ai-edge-quantizer-nightly 0.4.0.dev20250930__py3-none-any.whl → 0.4.0.dev20251002__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_edge_quantizer/algorithm_manager.py +40 -3
- ai_edge_quantizer/algorithms/uniform_quantize/common_quantize.py +28 -0
- ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation.py +77 -8
- ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation_test.py +69 -4
- ai_edge_quantizer/default_policy.py +4 -2
- ai_edge_quantizer/params_generator.py +1 -0
- ai_edge_quantizer/qtyping.py +5 -0
- ai_edge_quantizer/transformation_performer.py +5 -0
- ai_edge_quantizer/transformations/insert_decomposed_hadamard_rotation.py +291 -0
- ai_edge_quantizer/transformations/insert_decomposed_hadamard_rotation_test.py +244 -0
- ai_edge_quantizer/transformations/insert_hadamard_rotation.py +8 -31
- ai_edge_quantizer/transformations/quantize_tensor.py +11 -31
- ai_edge_quantizer/transformations/transformation_utils.py +66 -0
- ai_edge_quantizer/utils/constrained_ops_utils_test.py +1 -1
- ai_edge_quantizer/utils/tfl_flatbuffer_utils.py +1 -0
- ai_edge_quantizer/utils/validation_utils.py +29 -0
- ai_edge_quantizer/utils/validation_utils_test.py +24 -0
- {ai_edge_quantizer_nightly-0.4.0.dev20250930.dist-info → ai_edge_quantizer_nightly-0.4.0.dev20251002.dist-info}/METADATA +1 -1
- {ai_edge_quantizer_nightly-0.4.0.dev20250930.dist-info → ai_edge_quantizer_nightly-0.4.0.dev20251002.dist-info}/RECORD +22 -20
- {ai_edge_quantizer_nightly-0.4.0.dev20250930.dist-info → ai_edge_quantizer_nightly-0.4.0.dev20251002.dist-info}/LICENSE +0 -0
- {ai_edge_quantizer_nightly-0.4.0.dev20250930.dist-info → ai_edge_quantizer_nightly-0.4.0.dev20251002.dist-info}/WHEEL +0 -0
- {ai_edge_quantizer_nightly-0.4.0.dev20250930.dist-info → ai_edge_quantizer_nightly-0.4.0.dev20251002.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,291 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
"""Hadamard rotation decomposed pattern transformation."""
|
|
17
|
+
|
|
18
|
+
from flatbuffers import flexbuffers
|
|
19
|
+
import numpy as np
|
|
20
|
+
from ai_edge_quantizer import qtyping
|
|
21
|
+
from ai_edge_quantizer.transformations import transformation_utils
|
|
22
|
+
from ai_edge_litert import schema_py_generated # pylint: disable=g-direct-tensorflow-import
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def _to_flexbuffer(
|
|
26
|
+
hadamard_size: int,
|
|
27
|
+
random_binary_vector: list[np.int8],
|
|
28
|
+
) -> bytes:
|
|
29
|
+
"""Converts hadamard_size to flexbuffer."""
|
|
30
|
+
fbb = flexbuffers.Builder()
|
|
31
|
+
with fbb.Map():
|
|
32
|
+
fbb.Int('hadamard_size', hadamard_size)
|
|
33
|
+
fbb.VectorFromElements('random_binary_vector', random_binary_vector)
|
|
34
|
+
return fbb.Finish()
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def _update_embedding_lookup_consumers(
|
|
38
|
+
transformation: transformation_utils.TransformationInput,
|
|
39
|
+
new_tensor_id: int,
|
|
40
|
+
) -> bool:
|
|
41
|
+
"""Updates the consumers of the embedding lookup op to use the new tensor.
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
transformation: The transformation input to update the consumers of.
|
|
45
|
+
new_tensor_id: The new tensor id to use as the input to the embedding lookup
|
|
46
|
+
consumers.
|
|
47
|
+
"""
|
|
48
|
+
for consumer in transformation.consumers:
|
|
49
|
+
# If the consumer is a graph output and not an op, we can ignore it here
|
|
50
|
+
# since the graph output will be updated later.
|
|
51
|
+
if consumer == -1:
|
|
52
|
+
continue
|
|
53
|
+
consumer_op = transformation.subgraph.operators[consumer]
|
|
54
|
+
# Find the input that was attached to the insertion point, and replace it
|
|
55
|
+
# with the new tensor.
|
|
56
|
+
for i in range(len(consumer_op.inputs)):
|
|
57
|
+
if consumer_op.inputs[i] == transformation.tensor_id:
|
|
58
|
+
consumer_op.inputs[i] = new_tensor_id
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def _update_fully_connected_consumers(
|
|
62
|
+
transformation: transformation_utils.TransformationInput,
|
|
63
|
+
new_tensor_id: int,
|
|
64
|
+
) -> bool:
|
|
65
|
+
"""Updates the fully connected op(s) to use the new tensor.
