ai-edge-torch-nightly 0.1.dev202405131930__py3-none-any.whl → 0.2.0.dev20240601__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ai-edge-torch-nightly might be problematic. Click here for more details.
- ai_edge_torch/convert/fx_passes/build_aten_composite_pass.py +5 -2
- ai_edge_torch/convert/test/test_convert_composites.py +3 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +106 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +79 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +107 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +113 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +499 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +67 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +222 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +61 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +65 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +73 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +38 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +71 -0
- ai_edge_torch/generative/test/loader_test.py +80 -0
- ai_edge_torch/generative/utilities/loader.py +8 -4
- {ai_edge_torch_nightly-0.1.dev202405131930.dist-info → ai_edge_torch_nightly-0.2.0.dev20240601.dist-info}/METADATA +2 -2
- {ai_edge_torch_nightly-0.1.dev202405131930.dist-info → ai_edge_torch_nightly-0.2.0.dev20240601.dist-info}/RECORD +24 -8
- {ai_edge_torch_nightly-0.1.dev202405131930.dist-info → ai_edge_torch_nightly-0.2.0.dev20240601.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.1.dev202405131930.dist-info → ai_edge_torch_nightly-0.2.0.dev20240601.dist-info}/WHEEL +0 -0
- {ai_edge_torch_nightly-0.1.dev202405131930.dist-info → ai_edge_torch_nightly-0.2.0.dev20240601.dist-info}/top_level.txt +0 -0
|
@@ -141,8 +141,11 @@ def _aten_avg_pool2d(gm: GraphModule, node: Node):
|
|
|
141
141
|
# Only wrap in a composite when the underlying converter can handle it.
|
|
142
142
|
# TODO We should be able to remove this if the converter can inline composites when it can not handle them.
|
|
143
143
|
|
|
144
|
-
# We don't cover any cases where
|
|
145
|
-
if full_kwargs["
|
|
144
|
+
# We don't cover any cases where the divisor_override is set.
|
|
145
|
+
if full_kwargs["divisor_override"] is not None:
|
|
146
|
+
return op(*args, **kwargs)
|
|
147
|
+
|
|
148
|
+
if full_kwargs["ceil_mode"] and not full_kwargs["count_include_pad"]:
|
|
146
149
|
return op(*args, **kwargs)
|
|
147
150
|
|
|
148
151
|
# We also can not cover a case where count_include_pad is False but the padding is custom.
|
|
@@ -51,6 +51,7 @@ class TestConvertComposites(unittest.TestCase):
|
|
|
51
51
|
|
|
52
52
|
@parameterized.parameterized.expand(
|
|
53
53
|
[
|
|
54
|
+
# input_size, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override
|
|
54
55
|
# no padding, stride = 1
|
|
55
56
|
([1, 3, 6, 6], [3, 3], [1, 1], [0, 0], False, True, None),
|
|
56
57
|
# add stride
|
|
@@ -67,6 +68,8 @@ class TestConvertComposites(unittest.TestCase):
|
|
|
67
68
|
([1, 3, 6, 6], [3, 3], [1, 1], [1, 1], False, False, None),
|
|
68
69
|
# ceil_mode = True
|
|
69
70
|
([1, 3, 6, 6], [3, 3], [1, 1], [1, 1], True, True, None),
|
|
71
|
+
# ceil_mode = True, stride=[3, 3]
|
|
72
|
+
([1, 3, 6, 6], [3, 3], [3, 3], [1, 1], True, True, None),
|
|
70
73
|
# set divisor_override
|
|
71
74
|
([1, 3, 6, 6], [3, 3], [1, 1], 0, False, True, 6),
|
|
72
75
|
# padding set to one number
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
@@ -0,0 +1,106 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import math
|
|
17
|
+
|
|
18
|
+
import torch
|
|
19
|
+
from torch import _decomp
|
|
20
|
+
from torch import nn
|
|
21
|
+
