ai-edge-torch-nightly 0.2.0.dev20240611__py3-none-any.whl → 0.2.0.dev20240619__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +19 -0
- ai_edge_torch/convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +9 -2
- ai_edge_torch/debug/__init__.py +1 -0
- ai_edge_torch/debug/culprit.py +70 -29
- ai_edge_torch/debug/test/test_search_model.py +50 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +9 -6
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +33 -25
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +523 -202
- ai_edge_torch/generative/examples/t5/t5_attention.py +10 -39
- ai_edge_torch/generative/layers/attention.py +154 -26
- ai_edge_torch/generative/layers/model_config.py +3 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +473 -49
- ai_edge_torch/generative/layers/unet/builder.py +20 -2
- ai_edge_torch/generative/layers/unet/model_config.py +157 -5
- ai_edge_torch/generative/test/test_model_conversion.py +24 -0
- ai_edge_torch/generative/test/test_quantize.py +1 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +860 -0
- ai_edge_torch/generative/utilities/t5_loader.py +33 -17
- {ai_edge_torch_nightly-0.2.0.dev20240611.dist-info → ai_edge_torch_nightly-0.2.0.dev20240619.dist-info}/METADATA +1 -1
- {ai_edge_torch_nightly-0.2.0.dev20240611.dist-info → ai_edge_torch_nightly-0.2.0.dev20240619.dist-info}/RECORD +23 -22
- ai_edge_torch/generative/utilities/autoencoder_loader.py +0 -298
- {ai_edge_torch_nightly-0.2.0.dev20240611.dist-info → ai_edge_torch_nightly-0.2.0.dev20240619.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240611.dist-info → ai_edge_torch_nightly-0.2.0.dev20240619.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240611.dist-info → ai_edge_torch_nightly-0.2.0.dev20240619.dist-info}/top_level.txt +0 -0
|
@@ -15,230 +15,551 @@
|
|
|
15
15
|
|
|
16
16
|
import torch
|
|
17
17
|
from torch import nn
|
|
18
|
-
from torch.nn import functional as F
|
|
19
18
|
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
19
|
+
import ai_edge_torch.generative.layers.builder as layers_builder
|
|
20
|
+
import ai_edge_torch.generative.layers.model_config as layers_cfg
|
|
21
|
+
import ai_edge_torch.generative.layers.unet.blocks_2d as blocks_2d
|
|
22
|
+
import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
|
|
23
|
+
import ai_edge_torch.generative.utilities.stable_diffusion_loader as stable_diffusion_loader
|
|
24
|
+
|
|
25
|
+
_down_encoder_blocks_tensor_names = [
|
|
26
|
+
stable_diffusion_loader.DownEncoderBlockTensorNames(
|
|
27
|
+
residual_block_tensor_names=[
|
|
28
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
|
29
|
+
norm_1=f"unet.encoders.{i*3+j+1}.0.groupnorm_feature",
|
|
30
|
+
conv_1=f"unet.encoders.{i*3+j+1}.0.conv_feature",
|
|
31
|
+
norm_2=f"unet.encoders.{i*3+j+1}.0.groupnorm_merged",
|
|
32
|
+
conv_2=f"unet.encoders.{i*3+j+1}.0.conv_merged",
|
|
33
|
+
time_embedding=f"unet.encoders.{i*3+j+1}.0.linear_time",
|
|
34
|
+
residual_layer=f"unet.encoders.{i*3+j+1}.0.residual_layer"
|
|
35
|
+
if (i * 3 + j + 1) in [4, 7]
|
|
36
|
+
else None,
|
|
37
|
+
)
|
|
38
|
+
for j in range(2)
|
|
39
|
+
],
|
|
40
|
+
transformer_block_tensor_names=[
|
|
41
|
+
stable_diffusion_loader.TransformerBlockTensorNames(
|
|
42
|
+
pre_conv_norm=f"unet.encoders.{i*3+j+1}.1.groupnorm",