|
|
66
|
+
|
|
67
|
+
Since the new tensor is inserted to the fully_connected's input, we need to
|
|
68
|
+
scan each consumer (in case of multiple fully_connected ops), and update
|
|
69
|
+
the input tensor to the new tensor.
|
|
70
|
+
|
|
71
|
+
Args:
|
|
72
|
+
transformation: The transformation input to update the consumers of.
|
|
73
|
+
new_tensor_id: The new tensor id to use as the input to the fully connected
|
|
74
|
+
consumers.
|
|
75
|
+
|
|
76
|
+
Returns:
|
|
77
|
+
True if the fully connected op(s) were updated to use the new tensor.
|
|
78
|
+
"""
|
|
79
|
+
updated = False
|
|
80
|
+
for consumer in transformation.consumers:
|
|
81
|
+
if (
|
|
82
|
+
transformation_utils.get_schema_op_id(transformation, consumer)
|
|
83
|
+
== schema_py_generated.BuiltinOperator.FULLY_CONNECTED
|
|
84
|
+
):
|
|
85
|
+
transformation.subgraph.operators[consumer].inputs[0] = new_tensor_id
|
|
86
|
+
updated = True
|
|
87
|
+
return updated
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def _make_hadamard_matrix(size: int):
|
|
91
|
+
"""Generates a Hadamard matrix of the given size.
|
|
92
|
+
|
|
93
|
+
Args:
|
|
94
|
+
size: The size of the Hadamard matrix. Must be a power of 2. This represents
|
|
95
|
+
a single dimension. E.g. if size is 4, then the Hadamard matrix is a 4x4
|
|
96
|
+
matrix.
|
|
97
|
+
|
|
98
|
+
Returns:
|
|
99
|
+
The Hadamard matrix.
|
|
100
|
+
|
|
101
|
+
Raises:
|
|
102
|
+
ValueError: If the size is not a power of 2.
|
|
103
|
+
"""
|
|
104
|
+
if size <= 0 or (size & (size - 1)) != 0:
|
|
105
|
+
raise ValueError('Hadamard matrix size must be a power of 2. ')
|
|
106
|
+
h = h2 = np.array([[1, 1], [1, -1]])
|
|
107
|
+
current_size = 2
|
|
108
|
+
while current_size < size:
|
|
109
|
+
h = np.kron(h, h2)
|
|
110
|
+
current_size *= 2
|
|
111
|
+
return h / np.sqrt(size)
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def insert_decomposed_hadamard_rotation(
|
|
115
|
+
transformation_input: transformation_utils.TransformationInput,
|
|
116
|
+
) -> qtyping.TransformationInfo:
|
|
117
|
+
"""Inserts a decomposed pattern of Hadamard rotation on this tensor.
|
|
118
|
+
|
|
119
|
+
This function works for float32 tensors only. Instead of inserting a single
|
|
120
|
+
custom op (aeq.hadamard_rotation), this inserts the mathematical equivalent
|
|
121
|
+
expressed in built-in TFLite ops. The mathematical equivalent is:
|
|
122
|
+
x' = reshape(x, (-1, hadamard_size))
|
|
123
|
+
x' = x' @ H(hadamard_size)
|
|
124
|
+
x' = reshape(x, x.shape)
|
|
125
|
+
where H(n) is a Hadamard matrix of size n.
|
|
126
|
+
|
|
127
|
+
Args:
|
|
128
|
+
transformation_input: The transformation input to insert the ops on.
|
|
129
|
+
|
|
130
|
+
Returns:
|
|
131
|
+
The transformation info of the inserted ops.
|
|
132
|
+
|
|
133
|
+
Raises:
|
|
134
|
+
ValueError: If the transformation input is not a uniform quantization
|
|
135
|
+
transformation.
|
|
136
|
+
ValueError: If the Hadamard quantization params are not set.
|
|
137
|
+
ValueError: If the tensor is not a float32 tensor.
|
|
138
|
+
ValueError: If no supported ops were found as the tensor's producer or
|
|
139
|
+
consumers.
|
|
140
|
+
"""
|
|
141
|
+
if not isinstance(
|
|
142
|
+
transformation_input.quant_params, qtyping.UniformQuantParams
|
|
143
|
+
):
|
|
144
|
+
raise ValueError('Hadamard rotation supports uniform quantization only')
|
|
145
|
+
|
|
146
|
+
if transformation_input.quant_params.hadamard is None:
|
|
147
|
+
raise ValueError(
|
|
148
|
+
'Hadamard rotation quantization params are not set but op insertion is'
|
|
149
|
+
' requested.'
