op == "call_function"
|
|
31
|
+
and node.target == torch.ops.xla.mark_tensor.default
|
|
32
|
+
):
|
|
33
|
+
continue
|
|
34
|
+
|
|
35
|
+
source, name, io_position, id, is_input = node.args[:5]
|
|
36
|
+
# Composite info:
|
|
37
|
+
# - name: odml.scaled_dot_product_attention
|
|
38
|
+
# - inputs: q, k, v, mask
|
|
39
|
+
if name == "odml.scaled_dot_product_attention" and is_input and io_position == 3:
|
|
40
|
+
if self.is_zero_tensor_node(source):
|
|
41
|
+
# Remove the mark_tensor call on the mask input by
|
|
42
|
+
# replacing the target with an identity function.
|
|
43
|
+
node.target = lambda *args, **kwargs: args[0]
|
|
44
|
+
|
|
45
|
+
exported_program.graph_module.graph.lint()
|
|
46
|
+
exported_program.graph_module.recompile()
|
|
47
|
+
return ExportedProgramPassResult(exported_program, True)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ai-edge-torch-nightly
|
|
3
|
-
Version: 0.2.0.
|
|
3
|
+
Version: 0.2.0.dev20240625
|
|
4
4
|
Summary: Supporting PyTorch models with the Google AI Edge TFLite runtime.
|
|
5
5
|
Home-page: https://github.com/google-ai-edge/ai-edge-torch
|
|
6
6
|
Keywords: On-Device ML,AI,Google,TFLite,PyTorch,LLMs,GenAI
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
ai_edge_torch/__init__.py,sha256=FPMmuFU3pyMREtjB_san1fy_0PFtAsgA0VZfOYvDrb4,1008
|
|
2
2
|
ai_edge_torch/model.py,sha256=kmcgELjsYl8YzF8nUF6P7q4i8MWS-pLGpfsy-yTUXmE,4243
|
|
3
3
|
ai_edge_torch/convert/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
4
|
-
ai_edge_torch/convert/conversion.py,sha256=
|
|
4
|
+
ai_edge_torch/convert/conversion.py,sha256=8K8jQuaCjlUWoj7jiimxp_zpN6mYThLOcQ858UDcYnE,4159
|
|
5
5
|
ai_edge_torch/convert/conversion_utils.py,sha256=9BqCL38DErv1vEVGtT3BIJVhdwZjw2EQ-_m5UpvVVYE,11294
|
|
6
6
|
ai_edge_torch/convert/converter.py,sha256=bjj5TV5_g4sGyuSh8ThEDydlNMqhkGSY4SzXK6vwhqI,6927
|
|
7
7
|
ai_edge_torch/convert/fx_passes/__init__.py,sha256=EPs4PSIDLuRH5EBETi6deaOvaaf_Q4xD3_9NVcR7x8o,2810
|
|
@@ -24,11 +24,12 @@ ai_edge_torch/convert/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrK
|
|
|
24
24
|
ai_edge_torch/convert/test/test_convert.py,sha256=2qPmmGqnfV_o1gfsSdjGq3-JR1b323ligiy5MdAv9NA,8021
|
|
25
25
|
ai_edge_torch/convert/test/test_convert_composites.py,sha256=_Ojc-H6GOS5s8ek3_8eRBL_AiCs-k3srziPJ2R4Ulrg,7255
|
|
26
26
|
ai_edge_torch/convert/test/test_convert_multisig.py,sha256=kMaGnHe9ylfyU68qCifYcaGwJqyejKz--QQt9jS2oUA,4537
|
|
27
|
-
ai_edge_torch/debug/__init__.py,sha256=
|
|
28
|
-
ai_edge_torch/debug/culprit.py,sha256=
|
|
27
|
+
ai_edge_torch/debug/__init__.py,sha256=N05Mmvi41KgSuK0JhuMejERESgP8QekiGdp9_PEyuKU,742
|
|
28
|
+
ai_edge_torch/debug/culprit.py,sha256=urtCKPXORPvn6oyDxDSCSjgvngUnjjcsUMwAOeIl15E,14236
|
|
29
29
|
ai_edge_torch/debug/utils.py,sha256=hjVmQVVl1dKxEF0D6KB4a3ouQ3wBkTsebOX2YsUObZM,1430