|
|
43
|
+
conv_in=f"unet.encoders.{i*3+j+1}.1.conv_input",
|
|
44
|
+
conv_out=f"unet.encoders.{i*3+j+1}.1.conv_output",
|
|
45
|
+
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
|
46
|
+
norm=f"unet.encoders.{i*3+j+1}.1.layernorm_1",
|
|
47
|
+
fused_qkv_proj=f"unet.encoders.{i*3+j+1}.1.attention_1.in_proj",
|
|
48
|
+
output_proj=f"unet.encoders.{i*3+j+1}.1.attention_1.out_proj",
|
|
49
|
+
),
|
|
50
|
+
cross_attention=stable_diffusion_loader.CrossAttentionBlockTensorNames(
|
|
51
|
+
norm=f"unet.encoders.{i*3+j+1}.1.layernorm_2",
|
|
52
|
+
q_proj=f"unet.encoders.{i*3+j+1}.1.attention_2.q_proj",
|
|
53
|
+
k_proj=f"unet.encoders.{i*3+j+1}.1.attention_2.k_proj",
|
|
54
|
+
v_proj=f"unet.encoders.{i*3+j+1}.1.attention_2.v_proj",
|
|
55
|
+
output_proj=f"unet.encoders.{i*3+j+1}.1.attention_2.out_proj",
|
|
56
|
+
),
|
|
57
|
+
feed_forward=stable_diffusion_loader.FeedForwardBlockTensorNames(
|
|
58
|
+
norm=f"unet.encoders.{i*3+j+1}.1.layernorm_3",
|
|
59
|
+
ge_glu=f"unet.encoders.{i*3+j+1}.1.linear_geglu_1",
|
|
60
|
+
w2=f"unet.encoders.{i*3+j+1}.1.linear_geglu_2",
|
|
61
|
+
),
|
|
62
|
+
)
|
|
63
|
+
for j in range(2)
|
|
64
|
+
]
|
|
65
|
+
if i < 3
|
|
66
|
+
else None,
|
|
67
|
+
downsample_conv=f"unet.encoders.{i*3+3}.0" if i < 3 else None,
|
|
68
|
+
)
|
|
69
|
+
for i in range(4)
|
|
70
|
+
]
|
|
71
|
+
|
|
72
|
+
_mid_block_tensor_names = stable_diffusion_loader.MidBlockTensorNames(
|
|
73
|
+
residual_block_tensor_names=[
|
|
74
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
|
75
|
+
norm_1=f"unet.bottleneck.{i}.groupnorm_feature",
|
|
76
|
+
conv_1=f"unet.bottleneck.{i}.conv_feature",
|
|
77
|
+
norm_2=f"unet.bottleneck.{i}.groupnorm_merged",
|
|
78
|
+
conv_2=f"unet.bottleneck.{i}.conv_merged",
|
|
79
|
+
time_embedding=f"unet.bottleneck.{i}.linear_time",
|
|
80
|
+
)
|
|
81
|
+
for i in [0, 2]
|
|
82
|
+
],
|
|
83
|
+
transformer_block_tensor_names=[
|
|
84
|
+
stable_diffusion_loader.TransformerBlockTensorNames(
|
|
85
|
+
pre_conv_norm=f"unet.bottleneck.{i}.groupnorm",
|
|
86
|
+
conv_in=f"unet.bottleneck.{i}.conv_input",
|
|
87
|
+
conv_out=f"unet.bottleneck.{i}.conv_output",
|
|
88
|
+
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
|
89
|
+
norm=f"unet.bottleneck.{i}.layernorm_1",
|
|
90
|
+
fused_qkv_proj=f"unet.bottleneck.{i}.attention_1.in_proj",
|
|
91
|
+
output_proj=f"unet.bottleneck.{i}.attention_1.out_proj",
|
|
92
|
+
),
|
|
93
|
+
cross_attention=stable_diffusion_loader.CrossAttentionBlockTensorNames(
|
|
94
|
+
norm=f"unet.bottleneck.{i}.layernorm_2",
|
|
95
|
+
q_proj=f"unet.bottleneck.{i}.attention_2.q_proj",
|
|
96
|
+
k_proj=f"unet.bottleneck.{i}.attention_2.k_proj",
|
|
97
|
+
v_proj=f"unet.bottleneck.{i}.attention_2.v_proj",
|
|
98
|
+
output_proj=f"unet.bottleneck.{i}.attention_2.out_proj",
|
|
99
|
+
),
|
|
100
|
+
feed_forward=stable_diffusion_loader.FeedForwardBlockTensorNames(
|
|
101
|
+
norm=f"unet.bottleneck.{i}.layernorm_3",
|
|
102
|
+
ge_glu=f"unet.bottleneck.{i}.linear_geglu_1",
|
|
103
|
+
w2=f"unet.bottleneck.{i}.linear_geglu_2",
|
|
104
|
+
),
|
|
105
|
+
)
|
|
106
|
+
for i in [1]
|
|
107
|
+
],
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
_up_decoder_blocks_tensor_names = [
|
|
111
|
+