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
tensor = transformation_input.subgraph.tensors[transformation_input.tensor_id]
|
|
153
|
+
if tensor.type != schema_py_generated.TensorType.FLOAT32:
|
|
154
|
+
raise ValueError(
|
|
155
|
+
'The Hadamard rotation op supports float32 tensors only. Got'
|
|
156
|
+
f' {tensor.type} tensor.'
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
# Insert x' = tfl.reshape to reshape x to (-1, hadamard_size)
|
|
160
|
+
hadamard_size = transformation_input.quant_params.hadamard.hadamard_size
|
|
161
|
+
tensor_size = np.prod(tensor.shape)
|
|
162
|
+
num_hadamard_blocks = tensor_size // hadamard_size
|
|
163
|
+
prerotate_shape = [num_hadamard_blocks, hadamard_size]
|
|
164
|
+
prerotate_shape_tensor_id = transformation_utils.add_new_constant_tensor(
|
|
165
|
+
tensor.name + b'_prerotate_shape',
|
|
166
|
+
np.array(prerotate_shape, dtype=np.int32),
|
|
167
|
+
schema_py_generated.TensorType.INT32,
|
|
168
|
+
transformation_input.subgraph,
|
|
169
|
+
transformation_input.buffers,
|
|
170
|
+
)
|
|
171
|
+
prerotate_reshape_output_tensor_id = (
|
|
172
|
+
transformation_utils.add_new_activation_tensor(
|
|
173
|
+
tensor.name + b'_prerotate_reshaped',
|
|
174
|
+
prerotate_shape,
|
|
175
|
+
schema_py_generated.TensorType.FLOAT32,
|
|
176
|
+
transformation_input.subgraph,
|
|
177
|
+
)
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
prerotate_reshape_op_code_idx = transformation_utils.add_op_code(
|
|
181
|
+
schema_py_generated.BuiltinOperator.RESHAPE,
|
|
182
|
+
transformation_input.op_codes,
|
|
183
|
+
'RESHAPE',
|
|
184
|
+
)
|
|
185
|
+
prerorate_reshape_op = schema_py_generated.OperatorT()
|
|
186
|
+
prerorate_reshape_op.opcodeIndex = prerotate_reshape_op_code_idx
|
|
187
|
+
prerorate_reshape_op.inputs = [
|
|
188
|
+
transformation_input.tensor_id,
|
|
189
|
+
prerotate_shape_tensor_id,
|
|
190
|
+
]
|
|
191
|
+
prerorate_reshape_op.outputs = [prerotate_reshape_output_tensor_id]
|
|
192
|
+
|
|
193
|
+
# Generate hadamard_matrix(hadamard_size).
|
|
194
|
+
# We could quantize this to INT4 for better memory efficiency, but for large
|
|
195
|
+
# models the memory overhead is not significant, and floating point
|
|
196
|
+
# computation does seem to result in better accuracy.
|
|
197
|
+
hadamard_matrix = _make_hadamard_matrix(hadamard_size)
|
|
198
|
+
hadamard_matrix_tensor_id = transformation_utils.add_new_constant_tensor(
|
|
199
|
+
tensor.name + b'_hadamard_matrix',
|
|
200
|
+
hadamard_matrix.astype(np.float32),
|
|
201
|
+
schema_py_generated.TensorType.FLOAT32,
|
|
202
|
+
transformation_input.subgraph,
|
|
203
|
+
transformation_input.buffers,
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
# Insert x' = tfl.fully_connected(x', hadamard_matrix)
|
|
207
|
+
fc_output_tensor_id = transformation_utils.add_new_activation_tensor(
|
|
208
|
+
tensor.name + b'_rotated',
|
|
209
|
+
prerotate_shape,
|
|
210
|
+
schema_py_generated.TensorType.FLOAT32,
|
|
211
|
+
transformation_input.subgraph,
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
fc_op_code_idx = transformation_utils.add_op_code(
|
|
215
|
+
schema_py_generated.BuiltinOperator.FULLY_CONNECTED,
|
|
216
|
+
transformation_input.op_codes,
|
|
217
|
+
'FULLY_CONNECTED',
|
|
218
|
+
)
|
|
219
|
+
fc_op = schema_py_generated.OperatorT()
|
|
220
|
+
fc_op.opcodeIndex = fc_op_code_idx
|
|
221
|
+
fc_op.inputs = [prerotate_reshape_output_tensor_id, hadamard_matrix_tensor_id]
|
|
222
|
+
fc_op.outputs = [fc_output_tensor_id]
|
|
223
|
+
|
|
224
|
+
# Insert x' = tfl.reshape(x', x.shape)
|
|
225
|
+
post_reshape_op_code_idx = transformation_utils.add_op_code(
|
|
226
|
+
schema_py_generated.BuiltinOperator.RESHAPE,
|
|
227
|
+
transformation_input.op_codes,
|
|
228
|
+
'RESHAPE',
|
|
229
|
+
)
|
|
230
|
+