from torch._prims_common import mask_tensor
|
|
22
|
+
from torch._prims_common.wrappers import out_wrapper
|
|
23
|
+
from torch.nn import functional as F
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def triu(a):
|
|
27
|
+
h, w = a.shape[-2:]
|
|
28
|
+
mask = (
|
|
29
|
+
torch.arange(w, device=a.device).unsqueeze(-2)
|
|
30
|
+
- torch.arange(h, device=a.device).unsqueeze(-1)
|
|
31
|
+
) >= 1
|
|
32
|
+
mask = torch.broadcast_to(mask, a.shape)
|
|
33
|
+
return torch.ops.aten.logical_and(a, mask).contiguous()
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
# _decomp.decomposition_table[torch.ops.aten.triu.default] = triu
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class SelfAttention(nn.Module):
|
|
40
|
+
|
|
41
|
+
def __init__(self, n_heads, d_embed, in_proj_bias=True, out_proj_bias=True):
|
|
42
|
+
super().__init__()
|
|
43
|
+
self.in_proj = nn.Linear(d_embed, 3 * d_embed, bias=in_proj_bias)
|
|
44
|
+
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
|
|
45
|
+
self.n_heads = n_heads
|
|
46
|
+
self.d_head = d_embed // n_heads
|
|
47
|
+
|
|
48
|
+
def forward(self, x, causal_mask=False):
|
|
49
|
+
input_shape = x.shape
|
|
50
|
+
batch_size, sequence_length, d_embed = input_shape
|
|
51
|
+
interim_shape = (batch_size, sequence_length, self.n_heads, self.d_head)
|
|
52
|
+
|
|
53
|
+
q, k, v = self.in_proj(x).chunk(3, dim=-1)
|
|
54
|
+
|
|
55
|
+
q = q.view(interim_shape).transpose(1, 2)
|
|
56
|
+
k = k.view(interim_shape).transpose(1, 2)
|
|
57
|
+
v = v.view(interim_shape).transpose(1, 2)
|
|
58
|
+
|
|
59
|
+
weight = q @ k.transpose(-1, -2)
|
|
60
|
+
if causal_mask:
|
|
61
|
+
# mask = torch.ones_like(weight, dtype=torch.bool).triu(1)
|
|
62
|
+
mask = triu(torch.ones_like(weight, dtype=torch.bool))
|
|
63
|
+
weight.masked_fill_(mask, -torch.inf)
|
|
64
|
+
weight /= math.sqrt(self.d_head)
|
|
65
|
+
weight = F.softmax(weight, dim=-1)
|
|
66
|
+
|
|
67
|
+
output = weight @ v
|
|
68
|
+
output = output.transpose(1, 2)
|
|
69
|
+
output = output.reshape(input_shape)
|
|
70
|
+
output = self.out_proj(output)
|
|
71
|
+
return output
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
class CrossAttention(nn.Module):
|
|
75
|
+
|
|
76
|
+
def __init__(self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True):
|
|
77
|
+
super().__init__()
|
|
78
|
+
self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias)
|
|
79
|
+
self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
|
|
80
|
+
self.v_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
|
|
81
|
+
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
|
|
82
|
+
self.n_heads = n_heads
|
|
83
|
+
self.d_head = d_embed // n_heads
|
|
84
|
+
|
|
85
|
+
def forward(self, x, y):
|
|
86
|
+
input_shape = x.shape
|
|
87
|
+
batch_size, sequence_length, d_embed = input_shape
|
|
88
|
+
interim_shape = (batch_size, -1, self.n_heads, self.d_head)
|
|
89
|
+
|
|
90
|
+
q = self.q_proj(x)
|
|
91
|
+
k = self.k_proj(y)
|
|
92
|
+
v = self.v_proj(y)
|
|
93
|
+
|
|
94
|
+
q = q.view(interim_shape).transpose(1, 2)
|
|
95
|
+
k = k.view(interim_shape).transpose(1, 2)
|
|
96
|
+
v = v.view(interim_shape).transpose(1, 2)
|
|
97
|
+
|
|
98
|
+
weight = q @ k.transpose(-1, -2)
|
|
99
|
+
weight /= math.sqrt(self.d_head)
|
|
100
|
+
weight = F.softmax(weight, dim=-1)
|
|
101
|
+
|
|
102
|
+
output = weight @ v
|
|
103
|
+
output = output.transpose(1, 2).contiguous()
|
|
104
|
+
output = output.view(input_shape)
|
|
105
|
+
output = self.out_proj(output)
|
|
106
|
+
return output
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import torch
|
|
17
|
+
from torch import nn
|
|
18
|
+
from torch._prims_common import mask_tensor