stable_diffusion_loader.SkipUpDecoderBlockTensorNames(
|
|
112
|
+
residual_block_tensor_names=[
|
|
113
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
|
114
|
+
norm_1=f"unet.decoders.{i*3+j}.0.groupnorm_feature",
|
|
115
|
+
conv_1=f"unet.decoders.{i*3+j}.0.conv_feature",
|
|
116
|
+
norm_2=f"unet.decoders.{i*3+j}.0.groupnorm_merged",
|
|
117
|
+
conv_2=f"unet.decoders.{i*3+j}.0.conv_merged",
|
|
118
|
+
time_embedding=f"unet.decoders.{i*3+j}.0.linear_time",
|
|
119
|
+
residual_layer=f"unet.decoders.{i*3+j}.0.residual_layer",
|
|
120
|
+
)
|
|
121
|
+
for j in range(3)
|
|
122
|
+
],
|
|
123
|
+
transformer_block_tensor_names=[
|
|
124
|
+
stable_diffusion_loader.TransformerBlockTensorNames(
|
|
125
|
+
pre_conv_norm=f"unet.decoders.{i*3+j}.1.groupnorm",
|
|
126
|
+
conv_in=f"unet.decoders.{i*3+j}.1.conv_input",
|
|
127
|
+
conv_out=f"unet.decoders.{i*3+j}.1.conv_output",
|
|
128
|
+
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
|
129
|
+
norm=f"unet.decoders.{i*3+j}.1.layernorm_1",
|
|
130
|
+
fused_qkv_proj=f"unet.decoders.{i*3+j}.1.attention_1.in_proj",
|
|
131
|
+
output_proj=f"unet.decoders.{i*3+j}.1.attention_1.out_proj",
|
|
132
|
+
),
|
|
133
|
+
cross_attention=stable_diffusion_loader.CrossAttentionBlockTensorNames(
|
|
134
|
+
norm=f"unet.decoders.{i*3+j}.1.layernorm_2",
|
|
135
|
+
q_proj=f"unet.decoders.{i*3+j}.1.attention_2.q_proj",
|
|
136
|
+
k_proj=f"unet.decoders.{i*3+j}.1.attention_2.k_proj",
|
|
137
|
+
v_proj=f"unet.decoders.{i*3+j}.1.attention_2.v_proj",
|
|
138
|
+
output_proj=f"unet.decoders.{i*3+j}.1.attention_2.out_proj",
|
|
139
|
+
),
|
|
140
|
+
feed_forward=stable_diffusion_loader.FeedForwardBlockTensorNames(
|
|
141
|
+
norm=f"unet.decoders.{i*3+j}.1.layernorm_3",
|
|
142
|
+
ge_glu=f"unet.decoders.{i*3+j}.1.linear_geglu_1",
|
|
143
|
+
w2=f"unet.decoders.{i*3+j}.1.linear_geglu_2",
|
|
144
|
+
),
|
|
145
|
+
)
|
|
146
|
+
for j in range(3)
|
|
147
|
+
]
|
|
148
|
+
if i > 0
|
|
149
|
+
else None,
|
|
150
|
+
upsample_conv=f"unet.decoders.{i*3+2}.2.conv"
|
|
151
|
+
if 0 < i < 3
|
|
152
|
+
else (f"unet.decoders.2.1.conv" if i == 0 else None),
|
|
153
|
+
)
|
|
154
|
+
for i in range(4)
|
|
155
|
+
]
|
|
65
156
|
|
|
66
|
-
merged = feature + time.unsqueeze(-1).unsqueeze(-1)
|
|
67
|
-
merged = self.groupnorm_merged(merged)
|
|
68
|
-
merged = F.silu(merged)
|
|
69
|
-
merged = self.conv_merged(merged)
|
|
70
157
|
|
|
71
|
-
|
|
158
|
+
TENSORS_NAMES = stable_diffusion_loader.DiffusionModelLoader.TensorNames(
|
|
159
|
+
time_embedding=stable_diffusion_loader.TimeEmbeddingTensorNames(
|
|
160
|
+
w1="time_embedding.linear_1",
|
|
161
|
+
w2="time_embedding.linear_2",
|
|
162
|
+
),
|
|
163
|
+
conv_in="unet.encoders.0.0",
|
|
164
|
+
conv_out="final.conv",
|
|
165
|
+
final_norm="final.groupnorm",
|
|
166
|
+
down_encoder_blocks_tensor_names=_down_encoder_blocks_tensor_names,
|
|
167
|
+
mid_block_tensor_names=_mid_block_tensor_names,
|
|
168
|
+
up_decoder_blocks_tensor_names=_up_decoder_blocks_tensor_names,
|
|
169
|
+
)
|
|
72
170
|
|
|
73
171
|
|
|
74
|
-
class
|
|
172
|
+
class TimeEmbedding(nn.Module):
|
|
75
173
|
|
|
76
|
-
def __init__(self,
|
|
174
|
+
def __init__(self, in_dim, out_dim):
|
|
77
175
|
super().__init__()
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
self.