post_reshape_op = schema_py_generated.OperatorT()
|
|
231
|
+
post_reshape_op.opcodeIndex = post_reshape_op_code_idx
|
|
232
|
+
post_reshape_shape_tensor_id = transformation_utils.add_new_constant_tensor(
|
|
233
|
+
tensor.name + b'_postrotate_shape',
|
|
234
|
+
np.array(tensor.shape, dtype=np.int32),
|
|
235
|
+
schema_py_generated.TensorType.INT32,
|
|
236
|
+
transformation_input.subgraph,
|
|
237
|
+
transformation_input.buffers,
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
post_reshape_output_tensor_id = (
|
|
241
|
+
transformation_utils.add_new_activation_tensor(
|
|
242
|
+
tensor.name + b'_postrotate_reshaped',
|
|
243
|
+
tensor.shape,
|
|
244
|
+
schema_py_generated.TensorType.FLOAT32,
|
|
245
|
+
transformation_input.subgraph,
|
|
246
|
+
)
|
|
247
|
+
)
|
|
248
|
+
post_reshape_op.inputs = [
|
|
249
|
+
fc_output_tensor_id,
|
|
250
|
+
post_reshape_shape_tensor_id,
|
|
251
|
+
]
|
|
252
|
+
post_reshape_op.outputs = [post_reshape_output_tensor_id]
|
|
253
|
+
|
|
254
|
+
# Update the users of this tensor to use the new tensor.
|
|
255
|
+
if (
|
|
256
|
+
transformation_utils.get_producer_schema_op_id(transformation_input)
|
|
257
|
+
== schema_py_generated.BuiltinOperator.EMBEDDING_LOOKUP
|
|
258
|
+
):
|
|
259
|
+
_update_embedding_lookup_consumers(
|
|
260
|
+
transformation_input, post_reshape_output_tensor_id
|
|
261
|
+
)
|
|
262
|
+
elif not _update_fully_connected_consumers(
|
|
263
|
+
transformation_input, post_reshape_output_tensor_id
|
|
264
|
+
):
|
|
265
|
+
raise ValueError(
|
|
266
|
+
'The Hadamard rotation op supports embedding lookup and fully connected'
|
|
267
|
+
' ops only, but no such ops were found.'
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
# If the tensor is a graph output, we need to replace the tensor with the
|
|
271
|
+
# new tensor.
|
|
272
|
+
for i, output in enumerate(transformation_input.subgraph.outputs):
|
|
273
|
+
if output == transformation_input.tensor_id:
|
|
274
|
+
transformation_input.subgraph.outputs[i] = post_reshape_output_tensor_id
|
|
275
|
+
|
|
276
|
+
# Find the actual insertion point. The insertion point should be after the
|
|
277
|
+
# producer op and before the first consumer op. The max() operation ensures
|
|
278
|
+
# that we're not using -1 as the insertion point.
|
|
279
|
+
first_consumer_id = min(transformation_input.consumers)
|
|
280
|
+
op_id = max(transformation_input.producer + 1, first_consumer_id)
|
|
281
|
+
|
|
282
|
+
# Insert the new ops in the correct order.
|
|
283
|
+
transformation_input.subgraph.operators.insert(op_id, prerorate_reshape_op)
|
|
284
|
+
transformation_input.subgraph.operators.insert(op_id + 1, fc_op)
|
|
285
|
+
transformation_input.subgraph.operators.insert(op_id + 2, post_reshape_op)
|
|
286
|
+
|
|
287
|
+
return qtyping.TransformationInfo(
|
|
288
|
+
op_id=op_id,
|
|
289
|
+
num_ops_added=3,
|
|
290
|
+
output_tensor_id=post_reshape_output_tensor_id,
|
|
291
|
+
)
|
|
@@ -0,0 +1,244 @@
|
|
|
1
|
+
# Copyright 2024 The AI Edge Quantizer Authors.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
"""Test insertion of the Decomposed Hadamard rotation ops."""
|
|
17
|
+
|
|
18
|
+
import os
|
|
19
|
+
import numpy as np
|
|
20
|
+
from tensorflow.python.platform import googletest
|
|
21
|
+
from ai_edge_quantizer import qtyping
|
|
22
|
+
from ai_edge_quantizer.transformations import insert_decomposed_hadamard_rotation
|
|
23
|
+
from ai_edge_quantizer.transformations import transformation_utils
|
|
24
|
+
from ai_edge_quantizer.utils import test_utils
|
|
25
|
+
from ai_edge_quantizer.utils import tfl_flatbuffer_utils
|
|
26
|
+
from ai_edge_litert import schema_py_generated # pylint: disable=g-direct-tensorflow-import
|
|
27
|
+
|
|
28
|
+
_TEST_DATA_PREFIX_PATH = test_utils.get_path_to_datafile('..')
