ai-edge-quantizer-nightly 0.4.0.dev20250925__py3-none-any.whl → 0.4.0.dev20250927__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -25,9 +25,11 @@ from ai_edge_quantizer.algorithms.nonlinear_quantize import float_casting
25
25
  from ai_edge_quantizer.algorithms.uniform_quantize import common_quantize
26
26
  from ai_edge_quantizer.algorithms.uniform_quantize import dequantized_weight_recovery
27
27
  from ai_edge_quantizer.algorithms.uniform_quantize import hadamard_rotation
28
+ from ai_edge_quantizer.algorithms.uniform_quantize import mse
28
29
  from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize
29
30
  from ai_edge_quantizer.algorithms.uniform_quantize import octav
30
31
 
32
+
31
33
  # TODO: b/399775701 - Clean up this file.
32
34
 
33
35
  _TFLOpName = qtyping.TFLOperationName
@@ -60,6 +62,7 @@ class AlgorithmName(str, enum.Enum):
60
62
  DEQUANTIZED_WEIGHT_RECOVERY = dequantized_weight_recovery.ALGORITHM_KEY
61
63
  OCTAV = octav.ALGORITHM_KEY
62
64
  HADAMARD_ROTATION = hadamard_rotation.ALGORITHM_KEY
65
+ MSE = mse.ALGORITHM_KEY
63
66
 
64
67
 
65
68
  ### MIN/MAX_UNIFORM_QUANT ###
@@ -322,3 +325,36 @@ for (
322
325
  calibration_func=naive_min_max_quantize.min_max_calibrate,
323
326
  materialize_func=materialize_func,
324
327
  )
328
+
329
+
330
+ # Register the MSE algorithm.
331
+ register_op_quant_config_validation_func(
332
+ AlgorithmName.MSE,
333
+ common_quantize.check_op_quantization_config,
334
+ )
335
+
336
+ # Register a config check policy for the MSE algorithm.
337
+ register_config_check_policy_func(
338
+ AlgorithmName.MSE,
339
+ default_policy.DEFAULT_CONFIG_CHECK_POLICY,
340
+ )
341
+
342
+ # Register specialized MSE materialize functions.
343
+ _MSE_OP_NAME_MATERIALIZE_FUNC_DICT = immutabledict({
344
+ _TFLOpName.FULLY_CONNECTED: common_quantize.materialize_fc_conv,
345
+ _TFLOpName.EMBEDDING_LOOKUP: common_quantize.materialize_embedding_lookup,
346
+ })
347
+ for (
348
+ op_name,
349
+ materialize_func,
350
+ ) in _MSE_OP_NAME_MATERIALIZE_FUNC_DICT.items():
351
+ register_quantized_op(
352
+ AlgorithmName.MSE,
353
+ op_name,
354
+ naive_min_max_quantize.init_qsvs,
355
+ calibration_func=naive_min_max_quantize.min_max_calibrate,
356
+ materialize_func=functools.partial(
357
+ materialize_func,
358
+ mse.get_tensor_quant_params,
359
+ ),
360
+ )
@@ -0,0 +1,125 @@
1
+ # Copyright 2024 The AI Edge Quantizer Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Implements the MSE quantization."""
17
+
18
+ import dataclasses
19
+ from typing import Any, Optional
20
+ import numpy as np
21
+ from ai_edge_quantizer import qtyping
22
+ from ai_edge_quantizer.algorithms.uniform_quantize import common_quantize
23
+ from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize
24
+ from ai_edge_quantizer.algorithms.uniform_quantize import uniform_quantize_tensor
25
+ from ai_edge_quantizer.algorithms.utils import common_utils
26
+
27
+ ALGORITHM_KEY = "MSE"
28
+
29
+ # Coefficients from offline numeric analysis.