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
self.layernorm_1 = nn.LayerNorm(channels)
|
|
84
|
-
self.attention_1 = SelfAttention(n_head, channels, in_proj_bias=False)
|
|
85
|
-
self.layernorm_2 = nn.LayerNorm(channels)
|
|
86
|
-
self.attention_2 = CrossAttention(n_head, channels, d_context, in_proj_bias=False)
|
|
87
|
-
self.layernorm_3 = nn.LayerNorm(channels)
|
|
88
|
-
self.linear_geglu_1 = nn.Linear(channels, 4 * channels * 2)
|
|
89
|
-
self.linear_geglu_2 = nn.Linear(4 * channels, channels)
|
|
90
|
-
|
|
91
|
-
self.conv_output = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
|
|
92
|
-
|
|
93
|
-
def forward(self, x, context):
|
|
94
|
-
residue_long = x
|
|
95
|
-
|
|
96
|
-
x = self.groupnorm(x)
|
|
97
|
-
x = self.conv_input(x)
|
|
98
|
-
|
|
99
|
-
n, c, h, w = x.shape
|
|
100
|
-
x = x.view((n, c, h * w)) # (n, c, hw)
|
|
101
|
-
x = x.transpose(-1, -2) # (n, hw, c)
|
|
102
|
-
|
|
103
|
-
residue_short = x
|
|
104
|
-
x = self.layernorm_1(x)
|
|
105
|
-
x = self.attention_1(x)
|
|
106
|
-
x += residue_short
|
|
107
|
-
|
|
108
|
-
residue_short = x
|
|
109
|
-
x = self.layernorm_2(x)
|
|
110
|
-
x = self.attention_2(x, context)
|
|
111
|
-
x += residue_short
|
|
112
|
-
|
|
113
|
-
residue_short = x
|
|
114
|
-
x = self.layernorm_3(x)
|
|
115
|
-
x, gate = self.linear_geglu_1(x).chunk(2, dim=-1)
|
|
116
|
-
x = x * F.gelu(gate)
|
|
117
|
-
x = self.linear_geglu_2(x)
|
|
118
|
-
x += residue_short
|
|
119
|
-
|
|
120
|
-
x = x.transpose(-1, -2) # (n, c, hw)
|
|
121
|
-
x = x.view((n, c, h, w)) # (n, c, h, w)
|
|
122
|
-
|
|
123
|
-
return self.conv_output(x) + residue_long
|
|
176
|
+
self.w1 = nn.Linear(in_dim, out_dim)
|
|
177
|
+
self.w2 = nn.Linear(out_dim, out_dim)
|
|
178
|
+
self.act = layers_builder.get_activation(
|
|
179
|
+
layers_cfg.ActivationConfig(layers_cfg.ActivationType.SILU)
|
|
180
|
+
)
|
|
124
181
|
|
|
182
|
+
def forward(self, x: torch.Tensor):
|
|
183
|
+
return self.w2(self.act(self.w1(x)))
|
|
125
184
|
|
|
126
|
-
class Upsample(nn.Module):
|
|
127
185
|
|
|
128
|
-
|
|
186
|
+
class Diffusion(nn.Module):
|
|
187
|
+
"""The Diffusion model used in Stable Diffusion.
|
|
188
|
+
|
|
189
|
+
For details, see https://arxiv.org/abs/2103.00020
|
|
190
|
+
|
|
191
|
+
Sturcture of the Diffusion model:
|
|
192
|
+
|
|
193
|
+
latents text context time embed
|
|
194
|
+
│ │ │
|
|
195
|
+
│ │ │
|
|
196
|
+
┌─────────▼─────────┐ │ ┌─────────▼─────────┐
|
|
197
|
+
│ ConvIn │ │ │ Time Embedding │
|
|
198
|
+
└─────────┬─────────┘ │ └─────────┬─────────┘
|
|
199
|
+
│ │ │
|
|
200
|
+
┌─────────▼─────────┐ │ │
|
|
201
|
+
┌──────┤ DownEncoder2D │ ◄─────┼────────────┤
|
|
202
|
+
│ └─────────┬─────────┘ x 4 │ │
|
|
203
|
+
│ │ │ │
|
|
204
|
+
│ ┌─────────▼─────────┐ │ │
|
|
205
|
+
skip connection │ MidBlock2D │ ◄─────┼────────────┤
|
|
206
|
+
│ └─────────┬─────────┘ │ │
|
|
207
|
+
│ │ │ │
|
|
208
|
+
│ ┌─────────▼─────────┐ │ │
|
|
209
|
+
└──────► SkipUpDecoder2D │ ◄─────┴────────────┘
|
|
210
|
+
└─────────┬─────────┘ x 4
|
|
211
|
+
│
|
|
212
|
+
┌─────────▼─────────┐
|
|
213
|
+
│ FinalNorm │
|
|
214
|
+
└─────────┬─────────┘
|
|
215
|
+
│
|
|
216
|
+
┌─────────▼─────────┐
|
|
217
|
+
│ Activation │
|
|
218
|
+
└─────────┬─────────┘
|
|
219
|
+
│
|
|
220
|
+
┌─────────▼─────────┐
|
|
221
|
+
│ ConvOut │
|
|
222
|
+
└─────────┬─────────┘
|
|
223
|
+
│
|
|
224
|
+
▼
|
|
225
|
+
output image
|
|
226
|
+
"""
|
|
227
|
+
|
|
228
|
+
def __init__(self, config: unet_cfg.DiffusionModelConfig):
|
|
129
229
|
super().__init__()
|
|
130
|
-
self.conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
|
131
|
-
|
|
132
|
-
def forward(self, x):
|
|
133
|
-
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
|
134
|
-
return self.conv(x)
|
|
135
230
|
|
|
231
|
+
self.config = config
|
|
232
|
+
block_out_channels = config.block_out_channels
|
|
233
|
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
|
136
234
|
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
if isinstance(layer, AttentionBlock):
|
|
142
|
-
x = layer(x, context)
|
|
143
|
-
elif isinstance(layer, ResidualBlock):
|
|
144
|
-
x = layer(x, time)
|
|
145
|
-
else:
|
|
146
|
-
x = layer(x)
|
|
147
|
-
return x
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
class UNet(nn.Module):
|
|
235
|
+
time_embedding_blocks_dim = config.time_embedding_blocks_dim
|
|
236
|
+
self.time_embedding = TimeEmbedding(
|
|
237
|
+
config.time_embedding_dim, config.time_embedding_blocks_dim
|
|
238
|
+
)
|
|
151
239
|
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
self.encoders = nn.ModuleList(
|
|
155
|
-
[
|
|
156
|
-
SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)),
|
|