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class InsertDecomposedHadamardRotationFullyConnectedTest(googletest.TestCase):
|
|
32
|
+
|
|
33
|
+
def setUp(self):
|
|
34
|
+
super().setUp()
|
|
35
|
+
model_path = os.path.join(
|
|
36
|
+
_TEST_DATA_PREFIX_PATH, 'tests/models/single_fc_bias.tflite'
|
|
37
|
+
)
|
|
38
|
+
self.model = tfl_flatbuffer_utils.read_model(model_path)
|
|
39
|
+
self.params = qtyping.UniformQuantParams(
|
|
40
|
+
num_bits=8,
|
|
41
|
+
quantized_dimension=None,
|
|
42
|
+
scale=np.ones(1),
|
|
43
|
+
zero_point=np.zeros(1),
|
|
44
|
+
hadamard=qtyping.UniformQuantParams.HadamardRotationParams(
|
|
45
|
+
random_binary_vector=np.ones(1),
|
|
46
|
+
hadamard_size=2,
|
|
47
|
+
),
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
def test_raise_unsupported_qparams(self):
|
|
51
|
+
with self.assertRaisesWithPredicateMatch(
|
|
52
|
+
ValueError, lambda err: 'uniform quantization' in str(err)
|
|
53
|
+
):
|
|
54
|
+
insert_decomposed_hadamard_rotation.insert_decomposed_hadamard_rotation(
|
|
55
|
+
transformation_utils.TransformationInput(
|
|
56
|
+
tensor_id=0,
|
|
57
|
+
op_codes=self.model.operatorCodes,
|
|
58
|
+
buffers=self.model.buffers,
|
|
59
|
+
subgraph=self.model.subgraphs[0],
|
|
60
|
+
producer=-1,
|
|
61
|
+
consumers=[-1],
|
|
62
|
+
quant_params=qtyping.NonLinearQuantParams(
|
|
63
|
+
num_bits=16, quantized_data=None
|
|
64
|
+
),
|
|
65
|
+
)
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
def test_raise_missing_hadamard_data(self):
|
|
69
|
+
with self.assertRaisesWithPredicateMatch(
|
|
70
|
+
ValueError, lambda err: 'quantization params are not set' in str(err)
|
|
71
|
+
):
|
|
72
|
+
insert_decomposed_hadamard_rotation.insert_decomposed_hadamard_rotation(
|
|
73
|
+
transformation_utils.TransformationInput(
|
|
74
|
+
tensor_id=0,
|
|
75
|
+
op_codes=self.model.operatorCodes,
|
|
76
|
+
buffers=self.model.buffers,
|
|
77
|
+
subgraph=self.model.subgraphs[0],
|
|
78
|
+
producer=-1,
|
|
79
|
+
consumers=[-1],
|
|
80
|
+
quant_params=qtyping.UniformQuantParams(
|
|
81
|
+
num_bits=8,
|
|
82
|
+
quantized_dimension=None,
|
|
83
|
+
scale=np.ones(1),
|
|
84
|
+
zero_point=np.zeros(1),
|
|
85
|
+
),
|
|
86
|
+
)
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
def test_raise_non_float32_tensor(self):
|
|
90
|
+
self.model.subgraphs[0].tensors[
|
|
91
|
+
0
|
|
92
|
+
].type = schema_py_generated.TensorType.INT32
|
|
93
|
+
with self.assertRaisesWithPredicateMatch(
|
|
94
|
+
ValueError, lambda err: 'float32 tensors' in str(err)
|
|
95
|
+
):
|
|
96
|
+
insert_decomposed_hadamard_rotation.insert_decomposed_hadamard_rotation(
|
|
97
|
+
transformation_utils.TransformationInput(
|
|
98
|
+
tensor_id=0,
|
|
99
|
+
op_codes=self.model.operatorCodes,
|
|
100
|
+
buffers=self.model.buffers,
|
|
101
|
+
subgraph=self.model.subgraphs[0],
|
|
102
|
+
producer=-1,
|
|
103
|
+
consumers=[-1],
|
|
104
|
+
quant_params=self.params,
|
|
105
|
+
),
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
def test_insert_decomposed_ops(self):
|
|
109
|
+
# Insert Decomposed Hadamard ops before fully_connected
|
|
110
|
+
info = (
|
|
111
|
+
insert_decomposed_hadamard_rotation.insert_decomposed_hadamard_rotation(
|
|
112
|
+
transformation_utils.TransformationInput(
|
|
113
|
+
tensor_id=0,
|
|
114
|
+
op_codes=self.model.operatorCodes,
|
|
115
|
+
buffers=self.model.buffers,
|
|
116
|
+
subgraph=self.model.subgraphs[0],
|
|
117
|
+
producer=-1,
|
|
118
|
+
consumers=[0], # Consumer is the FC op
|
|
119
|
+
quant_params=self.params,
|
|
120
|
+
)
|
|
121
|
+
)
|
|
122
|
+
)
|
|
123
|
+
subgraph = self.model.subgraphs[0]
|
|
124
|
+
self.assertEqual(info.op_id, 0)
|
|
125
|
+
self.assertEqual(info.num_ops_added, 3)