30
+ _MSE_QUANT_MULS = {
31
+ 8: 0.05408,
32
+ 4: 0.37755,
33
+ }
34
+
35
+
36
+ def get_tensor_quant_params(
37
+ op_info: qtyping.OpInfo,
38
+ tensor_quant_config: qtyping.TensorQuantizationConfig,
39
+ tensor_content: Optional[np.ndarray] = None,
40
+ tensor_qsv: Optional[dict[str, Any]] = None,
41
+ ) -> qtyping.UniformQuantParams:
42
+ """Returns the quantization parameters for a tensor.
43
+
44
+ Args:
45
+ op_info: Aggregated information about the op (e.g., quantization config).
46
+ tensor_quant_config: The quantization config for the tensor.
47
+ tensor_content: The content of the tensor. When None, it means the tensor is
48
+ not a weight tensor (e.g. static quantization) so we fallback to using
49
+ naive_min_max_quantize.
50
+ tensor_qsv: A dictionary containing the min/max of the tensor.
51
+
52
+ Raises:
53
+ ValueError: If the blockwise quantization is requested.
54
+ ValueError: If the asymmetric quantization is requested.
55
+ ValueError: `tensor_qsv` must contain min/max values, or `tensor_content`
56
+ must be provided so that they can be inferred.
57
+ """
58
+ if tensor_quant_config.granularity == qtyping.QuantGranularity.BLOCKWISE:
59
+ raise ValueError(
60
+ "Blockwise quantization is not supported for MSE quantization."
61
+ )
62
+
63
+ # Fallback to naive_min_max_quantize.py for non-weight tensors.
64
+ if tensor_content is None:
65
+ return naive_min_max_quantize.get_tensor_quant_params(
66
+ op_info, tensor_quant_config, tensor_content, tensor_qsv
67
+ )
68
+
69
+ if not tensor_quant_config.symmetric:
70
+ raise ValueError(
71
+ f"Unsupported symmetry: {tensor_quant_config.symmetric}. MSE"
72
+ " supports symmetric quantization only for now."
73
+ )
74
+
75
+ if not tensor_qsv:
76
+ # We need min/max to calculate quantization parameters, which
77
+ # should be collected during the calibration process. However,
78
+ # weight-only and DRQ do not require calibration, thus it is
79
+ # possible that this information is missing here. In that case we
80
+ # collect min/max on the spot.
81
+ tensor_min_max = common_quantize.init_tensor_min_max(
82
+ tensor_content,
83
+ op_info,
84
+ )
85
+ else:
86
+ tensor_min_max = tensor_qsv
87
+
88
+ if "min" not in tensor_min_max or "max" not in tensor_min_max:
89
+ raise ValueError(
90
+ "min and max must be provided to produce tensor quantization"
91
+ " parameters. Check if the correct calibration results are passed into"
92
+ " the ParamsGenerator."
93
+ )
94
+
95
+ quantized_dim = common_utils.get_weight_quantized_dim(
96
+ op_info, tensor_content, tensor_quant_config.granularity
97
+ )
98
+
99
+ reshaped_data = tensor_content
100
+ reduce_dims = common_utils.get_reduce_dims(
101
+ quantized_dim, tensor_content.shape
102
+ )
103
+
104
+ multiplier = _MSE_QUANT_MULS[tensor_quant_config.num_bits]
105
+ scale = multiplier * np.sqrt(
106
+ np.mean(reshaped_data**2, axis=reduce_dims, keepdims=True)
107
+ )
108
+ zp = np.zeros_like(scale, dtype=np.int32)
109
+
110
+ quant_params = qtyping.UniformQuantParams(
111
+ scale=scale,
112
+ zero_point=zp,
113
+ num_bits=tensor_quant_config.num_bits,
114
+ symmetric=tensor_quant_config.symmetric,
115
+ quantized_dimension=quantized_dim,
116
+ block_size=tensor_quant_config.block_size,
117
+ )
118
+
119
+ quantized_vars = uniform_quantize_tensor.uniform_quantize(
120
+ tensor_content,
121
+ quant_params,
122
+ tensor_quant_config.granularity == qtyping.QuantGranularity.BLOCKWISE,
123
+ )
124
+
125
+ return dataclasses.replace(quant_params, quantized_data=quantized_vars)
@@ -0,0 +1,195 @@
1
+ # Copyright 2024 The AI Edge Quantizer Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import os
17
+ from typing import cast
18
+
19
+ from absl.testing import parameterized
20
+ import numpy as np
21
+
22
+ from tensorflow.python.platform import googletest
23
+ from ai_edge_quantizer import qtyping
24
+ from ai_edge_quantizer.algorithms.uniform_quantize import mse
25
+ from ai_edge_quantizer.utils import test_utils
26
+ from ai_edge_quantizer.utils import tfl_flatbuffer_utils
27
+
28
+
29
+ class MseQuantizeTest(parameterized.TestCase):
30
+ """Tests for general functions for MSE."""