157
|
-
SwitchSequential(ResidualBlock(320, 320), AttentionBlock(8, 40)),
|
|
158
|
-
SwitchSequential(ResidualBlock(320, 320), AttentionBlock(8, 40)),
|
|
159
|
-
SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)),
|
|
160
|
-
SwitchSequential(ResidualBlock(320, 640), AttentionBlock(8, 80)),
|
|
161
|
-
SwitchSequential(ResidualBlock(640, 640), AttentionBlock(8, 80)),
|
|
162
|
-
SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)),
|
|
163
|
-
SwitchSequential(ResidualBlock(640, 1280), AttentionBlock(8, 160)),
|
|
164
|
-
SwitchSequential(ResidualBlock(1280, 1280), AttentionBlock(8, 160)),
|
|
165
|
-
SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)),
|
|
166
|
-
SwitchSequential(ResidualBlock(1280, 1280)),
|
|
167
|
-
SwitchSequential(ResidualBlock(1280, 1280)),
|
|
168
|
-
]
|
|
240
|
+
self.conv_in = nn.Conv2d(
|
|
241
|
+
config.in_channels, block_out_channels[0], kernel_size=3, padding=1
|
|
169
242
|
)
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
243
|
+
|
|
244
|
+
attention_config = layers_cfg.AttentionConfig(
|
|
245
|
+
num_heads=config.transformer_num_attention_heads,
|
|
246
|
+
num_query_groups=config.transformer_num_attention_heads,
|
|
247
|
+
rotary_percentage=0.0,
|
|
248
|
+
qkv_transpose_before_split=True,
|
|
249
|
+
qkv_use_bias=False,
|
|
250
|
+
output_proj_use_bias=True,
|
|
251
|
+
enable_kv_cache=False,
|
|
174
252
|
)
|
|
175
253
|
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
254
|
+
# Down encoders.
|
|
255
|
+
down_encoders = []
|
|
256
|
+
output_channel = block_out_channels[0]
|
|
257
|
+
for i, block_out_channel in enumerate(block_out_channels):
|
|
258
|
+
input_channel = output_channel
|
|
259
|
+
output_channel = block_out_channel
|
|
260
|
+
not_final_block = i < len(block_out_channels) - 1
|
|
261
|
+
if not_final_block:
|
|
262
|
+
down_encoders.append(
|
|
263
|
+
blocks_2d.DownEncoderBlock2D(
|
|
264
|
+
unet_cfg.DownEncoderBlock2DConfig(
|
|
265
|
+
in_channels=input_channel,
|
|
266
|
+
out_channels=output_channel,
|
|
267
|
+
normalization_config=config.residual_norm_config,
|
|
268
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
269
|
+
config.residual_activation_type
|
|
270
|
+
),
|
|
271
|
+
num_layers=config.layers_per_block,
|
|
272
|
+
padding=config.downsample_padding,
|
|
273
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
|
274
|
+
add_downsample=True,
|
|
275
|
+
sampling_config=unet_cfg.DownSamplingConfig(
|
|
276
|
+
mode=unet_cfg.SamplingType.CONVOLUTION,
|
|
277
|
+
in_channels=output_channel,
|
|
278
|
+
out_channels=output_channel,
|
|
279
|
+
kernel_size=3,
|
|
280
|
+
stride=2,
|
|
281
|
+
padding=config.downsample_padding,
|
|
282
|
+
),
|
|
283
|
+
transformer_block_config=unet_cfg.TransformerBlock2Dconfig(
|
|
284
|
+
attention_block_config=unet_cfg.AttentionBlock2DConfig(
|
|
285
|
+
dim=output_channel,
|
|
286
|
+
attention_batch_size=config.transformer_batch_size,
|
|
287
|
+
normalization_config=config.transformer_norm_config,
|
|
288
|
+
attention_config=attention_config,
|
|
289
|
+
),
|
|
290
|
+
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
|
291
|
+
query_dim=output_channel,
|
|
292
|
+
cross_dim=config.transformer_cross_attention_dim,
|
|
293
|
+
attention_batch_size=config.transformer_batch_size,
|
|
294
|
+
normalization_config=config.transformer_norm_config,
|
|
295
|
+
attention_config=attention_config,
|
|
296
|
+
),
|
|
297
|
+
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
|
298
|
+
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
|
299
|
+
dim=output_channel,
|
|
300
|
+
hidden_dim=output_channel * 4,
|
|
301
|
+
normalization_config=config.transformer_norm_config,
|
|
302
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
303
|
+
type=config.transformer_ff_activation_type,
|
|
304
|
+
dim_in=output_channel,
|
|
305
|
+
dim_out=output_channel * 4,
|
|
306
|
+
),
|
|
307
|
+
use_bias=True,
|
|
308
|
+
),
|
|
309
|
+
),
|
|
310
|
+
)
|
|
311
|
+
)
|
|
312
|
+
)
|
|
313
|
+
else:
|
|
314
|
+
down_encoders.append(
|
|
315
|
+
blocks_2d.DownEncoderBlock2D(
|
|
316
|
+
unet_cfg.DownEncoderBlock2DConfig(
|
|
317
|
+
in_channels=input_channel,
|
|
318
|
+
out_channels=output_channel,
|
|
319
|
+
normalization_config=config.residual_norm_config,
|
|
320
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
321
|
+
config.residual_activation_type
|
|
322
|
+
),
|
|
323
|
+
num_layers=config.layers_per_block,
|
|
324
|
+
padding=config.downsample_padding,
|
|
325
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
|
326
|
+
add_downsample=False,
|
|
327
|
+
)
|
|
328
|
+
)
|
|
329
|
+
)
|
|
330
|
+
self.down_encoders = nn.ModuleList(down_encoders)