|
|
19
|
+
from torch._prims_common.wrappers import out_wrapper
|
|
20
|
+
|
|
21
|
+
from ai_edge_torch.generative.examples.stable_diffusion.attention import SelfAttention # NOQA
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class CLIPEmbedding(nn.Module):
|
|
25
|
+
|
|
26
|
+
def __init__(self, n_vocab: int, n_embd: int, n_token: int):
|
|
27
|
+
super().__init__()
|
|
28
|
+
self.token_embedding = nn.Embedding(n_vocab, n_embd)
|
|
29
|
+
self.position_value = nn.Parameter(torch.zeros((n_token, n_embd)))
|
|
30
|
+
|
|
31
|
+
def forward(self, tokens):
|
|
32
|
+
x = self.token_embedding(tokens)
|
|
33
|
+
x += self.position_value
|
|
34
|
+
return x
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
class CLIPLayer(nn.Module):
|
|
38
|
+
|
|
39
|
+
def __init__(self, n_head: int, n_embd: int):
|
|
40
|
+
super().__init__()
|
|
41
|
+
self.layernorm_1 = nn.LayerNorm(n_embd)
|
|
42
|
+
self.attention = SelfAttention(n_head, n_embd)
|
|
43
|
+
self.layernorm_2 = nn.LayerNorm(n_embd)
|
|
44
|
+
self.linear_1 = nn.Linear(n_embd, 4 * n_embd)
|
|
45
|
+
self.linear_2 = nn.Linear(4 * n_embd, n_embd)
|
|
46
|
+
|
|
47
|
+
def forward(self, x):
|
|
48
|
+
residue = x
|
|
49
|
+
x = self.layernorm_1(x)
|
|
50
|
+
x = self.attention(x, causal_mask=True)
|
|
51
|
+
x += residue
|
|
52
|
+
|
|
53
|
+
residue = x
|
|
54
|
+
x = self.layernorm_2(x)
|
|
55
|
+
x = self.linear_1(x)
|
|
56
|
+
x = x * torch.sigmoid(1.702 * x) # QuickGELU activation function
|
|
57
|
+
x = self.linear_2(x)
|
|
58
|
+
x += residue
|
|
59
|
+
|
|
60
|
+
return x
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class CLIP(nn.Module):
|
|
64
|
+
|
|
65
|
+
def __init__(self):
|
|
66
|
+
super().__init__()
|
|
67
|
+
self.embedding = CLIPEmbedding(49408, 768, 77)
|
|
68
|
+
self.layers = nn.ModuleList([CLIPLayer(12, 768) for i in range(12)])
|
|
69
|
+
self.layernorm = nn.LayerNorm(768)
|
|
70
|
+
|
|
71
|
+
@torch.inference_mode
|
|
72
|
+
def forward(self, tokens: torch.LongTensor) -> torch.FloatTensor:
|
|
73
|
+
tokens = tokens.type(torch.long)
|
|
74
|
+
|
|
75
|
+
state = self.embedding(tokens)
|
|
76
|
+
for layer in self.layers:
|
|
77
|
+
state = layer(state)
|
|
78
|
+
output = self.layernorm(state)
|
|
79
|
+
return output
|
|
@@ -0,0 +1,107 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
from pathlib import Path
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
|
|
21
|
+
import ai_edge_torch
|
|
22
|
+
from ai_edge_torch.generative.examples.stable_diffusion.clip import CLIP
|
|
23
|
+
from ai_edge_torch.generative.examples.stable_diffusion.decoder import Decoder
|
|
24
|
+
from ai_edge_torch.generative.examples.stable_diffusion.diffusion import Diffusion # NOQA
|
|
25
|
+
from ai_edge_torch.generative.examples.stable_diffusion.encoder import Encoder
|
|
26
|
+
import ai_edge_torch.generative.examples.stable_diffusion.util as util
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@torch.inference_mode
|
|
30
|
+
def convert_stable_diffusion_to_tflite(
|
|
31
|
+
clip_ckpt_path: str,
|
|
32
|
+
encoder_ckpt_path: str,
|
|
33
|
+
diffusion_ckpt_path: str,
|
|
34
|
+
decoder_ckpt_path: str,
|
|
35
|
+
image_height: int = 512,
|
|
36
|
+
image_width: int = 512,
|
|
37
|
+
):
|
|
38
|
+
|
|
39
|
+
clip = CLIP()
|
|
40
|
+
clip.load_state_dict(torch.load(clip_ckpt_path))
|
|
41
|
+
|
|
42
|
+
encoder = Encoder()
|
|
43
|
+
encoder.load_state_dict(torch.load(encoder_ckpt_path))
|
|
44
|
+
|
|
45
|
+
diffusion = Diffusion()
|
|
46
|
+
diffusion.load_state_dict(torch.load(diffusion_ckpt_path))
|
|
47
|
+
|
|
48
|
+
decoder = Decoder()
|
|
49
|
+
decoder.load_state_dict(torch.load(decoder_ckpt_path))