31
+
32
+ def setUp(self):
33
+ super().setUp()
34
+ np.random.seed(666)
35
+ self._test_model_path = os.path.join(
36
+ test_utils.get_path_to_datafile("../../tests/models"),
37
+ "conv_fc_mnist.tflite",
38
+ )
39
+ self._test_model = tfl_flatbuffer_utils.read_model(self._test_model_path)
40
+ # The test model has one subgraph for now.
41
+ self._graph_info = qtyping.GraphInfo(
42
+ subgraph_tensors=self._test_model.subgraphs[0].tensors,
43
+ buffers=self._test_model.buffers,
44
+ )
45
+ self._tensor_name_to_qsv = {}
46
+ subgraph0 = self._test_model.subgraphs[0]
47
+ self._subgraph_op_index = 3
48
+ self._fc_op = subgraph0.operators[self._subgraph_op_index]
49
+ self._fc_op_info = qtyping.OpInfo(
50
+ op=self._fc_op,
51
+ op_name=qtyping.TFLOperationName.FULLY_CONNECTED,
52
+ subgraph_op_index=self._subgraph_op_index,
53
+ op_quant_config=qtyping.OpQuantizationConfig(
54
+ weight_tensor_config=None,
55
+ ),
56
+ )
57
+
58
+ def test_get_tensor_quant_params_raises_error_with_unsupported_symmetry(self):
59
+ err_msg = "Unsupported symmetry"
60
+ test_data = np.array([[-7, 7], [4, -4], [4, -4], [7, 7]])
61
+ with self.assertRaisesWithPredicateMatch(
62
+ ValueError, lambda err: err_msg in str(err)
63
+ ):
64
+ _ = mse.get_tensor_quant_params(
65
+ op_info=self._fc_op_info,
66
+ tensor_quant_config=qtyping.TensorQuantizationConfig(
67
+ num_bits=4,
68
+ symmetric=False,
69
+ granularity=qtyping.QuantGranularity.CHANNELWISE,
70
+ ),
71
+ tensor_content=test_data,
72
+ )
73
+
74
+ def test_get_tensor_quant_params_raises_error_with_unsupported_granularity(
75
+ self,
76
+ ):
77
+ err_msg = "Blockwise quantization is not supported"
78
+ test_data = np.array([[-7, 7], [4, -4], [4, -4], [7, 7]])
79
+ with self.assertRaisesWithPredicateMatch(
80
+ ValueError, lambda err: err_msg in str(err)
81
+ ):
82
+ _ = mse.get_tensor_quant_params(
83
+ op_info=self._fc_op_info,
84
+ tensor_quant_config=qtyping.TensorQuantizationConfig(
85
+ num_bits=4,
86
+ symmetric=True,
87
+ granularity=qtyping.QuantGranularity.BLOCKWISE,
88
+ ),
89
+ tensor_content=test_data,
90
+ )
91
+
92
+ def test_get_tensor_quant_params_succeeds_with_qsv(self):
93
+ # Fall back to naive_min_max_quantize.py for non-weight tensors.