|
|
126
|
+
# Model had 4 tensors, added 6 tensors (3 activations 3 constants).
|
|
127
|
+
self.assertEqual(info.output_tensor_id, 9)
|
|
128
|
+
self.assertLen(subgraph.tensors, 10)
|
|
129
|
+
# Model had 1 op code, added RESHAPE and FC.
|
|
130
|
+
self.assertLen(self.model.operatorCodes, 3)
|
|
131
|
+
self.assertEqual(
|
|
132
|
+
self.model.operatorCodes[1].builtinCode,
|
|
133
|
+
schema_py_generated.BuiltinOperator.RESHAPE,
|
|
134
|
+
)
|
|
135
|
+
self.assertEqual(
|
|
136
|
+
self.model.operatorCodes[2].builtinCode,
|
|
137
|
+
schema_py_generated.BuiltinOperator.FULLY_CONNECTED,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
# Op 0: RESHAPE
|
|
141
|
+
reshape_op = subgraph.operators[0]
|
|
142
|
+
self.assertEqual(
|
|
143
|
+
self.model.operatorCodes[reshape_op.opcodeIndex].builtinCode,
|
|
144
|
+
schema_py_generated.BuiltinOperator.RESHAPE,
|
|
145
|
+
)
|
|
146
|
+
self.assertEqual(reshape_op.inputs[0], 0) # Graph input
|
|
147
|
+
self.assertEqual(reshape_op.outputs[0], 5) # Reshape output
|
|
148
|
+
|
|
149
|
+
# Op 1: FULLY_CONNECTED
|
|
150
|
+
fc_op = subgraph.operators[1]
|
|
151
|
+
self.assertEqual(
|
|
152
|
+
self.model.operatorCodes[fc_op.opcodeIndex].builtinCode,
|
|
153
|
+
schema_py_generated.BuiltinOperator.FULLY_CONNECTED,
|
|
154
|
+
)
|
|
155
|
+
self.assertEqual(fc_op.inputs[0], 5) # Reshape output
|
|
156
|
+
self.assertEqual(fc_op.inputs[1], 6) # Hadamard matrix tensor
|
|
157
|
+
self.assertEqual(fc_op.outputs[0], 7) # FC output
|
|
158
|
+
|
|
159
|
+
# Op 2: RESHAPE (post)
|
|
160
|
+
post_reshape_op = subgraph.operators[2]
|
|
161
|
+
self.assertEqual(
|
|
162
|
+
self.model.operatorCodes[post_reshape_op.opcodeIndex].builtinCode,
|
|
163
|
+
schema_py_generated.BuiltinOperator.RESHAPE,
|
|
164
|
+
)
|
|
165
|
+
self.assertEqual(post_reshape_op.inputs[0], 7) # FC output
|
|
166
|
+
self.assertEqual(post_reshape_op.outputs[0], 9) # Post Reshape output
|
|
167
|
+
|
|
168
|
+
# Op 3: Original FULLY_CONNECTED
|
|
169
|
+
orig_fc_op = subgraph.operators[3]
|
|
170
|
+
self.assertEqual(
|
|
171
|
+
self.model.operatorCodes[orig_fc_op.opcodeIndex].builtinCode,
|
|
172
|
+
schema_py_generated.BuiltinOperator.FULLY_CONNECTED,
|
|
173
|
+
)
|
|
174
|
+
# Input to the original FC is the post reshape output
|
|
175
|
+
self.assertEqual(orig_fc_op.inputs[0], 9)
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class InsertDecomposedHadamardRotationEmbeddingLookupTest(googletest.TestCase):
|
|
179
|
+
|
|
180
|
+
def setUp(self):
|
|
181
|
+
super().setUp()
|
|
182
|
+
model_path = os.path.join(
|
|
183
|
+
_TEST_DATA_PREFIX_PATH, 'tests/models/embedding_lookup.tflite'
|
|
184
|
+
)
|
|
185
|
+
self.model = tfl_flatbuffer_utils.read_model(model_path)
|
|
186
|
+
self.params = qtyping.UniformQuantParams(
|
|
187
|
+
num_bits=8,
|
|
188
|
+
quantized_dimension=None,
|
|
189
|
+
scale=np.ones(1),
|
|
190
|
+
zero_point=np.zeros(1),
|
|
191
|
+
hadamard=qtyping.UniformQuantParams.HadamardRotationParams(
|
|
192
|
+
random_binary_vector=np.ones(1),
|
|
193
|
+