|
|
331
|
+
|
|
332
|
+
# Mid block.
|
|
333
|
+
mid_block_channels = block_out_channels[-1]
|
|
334
|
+
self.mid_block = blocks_2d.MidBlock2D(
|
|
335
|
+
unet_cfg.MidBlock2DConfig(
|
|
336
|
+
in_channels=block_out_channels[-1],
|
|
337
|
+
normalization_config=config.residual_norm_config,
|
|
338
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
339
|
+
config.residual_activation_type
|
|
185
340
|
),
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
341
|
+
num_layers=config.mid_block_layers,
|
|
342
|
+
time_embedding_channels=config.time_embedding_blocks_dim,
|
|
343
|
+
transformer_block_config=unet_cfg.TransformerBlock2Dconfig(
|
|
344
|
+
attention_block_config=unet_cfg.AttentionBlock2DConfig(
|
|
345
|
+
dim=mid_block_channels,
|
|
346
|
+
attention_batch_size=config.transformer_batch_size,
|
|
347
|
+
normalization_config=config.transformer_norm_config,
|
|
348
|
+
attention_config=attention_config,
|
|
349
|
+
),
|
|
350
|
+
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
|
351
|
+
query_dim=mid_block_channels,
|
|
352
|
+
cross_dim=config.transformer_cross_attention_dim,
|
|
353
|
+
attention_batch_size=config.transformer_batch_size,
|
|
354
|
+
normalization_config=config.transformer_norm_config,
|
|
355
|
+
attention_config=attention_config,
|
|
356
|
+
),
|
|
357
|
+
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
|
358
|
+
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
|
359
|
+
dim=mid_block_channels,
|
|
360
|
+
hidden_dim=mid_block_channels * 4,
|
|
361
|
+
normalization_config=config.transformer_norm_config,
|
|
362
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
363
|
+
type=config.transformer_ff_activation_type,
|
|
364
|
+
dim_in=mid_block_channels,
|
|
365
|
+
dim_out=mid_block_channels * 4,
|
|
366
|
+
),
|
|
367
|
+
use_bias=True,
|
|
368
|
+
),
|
|
190
369
|
),
|
|
191
|
-
|
|
192
|
-
SwitchSequential(ResidualBlock(640, 320), AttentionBlock(8, 40)),
|
|
193
|
-
SwitchSequential(ResidualBlock(640, 320), AttentionBlock(8, 40)),
|
|
194
|
-
]
|
|
370
|
+
)
|
|
195
371
|
)