94
+ tensor_quant_params = mse.get_tensor_quant_params(
95
+ op_info=self._fc_op_info,
96
+ tensor_quant_config=qtyping.TensorQuantizationConfig(
97
+ num_bits=8,
98
+ granularity=qtyping.QuantGranularity.TENSORWISE,
99
+ ),
100
+ tensor_qsv={
101
+ "min": np.array([-1]),
102
+ "max": np.array([1]),
103
+ },
104
+ )
105
+
106
+ self.assertIsNone(tensor_quant_params.quantized_dimension)
107
+ scale = tensor_quant_params.scale
108
+ self.assertEqual(scale.shape, (1,))
109
+ self.assertSequenceAlmostEqual(scale.flatten(), [1 / 127])
110
+
111
+ # Zero point should be zero for symmetric quantization.
112
+ zp = tensor_quant_params.zero_point
113
+ self.assertEqual(np.sum(zp), 0)
114
+ self.assertEqual(zp.shape, (1,))
115
+
116
+ def test_get_tensor_quant_params_succeeds_with_tensorwise_granularity(self):
117
+ test_data = np.array([
118
+ [-1e5, 25, -50, 75, -100, 125],
119
+ [25, -30, 50, -75, 1e5, -125],
120
+ [50, -60, 70, -80, 90, -100],
121
+ ])
122
+ tensor_config = qtyping.TensorQuantizationConfig(
123
+ num_bits=4,
124
+ symmetric=True,
125
+ granularity=qtyping.QuantGranularity.TENSORWISE,
126
+ )
127
+ fc_op_info = qtyping.OpInfo(
128
+ op=self._fc_op,
129
+ op_name=qtyping.TFLOperationName.FULLY_CONNECTED,
130
+ subgraph_op_index=self._subgraph_op_index,
131
+ op_quant_config=qtyping.OpQuantizationConfig(
132
+ weight_tensor_config=tensor_config,
133
+ ),
134
+ )
135
+ quant_params = mse.get_tensor_quant_params(
136
+ op_info=fc_op_info,
137
+ tensor_quant_config=tensor_config,
138
+ tensor_content=test_data,
139
+ )
140
+
141
+ with self.subTest(name="CheckQuantParamsShapes"):
142
+ self.assertEqual(quant_params.zero_point.shape, (1, 1))
143
+ self.assertEqual(quant_params.scale.shape, (1, 1))
144
+ self.assertIsNone(quant_params.quantized_dimension)
145
+ self.assertIsNotNone(quant_params.quantized_data)
146
+ self.assertTupleEqual(
147
+ cast(np.ndarray, quant_params.quantized_data).shape, test_data.shape
148
+ )
149
+
150
+ with self.subTest(name="CheckQuantParamsValues"):
151
+ self.assertTrue(np.all(quant_params.zero_point == 0))
152
+
153
+ def test_get_tensor_quant_params_succeeds_with_channelwise_granularity(self):
154
+ # Test that the call generates quant params that are appropriately shaped,
155
+ # have some clipping, and correct config values without checking the
156
+ # actual values numerically.