hadamard_size=2,
|
|
194
|
+
),
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
def test_insert_decomposed_ops(self):
|
|
198
|
+
# Insert Decomposed Hadamard ops after embedding_lookup
|
|
199
|
+
info = (
|
|
200
|
+
insert_decomposed_hadamard_rotation.insert_decomposed_hadamard_rotation(
|
|
201
|
+
transformation_utils.TransformationInput(
|
|
202
|
+
tensor_id=2, # Output of embedding_lookup
|
|
203
|
+
op_codes=self.model.operatorCodes,
|
|
204
|
+
buffers=self.model.buffers,
|
|
205
|
+
subgraph=self.model.subgraphs[0],
|
|
206
|
+
producer=0,
|
|
207
|
+
consumers=[-1], # Output is a graph output
|
|
208
|
+
quant_params=self.params,
|
|
209
|
+
)
|
|
210
|
+
)
|
|
211
|
+
)
|
|
212
|
+
subgraph = self.model.subgraphs[0]
|
|
213
|
+
self.assertEqual(info.op_id, 1)
|
|
214
|
+
self.assertEqual(info.num_ops_added, 3)
|
|
215
|
+
# Model had 3 tensors, added 6 (3 activations 3 constants).
|
|
216
|
+
self.assertEqual(info.output_tensor_id, 8)
|
|
217
|
+
self.assertLen(subgraph.tensors, 9)
|
|
218
|
+
# Model had 1 op code, added RESHAPE and FC.
|
|
219
|
+
self.assertLen(self.model.operatorCodes, 3)
|
|
220
|
+
|
|
221
|
+
# Op 0: EMBEDDING_LOOKUP (Original)
|
|
222
|
+
# Op 1: RESHAPE
|
|
223
|
+
reshape_op = subgraph.operators[1]
|
|
224
|
+
self.assertEqual(reshape_op.inputs[0], 2) # Embedding lookup output
|
|
225
|
+
self.assertEqual(reshape_op.outputs[0], 4)
|
|
226
|
+
|
|
227
|
+
# Op 2: FULLY_CONNECTED
|
|
228
|
+
fc_op = subgraph.operators[2]
|
|
229
|
+
self.assertEqual(fc_op.inputs[0], 4)
|
|
230
|
+
self.assertEqual(fc_op.inputs[1], 5) # Hadamard matrix
|
|
231
|
+
self.assertEqual(fc_op.outputs[0], 6)
|
|
232
|
+
|
|
233
|
+
# Op 3: RESHAPE (post)
|
|
234
|
+
post_reshape_op = subgraph.operators[3]
|
|
235
|
+
self.assertEqual(post_reshape_op.inputs[0], 6)
|
|
236
|
+
self.assertEqual(post_reshape_op.outputs[0], 8)
|
|
237
|
+
|
|
238
|
+
# Check graph output
|
|
239
|
+
self.assertIn(8, subgraph.outputs)
|
|
240
|
+
self.assertNotIn(2, subgraph.outputs)
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
if __name__ == '__main__':
|
|
244
|
+
googletest.main()
|
|
@@ -34,35 +34,6 @@ def _to_flexbuffer(
|
|
|
34
34
|
return fbb.Finish()
|
|
35
35
|
|
|
36
36
|
|
|
37
|
-
def _is_producer_embedding_lookup(
|
|
38
|
-
transformation: transformation_utils.TransformationInput,
|
|
39
|
-
) -> bool:
|
|
40
|
-
"""Checks if the tensor's producer is an embedding lookup op."""
|
|
41
|
-
if transformation.producer == -1:
|
|
42
|
-
return False
|
|
43
|
-
else:
|
|
44
|
-
return (
|
|
45
|
-
transformation.op_codes[
|
|
46
|
-
transformation.subgraph.operators[
|
|
47
|
-
transformation.producer
|
|
48
|
-
].opcodeIndex
|
|
49
|
-
].builtinCode
|
|
50
|
-
== schema_py_generated.BuiltinOperator.EMBEDDING_LOOKUP
|
|
51
|
-
)
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
def _is_fully_connected(
|
|
55
|
-
transformation: transformation_utils.TransformationInput, op_id: int
|
|
56
|
-
) -> bool:
|
|
57
|
-
"""Checks if the any of the tensor's consumers is a fully connected op."""