|
|
50
|
+
|
|
51
|
+
# Tensors used to trace the model graph during conversion.
|
|
52
|
+
n_tokens = 77
|
|
53
|
+
timestamp = 0
|
|
54
|
+
len_prompt = 1
|
|
55
|
+
prompt_tokens = torch.full((1, n_tokens), 0, dtype=torch.long)
|
|
56
|
+
input_image = torch.full((1, 3, image_height, image_width), 0, dtype=torch.float32)
|
|
57
|
+
noise = torch.full(
|
|
58
|
+
(len_prompt, 4, image_height // 8, image_width // 8), 0, dtype=torch.float32
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
input_latents = encoder(input_image, noise)
|
|
62
|
+
context_cond = clip(prompt_tokens)
|
|
63
|
+
context_uncond = torch.zeros_like(context_cond)
|
|
64
|
+
context = torch.cat([context_cond, context_uncond], axis=0)
|
|
65
|
+
time_embedding = util.get_time_embedding(timestamp)
|
|
66
|
+
|
|
67
|
+
# CLIP text encoder
|
|
68
|
+
ai_edge_torch.signature('encode', clip, (prompt_tokens,)).convert().export(
|
|
69
|
+
'/tmp/stable_diffusion/clip.tflite'
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
# TODO(yichunk): convert to multi signature tflite model.
|
|
73
|
+
# Image encoder
|
|
74
|
+
ai_edge_torch.signature('encode', encoder, (input_image, noise)).convert().export(
|
|
75
|
+
'/tmp/stable_diffusion/encoder.tflite'
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
# Diffusion
|
|
79
|
+
ai_edge_torch.signature(
|
|
80
|
+
'diffusion',
|
|
81
|
+
diffusion,
|
|
82
|
+
(torch.repeat_interleave(input_latents, 2, 0), context, time_embedding),
|
|
83
|
+
).convert().export('/tmp/stable_diffusion/diffusion.tflite')
|
|
84
|
+
|
|
85
|
+
# Image decoder
|
|
86
|
+
ai_edge_torch.signature('decode', decoder, (input_latents,)).convert().export(
|
|
87
|
+
'/tmp/stable_diffusion/decoder.tflite'
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
if __name__ == '__main__':
|
|
92
|
+
convert_stable_diffusion_to_tflite(
|
|
93
|
+
clip_ckpt_path=os.path.join(
|
|
94
|
+
Path.home(), 'Downloads/stable_diffusion_data/ckpt/clip.pt'
|
|
95
|
+
),
|
|
96
|
+
encoder_ckpt_path=os.path.join(
|
|
97
|
+
Path.home(), 'Downloads/stable_diffusion_data/ckpt/encoder.pt'
|
|
98
|
+
),
|
|
99
|
+
diffusion_ckpt_path=os.path.join(
|
|
100
|
+
Path.home(), 'Downloads/stable_diffusion_data/ckpt/diffusion.pt'
|
|
101
|
+
),
|
|
102
|
+
decoder_ckpt_path=os.path.join(
|
|
103
|
+
Path.home(), 'Downloads/stable_diffusion_data/ckpt/decoder.pt'
|
|
104
|
+
),
|
|
105
|
+
image_height=512,
|
|
106
|
+
image_width=512,
|
|
107
|
+
)
|
|
@@ -0,0 +1,113 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import torch
|
|
17
|
+
from torch import nn
|
|
18
|
+
from torch.nn import functional as F
|
|
19
|
+
|
|
20
|
+
from ai_edge_torch.generative.examples.stable_diffusion.attention import SelfAttention # NOQA
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class AttentionBlock(nn.Module):
|
|
24
|
+
|
|
25
|
+
def __init__(self, channels):
|
|
26
|
+
super().__init__()
|
|
27
|
+
self.groupnorm = nn.GroupNorm(32, channels)