157
+ test_data = np.array([
158
+ [-1e5, 25, -50, 75, -100, 125],
159
+ [25, -30, 50, -75, 1e5, -125],
160
+ [50, -60, 70, -80, 90, -100],
161
+ ])
162
+ tensor_config = qtyping.TensorQuantizationConfig(
163
+ num_bits=4,
164
+ symmetric=True,
165
+ granularity=qtyping.QuantGranularity.CHANNELWISE,
166
+ )
167
+ fc_op_info = qtyping.OpInfo(
168
+ op=self._fc_op,
169
+ op_name=qtyping.TFLOperationName.FULLY_CONNECTED,
170
+ subgraph_op_index=self._subgraph_op_index,
171
+ op_quant_config=qtyping.OpQuantizationConfig(
172
+ weight_tensor_config=tensor_config,
173
+ ),
174
+ )
175
+ quant_params = mse.get_tensor_quant_params(
176
+ op_info=fc_op_info,
177
+ tensor_quant_config=tensor_config,
178
+ tensor_content=test_data,
179
+ )
180
+
181
+ with self.subTest(name="CheckQuantParamsShapes"):
182
+ self.assertEqual(quant_params.zero_point.shape, (test_data.shape[0], 1))
183
+ self.assertEqual(quant_params.scale.shape, (test_data.shape[0], 1))
184
+ self.assertIsNotNone(quant_params.quantized_data)
185
+ self.assertTupleEqual(
186
+ cast(np.ndarray, quant_params.quantized_data).shape, test_data.shape
187
+ )
188
+
189
+ with self.subTest(name="CheckQuantParamsValues"):
190
+ self.assertTrue(np.all(quant_params.zero_point == 0))
191
+ self.assertEqual(quant_params.quantized_dimension, 0)
192
+
193
+
194
+ if __name__ == "__main__":
195
+ googletest.main()
@@ -82,7 +82,6 @@ class RecipeManager:
82
82
  str, list[OpQuantizationRecipe]
83
83
  ] = collections.OrderedDict()
84
84
 
85
- # TODO: b/335254997 - Check if an op quantization config is supported.
86
85
  def add_quantization_config(
87
86
  self,
88
87
  regex: str,
@@ -272,7 +271,8 @@ class RecipeManager:
272
271
  """
273
272
  weight_config = qtyping.TensorQuantizationConfig(
274
273
  num_bits=num_bits,
275
- symmetric=True, # LiteRT kernels only support symmetric quantized weights.
274
+ symmetric=True, # LiteRT kernels only support symmetric quantized
275
+ # weights.
276
276
  granularity=granularity,
277
277
  )
278
278
  self.add_quantization_config(
@@ -316,10 +316,18 @@ class RecipeManager:
316
316
  granularity: Granularity of quantization.
317
317
  algorithm_key: Algorithm key to be applied.
318
318
  """
319
+ # Default to integer quantization but allow float quantization for
320
+ # FLOAT_CASTING algorithm. This is to support weight-only quantization with
321
+ # fp16 weights.
322
+ weight_dtype = qtyping.TensorDataType.INT
323
+ if algorithm_key == AlgorithmName.FLOAT_CASTING:
324
+ weight_dtype = qtyping.TensorDataType.FLOAT
325
+
319
326
  weight_config = qtyping.TensorQuantizationConfig(
320
327
  num_bits=num_bits,
321
328
  symmetric=True, # TFL kernels only support symmetric quantized weights.
322
329
  granularity=granularity,
330
+ dtype=weight_dtype,
323
331
  )
324
332
  self.add_quantization_config(
325
333
  regex,
@@ -365,7 +373,8 @@ class RecipeManager:
365
373
  raise ValueError(
366
374
  'Activation quantization is only supported for 16 or 8 bits.'
367
375
  )
368
- # INT16 is symmetric and INT8 is asymmetric due to LiteRT kernel limitations.
376
+ # INT16 is symmetric and INT8 is asymmetric due to LiteRT kernel
377
+ # limitations.