|
|
58
|
-
return (
|
|
59
|
-
transformation.op_codes[
|
|
60
|
-
transformation.subgraph.operators[op_id].opcodeIndex
|
|
61
|
-
].builtinCode
|
|
62
|
-
== schema_py_generated.BuiltinOperator.FULLY_CONNECTED
|
|
63
|
-
)
|
|
64
|
-
|
|
65
|
-
|
|
66
37
|
def _update_embedding_lookup_consumers(
|
|
67
38
|
transformation: transformation_utils.TransformationInput,
|
|
68
39
|
new_tensor_id: int,
|
|
@@ -107,7 +78,10 @@ def _update_fully_connected_consumers(
|
|
|
107
78
|
"""
|
|
108
79
|
updated = False
|
|
109
80
|
for consumer in transformation.consumers:
|
|
110
|
-
if
|
|
81
|
+
if (
|
|
82
|
+
transformation_utils.get_schema_op_id(transformation, consumer)
|
|
83
|
+
== schema_py_generated.BuiltinOperator.FULLY_CONNECTED
|
|
84
|
+
):
|
|
111
85
|
transformation.subgraph.operators[consumer].inputs[0] = new_tensor_id
|
|
112
86
|
updated = True
|
|
113
87
|
return updated
|
|
@@ -177,7 +151,10 @@ def insert_hadamard_rotation(
|
|
|
177
151
|
custom_op.outputs = [new_tensor_id]
|
|
178
152
|
|
|
179
153
|
# Update the users of this tensor to use the new tensor.
|
|
180
|
-
if
|
|
154
|
+
if (
|
|
155
|
+
transformation_utils.get_producer_schema_op_id(transformation_input)
|
|
156
|
+
== schema_py_generated.BuiltinOperator.EMBEDDING_LOOKUP
|
|
157
|
+
):
|
|
181
158
|
_update_embedding_lookup_consumers(transformation_input, new_tensor_id)
|
|
182
159
|
elif not _update_fully_connected_consumers(
|
|
183
160
|
transformation_input, new_tensor_id
|
|
@@ -68,29 +68,6 @@ def nonlinear_quant_params_to_tflite_type(
|
|
|
68
68
|
raise ValueError(f"Unsupported nonlinear params: {bitwidth}")
|
|
69
69
|
|
|
70
70
|
|
|
71
|
-
def _pack_data(bitwidth: int, flattened_data: np.ndarray) -> np.ndarray:
|
|
72
|
-
"""Pack the data to the corresponding bit width.
|
|
73
|
-
|
|
74
|
-
Currently only support 4 bits. If no packing is needed, the original data is
|
|
75
|
-
returned.
|
|
76
|
-
|
|
77
|
-
Args:
|
|
78
|
-
bitwidth: Bit width from NonLinearQuantParams.
|
|
79
|
-
flattened_data: The data to be packed.
|
|
80
|
-
|
|
81
|
-
Returns:
|
|
82
|
-
Packed data.
|
|
83
|
-
"""
|
|
84
|
-
if bitwidth == 4:
|
|
85
|
-
even_data = flattened_data[::2] & 0x0F
|
|
86
|
-
odd_data = np.left_shift(flattened_data[1::2], 4).astype(np.uint8)
|
|
87
|
-
if odd_data.shape[0] == even_data.shape[0] - 1:
|
|
88
|
-
odd_data = np.pad(odd_data, (0, 1), constant_values=0)
|
|
89
|
-
return np.bitwise_or(even_data, odd_data)
|
|
90
|
-
else:
|
|
91
|
-
return flattened_data
|
|
92
|
-
|
|
93
|
-
|
|
94
71
|
def _perform_channelwise_quantization(
|
|
95
72
|
transformation_input: transformation_utils.TransformationInput,
|
|
96
73
|
) -> schema_py_generated.QuantizationParametersT():
|
|
@@ -180,14 +157,17 @@ def quantize_tensor(
|
|
|
180
157
|
# is not provided.
|
|
181
158
|
if tensor.buffer:
|
|
182
159
|
if transformation_input.quant_params.quantized_data is not None:
|
|
183
|
-
transformation_input.buffers[tensor.buffer].data =
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
160
|
+
transformation_input.buffers[tensor.buffer].data = (
|
|
161
|
+
transformation_utils.pack_data(
|
|
162
|
+
transformation_input.quant_params.num_bits,
|
|
163
|
+
np.frombuffer(
|
|
164
|
+
cast(
|
|
165
|
+
np.ndarray,
|
|
166
|
+
transformation_input.quant_params.quantized_data,
|
|
167
|
+
).tobytes(),
|
|
168
|
+
dtype=np.uint8,
|
|
169
|
+
).flatten(),
|
|
170
|
+
)
|
|
191
171
|
)
|
|
192
172
|
|
|
193
173
|
if isinstance(transformation_input.quant_params, qtyping.UniformQuantParams):
|