|
|
196
372
|
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
373
|
+
# Up decoders.
|
|
374
|
+
up_decoders = []
|
|
375
|
+
up_decoder_layers_per_block = config.layers_per_block + 1
|
|
376
|
+
output_channel = reversed_block_out_channels[0]
|
|
377
|
+
for i, block_out_channel in enumerate(reversed_block_out_channels):
|
|
378
|
+
prev_out_channel = output_channel
|
|
379
|
+
output_channel = block_out_channel
|
|
380
|
+
input_channel = reversed_block_out_channels[
|
|
381
|
+
min(i + 1, len(reversed_block_out_channels) - 1)
|
|
382
|
+
]
|
|
383
|
+
not_final_block = i < len(reversed_block_out_channels) - 1
|
|
384
|
+
not_first_block = i != 0
|
|
385
|
+
if not_first_block:
|
|
386
|
+
up_decoders.append(
|
|
387
|
+
blocks_2d.SkipUpDecoderBlock2D(
|
|
388
|
+
unet_cfg.SkipUpDecoderBlock2DConfig(
|
|
389
|
+
in_channels=input_channel,
|
|
390
|
+
out_channels=output_channel,
|
|
391
|
+
prev_out_channels=prev_out_channel,
|
|
392
|
+
normalization_config=config.residual_norm_config,
|
|
393
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
394
|
+
config.residual_activation_type
|
|
395
|
+
),
|
|
396
|
+
num_layers=up_decoder_layers_per_block,
|
|
397
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
|
398
|
+
add_upsample=not_final_block,
|
|
399
|
+
upsample_conv=True,
|
|
400
|
+
sampling_config=unet_cfg.UpSamplingConfig(
|
|
401
|
+
mode=unet_cfg.SamplingType.NEAREST,
|
|
402
|
+
scale_factor=2,
|
|
403
|
+
),
|
|
404
|
+
transformer_block_config=unet_cfg.TransformerBlock2Dconfig(
|
|
405
|
+
attention_block_config=unet_cfg.AttentionBlock2DConfig(
|
|
406
|
+
dim=output_channel,
|
|
407
|
+
attention_batch_size=config.transformer_batch_size,
|
|
408
|
+
normalization_config=config.transformer_norm_config,
|
|
409
|
+
attention_config=attention_config,
|
|
410
|
+
),
|
|
411
|
+
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
|
412
|
+
query_dim=output_channel,
|
|
413
|
+
cross_dim=config.transformer_cross_attention_dim,
|
|
414
|
+
attention_batch_size=config.transformer_batch_size,
|
|
415
|
+
normalization_config=config.transformer_norm_config,
|
|
416
|
+
attention_config=attention_config,
|
|
417
|
+
),
|
|
418
|
+
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
|
419
|
+
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
|
420
|
+
dim=output_channel,
|
|
421
|
+
hidden_dim=output_channel * 4,
|
|
422
|
+
normalization_config=config.transformer_norm_config,
|
|
423
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
424
|
+
type=config.transformer_ff_activation_type,
|
|
425
|
+
dim_in=output_channel,
|
|
426
|
+
dim_out=output_channel * 4,
|
|
427
|
+
),
|
|
428
|
+
use_bias=True,
|
|
429
|
+
),
|
|
430
|
+
),
|
|
431
|
+
)
|
|
432
|
+
)
|
|
433
|
+
)
|
|
434
|
+
else:
|
|
435
|
+
up_decoders.append(
|
|
436
|
+
blocks_2d.SkipUpDecoderBlock2D(
|
|
437
|
+
unet_cfg.SkipUpDecoderBlock2DConfig(
|
|
438
|
+
in_channels=input_channel,
|
|
439
|
+
out_channels=output_channel,
|
|
440
|
+
prev_out_channels=prev_out_channel,
|
|
441
|
+
normalization_config=config.residual_norm_config,
|
|
442
|
+
activation_config=layers_cfg.ActivationConfig(
|
|
443
|
+
config.residual_activation_type
|
|
444
|
+
),
|
|
445
|
+
num_layers=up_decoder_layers_per_block,
|
|
446
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
|
447
|
+
add_upsample=not_final_block,
|
|
448
|
+
upsample_conv=True,
|
|
449
|
+
sampling_config=unet_cfg.UpSamplingConfig(
|
|
450
|
+
mode=unet_cfg.SamplingType.NEAREST, scale_factor=2
|
|
451
|
+
),
|
|
452
|
+
)
|
|
453
|
+
)
|
|
454
|
+
)
|
|
455
|
+
self.up_decoders = nn.ModuleList(up_decoders)
|
|
456
|
+
|
|
457
|
+
self.final_norm = layers_builder.build_norm(
|
|
458
|
+
reversed_block_out_channels[-1], config.final_norm_config
|
|
459
|
+
)
|
|
460
|
+
self.final_act = layers_builder.get_activation(
|
|
461
|
+
layers_cfg.ActivationConfig(config.final_activation_type)
|
|
462
|
+
)
|
|
463
|
+
self.conv_out = nn.Conv2d(
|
|
464
|
+
reversed_block_out_channels[-1], config.out_channels, kernel_size=3, padding=1
|
|
465
|
+
)
|
|
233
466
|
|
|
234
467
|
@torch.inference_mode
|
|
235
|
-
def forward(
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
468
|
+
def forward(
|
|
469
|
+
self, latents: torch.Tensor, context: torch.Tensor, time_emb: torch.Tensor
|
|
470
|
+
) -> torch.Tensor:
|
|
471
|
+
"""Forward function of diffusion model.
|
|
472
|
+
|
|
473
|
+
Args:
|
|
474
|
+
latents (torch.Tensor): latents space tensor.
|
|
475
|
+
context (torch.Tensor): context tensor from CLIP text encoder.
|
|
476
|
+
time_emb (torch.Tensor): the time embedding tensor.
|
|
477
|
+
|
|
478
|
+
Returns:
|
|
479
|
+
output latents from diffusion model.