369
378
  activation_symmetric = activation_num_bits == 16
370
379
  activation_config = qtyping.TensorQuantizationConfig(
371
380
  num_bits=activation_num_bits, symmetric=activation_symmetric
@@ -315,11 +315,12 @@ class ConfiguratorTest(parameterized.TestCase, googletest.TestCase):
315
315
  _QuantGranularity.CHANNELWISE,
316
316
  )
317
317
 
318
- def test_add_weight_only_config(self):
318
+ @parameterized.parameters(4, 8)
319
+ def test_add_weight_only_config_int(self, num_bits):
319
320
  self._recipe_manager.add_weight_only_config(
320
321
  regex='.*/Dense/.*',
321
322
  operation_name=_TFLOpName.FULLY_CONNECTED,
322
- num_bits=4,
323
+ num_bits=num_bits,
323
324
  )
324
325
  alg_key, op_config = self._recipe_manager.get_quantization_configs(
325
326
  _TFLOpName.FULLY_CONNECTED, 'model/Dense/op'
@@ -330,6 +331,72 @@ class ConfiguratorTest(parameterized.TestCase, googletest.TestCase):
330
331
  self.assertIsNone(op_config.activation_tensor_config)
331
332
  weight_tensor_config = op_config.weight_tensor_config
332
333
  self.assertIsNotNone(weight_tensor_config)
334
+ self.assertEqual(weight_tensor_config.num_bits, num_bits)
335
+ self.assertTrue(weight_tensor_config.symmetric)
336
+ self.assertEqual(
337
+ weight_tensor_config.granularity,
338
+ _QuantGranularity.CHANNELWISE,
339
+ )
340
+ self.assertEqual(weight_tensor_config.dtype, _TensorDataType.INT)
341
+
342
+ def test_add_weight_only_config_fp16(self):
343
+ self._recipe_manager.add_weight_only_config(
344
+ regex='.*/Dense2/.*',
345
+ operation_name=_TFLOpName.FULLY_CONNECTED,
346
+ num_bits=16,
347
+ algorithm_key=_AlgorithmName.FLOAT_CASTING,
348
+ )
349
+ alg_key, op_config = self._recipe_manager.get_quantization_configs(
350
+ _TFLOpName.FULLY_CONNECTED, 'model/Dense2/op'
351
+ )
352
+ self.assertEqual(alg_key, _AlgorithmName.FLOAT_CASTING)
353
+ self.assertEqual(op_config.compute_precision, _ComputePrecision.FLOAT)
354
+ self.assertTrue(op_config.explicit_dequantize)
355
+ self.assertIsNone(op_config.activation_tensor_config)
356
+ weight_tensor_config = op_config.weight_tensor_config
357
+ self.assertIsNotNone(weight_tensor_config)
358
+ self.assertEqual(weight_tensor_config.num_bits, 16)
359
+ self.assertTrue(weight_tensor_config.symmetric)
360
+ self.assertEqual(
361
+ weight_tensor_config.granularity,
362
+ _QuantGranularity.CHANNELWISE,
363
+ )
364
+ self.assertEqual(weight_tensor_config.dtype, _TensorDataType.FLOAT)
365
+
366
+ def test_add_weight_only_config_fp8_raise_error(self):
367
+ error_message = (
368
+ 'float casting quantization config requires number of bits to be set'
369
+ ' as 16'
370
+ )
371
+ with self.assertRaisesWithPredicateMatch(
372
+ ValueError, lambda err: error_message in str(err)
373
+ ):
374
+ self._recipe_manager.add_weight_only_config(
375
+ regex='.*/Dense2/.*',
376
+ operation_name=_TFLOpName.FULLY_CONNECTED,
377
+ num_bits=8,
378
+ algorithm_key=_AlgorithmName.FLOAT_CASTING,
379
+ )
380
+
381
+ def test_add_static_config(self):
382
+ self._recipe_manager.add_static_config(
383
+ regex='.*/Dense/.*',
384
+ operation_name=_TFLOpName.FULLY_CONNECTED,
385
+ activation_num_bits=8,
386
+ weight_num_bits=4,
387
+ )
388
+ alg_key, op_config = self._recipe_manager.get_quantization_configs(
389
+ _TFLOpName.FULLY_CONNECTED, 'model/Dense/op'
390
+ )
391
+ self.assertEqual(alg_key, _AlgorithmName.MIN_MAX_UNIFORM_QUANT)
392
+ self.assertEqual(op_config.compute_precision, _ComputePrecision.INTEGER)
393
+ self.assertFalse(op_config.explicit_dequantize)
394
+ activation_tensor_config = op_config.activation_tensor_config
395
+ self.assertIsNotNone(activation_tensor_config)
396
+ self.assertEqual(activation_tensor_config.num_bits, 8)
397
+ self.assertFalse(activation_tensor_config.symmetric)
398
+ weight_tensor_config = op_config.weight_tensor_config
399
+ self.assertIsNotNone(weight_tensor_config)
333
400
  self.assertEqual(weight_tensor_config.num_bits, 4)
334
401
  self.assertTrue(weight_tensor_config.symmetric)
335
402
  self.assertEqual(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ai-edge-quantizer-nightly
3
- Version: 0.4.0.dev20250925
3
+ Version: 0.4.0.dev20250927
4
4
  Summary: A quantizer for advanced developers to quantize converted AI Edge models.