|
|
30
30
|
ai_edge_torch/debug/test/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
31
31
|
ai_edge_torch/debug/test/test_culprit.py,sha256=9An_n9p_RWTAYdHYTCO-__EJlbnjclCDo8tDhOzMlwk,3731
|
|
32
|
+
ai_edge_torch/debug/test/test_search_model.py,sha256=0guAEon5cvwBpPXk6J0wVOKj7TXMDaiuomEEQmHgO5o,1590
|
|
32
33
|
ai_edge_torch/experimental/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
33
34
|
ai_edge_torch/generative/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
34
35
|
ai_edge_torch/generative/examples/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
@@ -64,6 +65,8 @@ ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py,sha256=
|
|
|
64
65
|
ai_edge_torch/generative/examples/tiny_llama/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
65
66
|
ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py,sha256=E4I5OlC4zyl5cxiiu7uTED-zcwYRu210lP1zuT3xLBE,2566
|
|
66
67
|
ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py,sha256=IFRLPG9wz_aLl_zV_6CETCjSM03ukA6bZqqyDLVACuw,5651
|
|
68
|
+
ai_edge_torch/generative/fx_passes/__init__.py,sha256=aXvYiaHDvETIrh0Q9DDZA_ZBiazGk80DT6nt7lLtC1o,1172
|
|
69
|
+
ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py,sha256=IehLwFNwa0C9fnk1pmNmyfuAwwWbuwdyKy46BSqNVdI,1948
|
|
67
70
|
ai_edge_torch/generative/layers/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
68
71
|
ai_edge_torch/generative/layers/attention.py,sha256=AW0Qo3uOIe6p1rJNJ6zR_r4fqL2y-6QJHh0yUd-5Yb0,11966
|
|
69
72
|
ai_edge_torch/generative/layers/attention_utils.py,sha256=hXhuyKblPPxKIRzlAf1YNlwHgpbj-6nReRLhRHELx5k,6350
|
|
@@ -109,8 +112,8 @@ ai_edge_torch/quantize/quant_config.py,sha256=eO9Ra160ITjQSyRBEGy6nNIVH3gYacSWDd
|
|
|
109
112
|
ai_edge_torch/testing/__init__.py,sha256=hHLluseD2R0Hh4W6XZRIXY_dRQeYudjsrKGf6LZz65g,671
|
|
110
113
|
ai_edge_torch/testing/model_coverage/__init__.py,sha256=5P8J6Zk5YYtDvTBucFvB9NGSRI7Gw_24WnrbhXgycEE,765
|
|
111
114
|
ai_edge_torch/testing/model_coverage/model_coverage.py,sha256=EIyKz-HY70DguWuSrJal8LpYXQ5ZSEUf3ZrVl7jikFM,4286
|
|
112
|
-
ai_edge_torch_nightly-0.2.0.
|
|
113
|
-
ai_edge_torch_nightly-0.2.0.
|
|
114
|
-
ai_edge_torch_nightly-0.2.0.
|
|
115
|
-
ai_edge_torch_nightly-0.2.0.
|
|
116
|
-
ai_edge_torch_nightly-0.2.0.
|
|
115
|
+
ai_edge_torch_nightly-0.2.0.dev20240625.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
116
|
+
ai_edge_torch_nightly-0.2.0.dev20240625.dist-info/METADATA,sha256=BMjo3IdVwNBpXCIGJC01y1buq5mPWWPyAJV1LFvxsJw,1748
|
|
117
|
+
ai_edge_torch_nightly-0.2.0.dev20240625.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
118
|
+
ai_edge_torch_nightly-0.2.0.dev20240625.dist-info/top_level.txt,sha256=5KXRaF2hwkApYxf7Y8y_tVb9aulGTlbOoNdbx1aKRkE,14
|
|
119
|
+
ai_edge_torch_nightly-0.2.0.dev20240625.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|