|
|
480
|
+
"""
|
|
481
|
+
time_emb = self.time_embedding(time_emb)
|
|
482
|
+
x = self.conv_in(latents)
|
|
483
|
+
skip_connection_tensors = [x]
|
|
484
|
+
for encoder in self.down_encoders:
|
|
485
|
+
x, hidden_states = encoder(x, time_emb, context, output_hidden_states=True)
|
|
486
|
+
skip_connection_tensors.extend(hidden_states)
|
|
487
|
+
x = self.mid_block(x, time_emb, context)
|
|
488
|
+
for decoder in self.up_decoders:
|
|
489
|
+
encoder_tensors = [
|
|
490
|
+
skip_connection_tensors.pop() for i in range(self.config.layers_per_block + 1)
|
|
491
|
+
]
|
|
492
|
+
x = decoder(x, encoder_tensors, time_emb, context)
|
|
493
|
+
x = self.final_norm(x)
|
|
494
|
+
x = self.final_act(x)
|
|
495
|
+
x = self.conv_out(x)
|
|
496
|
+
return x
|
|
240
497
|
|
|
241
498
|
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
499
|
+
def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
500
|
+
"""Get configs for the Diffusion model of Stable Diffusion v1.5
|
|
501
|
+
|
|
502
|
+
Args:
|
|
503
|
+
batch_size (int): the batch size of input.
|
|
504
|
+
|
|
505
|
+
Retruns:
|
|
506
|
+
The configuration of diffusion model of Stable Diffusion v1.5.
|
|
507
|
+
|
|
508
|
+
"""
|
|
509
|
+
in_channels = 4
|
|
510
|
+
out_channels = 4
|
|
511
|
+
block_out_channels = [320, 640, 1280, 1280]
|
|
512
|
+
layers_per_block = 2
|
|
513
|
+
downsample_padding = 1
|
|
514
|
+
|
|
515
|
+
# Residual configs.
|
|
516
|
+
residual_norm_config = layers_cfg.NormalizationConfig(
|
|
517
|
+
layers_cfg.NormalizationType.GROUP_NORM, group_num=32
|
|
518
|
+
)
|
|
519
|
+
residual_activation_type = layers_cfg.ActivationType.SILU
|
|
520
|
+
|
|
521
|
+
# Transformer configs.
|
|
522
|
+
transformer_num_attention_heads = 8
|
|
523
|
+
transformer_batch_size = batch_size
|
|
524
|
+
transformer_cross_attention_dim = 768 # Embedding fomr CLIP model
|
|
525
|
+
transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
|
|
526
|
+
layers_cfg.NormalizationType.GROUP_NORM, epsilon=1e-6, group_num=32
|
|
527
|
+
)
|
|
528
|
+
transformer_norm_config = layers_cfg.NormalizationConfig(
|
|
529
|
+
layers_cfg.NormalizationType.LAYER_NORM
|
|
530
|
+
)
|
|
531
|
+
transformer_ff_activation_type = layers_cfg.ActivationType.GE_GLU
|
|
532
|
+
|
|
533
|
+
# Time embedding configs.
|
|
534
|
+
time_embedding_dim = 320
|
|
535
|
+
time_embedding_blocks_dim = 1280
|
|
536
|
+
|
|
537
|
+
# Mid block configs.
|
|
538
|
+
mid_block_layers = 1
|
|
539
|
+
|
|
540
|
+
# Finaly layer configs.
|
|
541
|
+
final_norm_config = layers_cfg.NormalizationConfig(
|
|
542
|
+
layers_cfg.NormalizationType.GROUP_NORM, group_num=32
|
|
543
|
+
)
|
|
544
|
+
final_activation_type = layers_cfg.ActivationType.SILU
|
|
545
|
+
|
|
546
|
+
return unet_cfg.DiffusionModelConfig(
|
|
547
|
+
in_channels=in_channels,
|
|
548
|
+
out_channels=out_channels,
|
|
549
|
+
block_out_channels=block_out_channels,
|
|
550
|
+
layers_per_block=layers_per_block,
|
|
551
|
+
downsample_padding=downsample_padding,
|
|
552
|
+
residual_norm_config=residual_norm_config,
|
|
553
|
+
residual_activation_type=residual_activation_type,
|
|
554
|
+
transformer_batch_size=transformer_batch_size,
|
|
555
|
+
transformer_num_attention_heads=transformer_num_attention_heads,
|
|
556
|
+
transformer_cross_attention_dim=transformer_cross_attention_dim,
|
|
557
|
+
transformer_pre_conv_norm_config=transformer_pre_conv_norm_config,
|
|
558
|
+
transformer_norm_config=transformer_norm_config,
|
|
559
|
+
transformer_ff_activation_type=transformer_ff_activation_type,
|
|
560
|
+
mid_block_layers=mid_block_layers,
|
|
561
|
+
time_embedding_dim=time_embedding_dim,
|
|
562
|
+
time_embedding_blocks_dim=time_embedding_blocks_dim,
|
|
563
|
+
final_norm_config=final_norm_config,
|
|
564
|
+
final_activation_type=final_activation_type,
|
|
565
|
+
)
|