5
5
  Home-page: https://github.com/google-ai-edge/ai-edge-quantizer
6
6
  Keywords: On-Device ML,AI,Google,TFLite,Quantization,LLMs,GenAI
@@ -1,5 +1,5 @@
1
1
  ai_edge_quantizer/__init__.py,sha256=4pFSkukSwahYyzwqia0yPRyz8TnFQfGRthVJhYpMWas,793
2
- ai_edge_quantizer/algorithm_manager.py,sha256=Xu2JKUUayFE5O3-nQPKvQ-0xjqtqPM8ITXgR7BDugN0,13916
2
+ ai_edge_quantizer/algorithm_manager.py,sha256=XkLMG_wQqf_X6swp6YBIhJpIbIdRcOt2LJ_6oTZ3GzU,14956
3
3
  ai_edge_quantizer/algorithm_manager_api.py,sha256=u903TG0s1uIDhJqfeJne3CFl8A93phZrwgV2-hwdcXU,9247
4
4
  ai_edge_quantizer/algorithm_manager_api_test.py,sha256=w6bSONvXkX6bzXAGc0-7b6gNDt9oz9ieq97KP8Sg_JU,7666
5
5
  ai_edge_quantizer/calibrator.py,sha256=Sms7_AIHPH9G5xFaz5Ef3a5gPhxuIWQI8d2LUM8C96I,12071
@@ -16,8 +16,8 @@ ai_edge_quantizer/qtyping.py,sha256=tfrPip-uzJuF_PASgUExx5Oy9gghWUbQaApR0XaBpNw,
16
16
  ai_edge_quantizer/quantizer.py,sha256=ckAEOnnBxuCKZuvlzdChevCKPuE-IeDPHCNtFTWr250,17857
17
17
  ai_edge_quantizer/quantizer_test.py,sha256=m6f4ayyaF3yQb9i4V0aFAbmGw0OKZ2Zam1RoTPh-u24,22917
18
18
  ai_edge_quantizer/recipe.py,sha256=MEkfQ2Sg3KAE9LAORHWcbjYNPg06EUbwc1d-VspQA2U,6461
19
- ai_edge_quantizer/recipe_manager.py,sha256=6dgbE-IZfEetzXH3p3Qm_9eQutNDOpZnMpiaLTbP-ZQ,14744
20
- ai_edge_quantizer/recipe_manager_test.py,sha256=H-B75vwPN5ND-nUa3pOXizeHTv4mufPiC5cL_OlDIYU,34040
19
+ ai_edge_quantizer/recipe_manager.py,sha256=6l2uq8KL23KLu9OQDmPGkxrFiwHrdDB9xnn-ni8WdEM,15036
20
+ ai_edge_quantizer/recipe_manager_test.py,sha256=qjgGUF-wggXnSXqZ5khmqrDMIQI5CShk52IVWTahq6s,36817
21
21
  ai_edge_quantizer/recipe_test.py,sha256=QisyaTol8JRZFcGOGyee7QRCvqj5VbF4guKWdIoMUOE,6213
22
22
  ai_edge_quantizer/transformation_instruction_generator.py,sha256=O0U2aZcB8aXQgOV8r9g1rGNzDUiuI5Ta53XnxZbVffE,31576
23
23
  ai_edge_quantizer/transformation_instruction_generator_test.py,sha256=KW5-WoTTo9IqLEVnWxVC8ut8eWLi_91xfKgGqVQ9QDk,54635
@@ -34,6 +34,8 @@ ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery.py,sha
34
34
  ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery_test.py,sha256=sT5eX5TLZEHTtPfnSkCPDlS0sQxlTFWbCsbvOuj--yY,8889
35
35
  ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation.py,sha256=otKRiZn_C0QH0891pxLsIPIBT1mLDwbKYYP7bI-MXAA,12279