|
|
28
|
+
self.attention = SelfAttention(1, channels)
|
|
29
|
+
|
|
30
|
+
def forward(self, x):
|
|
31
|
+
residue = x
|
|
32
|
+
x = self.groupnorm(x)
|
|
33
|
+
|
|
34
|
+
n, c, h, w = x.shape
|
|
35
|
+
x = x.view((n, c, h * w))
|
|
36
|
+
x = x.transpose(-1, -2)
|
|
37
|
+
x = self.attention(x)
|
|
38
|
+
x = x.transpose(-1, -2)
|
|
39
|
+
x = x.view((n, c, h, w))
|
|
40
|
+
|
|
41
|
+
x += residue
|
|
42
|
+
return x
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class ResidualBlock(nn.Module):
|
|
46
|
+
|
|
47
|
+
def __init__(self, in_channels, out_channels):
|
|
48
|
+
super().__init__()
|
|
49
|
+
self.groupnorm_1 = nn.GroupNorm(32, in_channels)
|
|
50
|
+
self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
|
51
|
+
|
|
52
|
+
self.groupnorm_2 = nn.GroupNorm(32, out_channels)
|
|
53
|
+
self.conv_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
|
54
|
+
|
|
55
|
+
if in_channels == out_channels:
|
|
56
|
+
self.residual_layer = nn.Identity()
|
|
57
|
+
else:
|
|
58
|
+
self.residual_layer = nn.Conv2d(
|
|
59
|
+
in_channels, out_channels, kernel_size=1, padding=0
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
def forward(self, x):
|
|
63
|
+
residue = x
|
|
64
|
+
|
|
65
|
+
x = self.groupnorm_1(x)
|
|
66
|
+
x = F.silu(x)
|
|
67
|
+
x = self.conv_1(x)
|
|
68
|
+
|
|
69
|
+
x = self.groupnorm_2(x)
|
|
70
|
+
x = F.silu(x)
|
|
71
|
+
x = self.conv_2(x)
|
|
72
|
+
|
|
73
|
+
return x + self.residual_layer(residue)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class Decoder(nn.Sequential):
|
|
77
|
+
|
|
78
|
+
def __init__(self):
|
|
79
|
+
super().__init__(
|
|
80
|
+
nn.Conv2d(4, 4, kernel_size=1, padding=0),
|
|
81
|
+
nn.Conv2d(4, 512, kernel_size=3, padding=1),
|
|
82
|
+
ResidualBlock(512, 512),
|
|
83
|
+
AttentionBlock(512),
|
|
84
|
+
ResidualBlock(512, 512),
|
|
85
|
+
ResidualBlock(512, 512),
|
|
86
|
+
ResidualBlock(512, 512),
|
|
87
|
+
ResidualBlock(512, 512),
|
|
88
|
+
nn.Upsample(scale_factor=2),
|
|
89
|
+
nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
|
90
|
+
ResidualBlock(512, 512),
|
|
91
|
+
ResidualBlock(512, 512),
|
|
92
|
+
ResidualBlock(512, 512),
|
|
93
|
+
nn.Upsample(scale_factor=2),
|
|
94
|
+
nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
|
95
|
+
ResidualBlock(512, 256),
|
|
96
|
+
ResidualBlock(256, 256),
|
|
97
|
+
ResidualBlock(256, 256),
|
|
98
|
+
nn.Upsample(scale_factor=2),
|
|
99
|
+
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
|
100
|
+
ResidualBlock(256, 128),
|
|
101
|
+
ResidualBlock(128, 128),
|
|
102
|
+
ResidualBlock(128, 128),
|
|
103
|
+
nn.GroupNorm(32, 128),
|
|
104
|
+
nn.SiLU(),
|
|
105
|
+
nn.Conv2d(128, 3, kernel_size=3, padding=1),
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
@torch.inference_mode
|
|
109
|
+
def forward(self, x):
|
|
110
|
+
x = x / 0.18215
|
|
111
|
+
for module in self:
|
|
112
|
+
x = module(x)
|
|
113
|
+
return x
|