36
36
  ai_edge_quantizer/algorithms/uniform_quantize/hadamard_rotation_test.py,sha256=_SpP12aDLujv_7tWf_mCt89WknNXTSGE-JpZWO1bYSE,13238
37
+ ai_edge_quantizer/algorithms/uniform_quantize/mse.py,sha256=qiIyzogATGVxjYwxzH0cZvgwPSPBJv_3y8NSumHZXTk,4561
38
+ ai_edge_quantizer/algorithms/uniform_quantize/mse_test.py,sha256=-_P4jQJ7gVo0FNSapP3sIGcnhwfjQHW1AKLfoiAlS_s,7142
37
39
  ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize.py,sha256=1sB2j1vlvvWDKyjcGvA_JLCpN2KbCmMslGCBUc4--V4,8461
38
40
  ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_test.py,sha256=nscKDvNb14ErZdAfG0aXRWyRs6bTvhMqMjKx2vxvUK0,8725
39
41
  ai_edge_quantizer/algorithms/uniform_quantize/octav.py,sha256=Umxh4kJyeHddZf-Wd4aXE5MTI1XWFa5KRuM17uYU714,6922
@@ -70,8 +72,8 @@ ai_edge_quantizer/utils/tfl_interpreter_utils.py,sha256=EoVjI_hplX_Rml3hfRsGmQOi
70
72
  ai_edge_quantizer/utils/tfl_interpreter_utils_test.py,sha256=6fjkM-rycZ95L4yfvlr0TN6RlrhfPzxNUYrZaYO_F0A,12013
71
73
  ai_edge_quantizer/utils/validation_utils.py,sha256=oYw33Sg547AqtGw-choPUJmp9SAKkV46J_ddqSsum2Q,3950
72
74
  ai_edge_quantizer/utils/validation_utils_test.py,sha256=V_qNDikPD4OPB-siOLQCWNVWTAu87h2IgNYt7teFd-o,2934
73
- ai_edge_quantizer_nightly-0.4.0.dev20250925.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
74
- ai_edge_quantizer_nightly-0.4.0.dev20250925.dist-info/METADATA,sha256=cNrHy0lFqC22asNZiYjtXRwPC4DdQRhHn4lcwltzKGo,1508
75
- ai_edge_quantizer_nightly-0.4.0.dev20250925.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
76
- ai_edge_quantizer_nightly-0.4.0.dev20250925.dist-info/top_level.txt,sha256=8QTfPnFXNVUhScFLaa-NWZMFWMn72M50DVPubpwWB1g,18
77
- ai_edge_quantizer_nightly-0.4.0.dev20250925.dist-info/RECORD,,
75
+ ai_edge_quantizer_nightly-0.4.0.dev20250927.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
76
+ ai_edge_quantizer_nightly-0.4.0.dev20250927.dist-info/METADATA,sha256=Va5a1yrSq5LuoVneSYo__gfnJj7POIJZif9kdRs6Nck,1508
77
+ ai_edge_quantizer_nightly-0.4.0.dev20250927.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
78
+ ai_edge_quantizer_nightly-0.4.0.dev20250927.dist-info/top_level.txt,sha256=8QTfPnFXNVUhScFLaa-NWZMFWMn72M50DVPubpwWB1g,18
79
+ ai_edge_quantizer_nightly-0.4.0.dev20250927.dist-info/RECORD,,