ai-edge-quantizer-nightly 0.4.0.dev20250910__py3-none-any.whl → 0.4.0.dev20250912__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -124,6 +124,7 @@ MIN_MAX_OP_NAME_MATERIALIZE_FUNC_DICT = {
124
124
  _TFLOpName.HARD_SWISH: common_quantize.materialize_hard_swish,
125
125
  _TFLOpName.MAXIMUM: common_quantize.materialize_maximum,
126
126
  _TFLOpName.PADV2: common_quantize.materialize_padv2,
127
+ _TFLOpName.REDUCE_MIN: common_quantize.materialize_reduce_min,
127
128
  }
128
129
  for op_name, materialize_func in MIN_MAX_OP_NAME_MATERIALIZE_FUNC_DICT.items():
129
130
  register_quantized_op(
@@ -274,6 +275,7 @@ _OCTAV_OP_NAME_MATERIALIZE_FUNC_DICT = immutabledict({
274
275
  _TFLOpName.HARD_SWISH: common_quantize.materialize_hard_swish,
275
276
  _TFLOpName.MAXIMUM: common_quantize.materialize_maximum,
276
277
  _TFLOpName.PADV2: common_quantize.materialize_padv2,
278
+ _TFLOpName.REDUCE_MIN: common_quantize.materialize_reduce_min,
277
279
  })
278
280
 
279
281
  for op_name, materialize_func in _OCTAV_OP_NAME_MATERIALIZE_FUNC_DICT.items():
@@ -940,6 +940,23 @@ def materialize_gather(
940
940
  )
941
941
 
942
942
 
943
+ def materialize_reduce_min(
944
+ get_tensor_quant_params_fn: qtyping.GetTensorQuantParamsFuncSignature,
945
+ op_info: qtyping.OpInfo,
946
+ graph_info: qtyping.GraphInfo,
947
+ tensor_name_to_qsv: dict[str, Any],
948
+ ) -> list[qtyping.TensorTransformationParams]:
949
+ """Materialize tensors in tfl.reduce_min."""
950
+ return common_utils.materialize_standard_op(
951
+ op_info,
952
+ graph_info,
953
+ tensor_name_to_qsv,
954
+ get_tensor_quant_params_fn,
955
+ constraint=_OpQuantConstraint.SAME_AS_INPUT_SCALE,
956
+ inputs_to_ignore=[1], # Axis index does not need to be quantized.
957
+ )
958
+
959
+
943
960
  def _get_tensor_shape_for_blockwise(
944
961
  tensor_shape: Sequence[int], quantized_dim: int, block_size: int
945
962
  ) -> list[int]:
@@ -196,7 +196,8 @@ DEFAULT_JSON_POLICY = """
196
196
  "SQRT",
197
197
  "GATHER",
198
198
  "MAXIMUM",
199
- "PADV2"
199
+ "PADV2",
200
+ "REDUCE_MIN"
200
201
  ],
201
202
  "static_wi8_ai8": [
202
203
  "ADD",
@@ -242,7 +243,8 @@ DEFAULT_JSON_POLICY = """
242
243
  "GATHER",
243
244
  "HARD_SWISH",
244
245
  "MAXIMUM",
245
- "PADV2"
246
+ "PADV2",
247
+ "REDUCE_MIN"
246
248
  ],
247
249
  "static_wi4_ai8": ["FULLY_CONNECTED", "CONV_2D", "INPUT", "OUTPUT", "EMBEDDING_LOOKUP"],
248
250
  "static_wi4_ai16": ["FULLY_CONNECTED", "CONV_2D", "INPUT", "OUTPUT", "EMBEDDING_LOOKUP"],
@@ -77,6 +77,7 @@ class TFLOperationName(str, enum.Enum):
77
77
  HARD_SWISH = 'HARD_SWISH'
78
78
  MAXIMUM = 'MAXIMUM'
79
79
  PADV2 = 'PADV2'
80
+ REDUCE_MIN = 'REDUCE_MIN'
80
81
 
81
82
 
82
83
  class QuantizeMode(enum.Enum):
@@ -28,7 +28,7 @@ class ConstrainedOpsUtilsTest(parameterized.TestCase):
28
28
  dict(
29
29
  testcase_name="same_as_input_scale",
30
30
  constraint=_OpQuantConstraint.SAME_AS_INPUT_SCALE,
31
- expected_num_ops=14,
31
+ expected_num_ops=15,
32
32
  ),
33
33
  dict(
34
34
  testcase_name="same_as_output_scale",
@@ -71,6 +71,7 @@ TFL_OP_NAME_TO_CODE = immutabledict.immutabledict({
71
71
  _TFLOpName.HARD_SWISH: schema.BuiltinOperator.HARD_SWISH,
72
72
  _TFLOpName.MAXIMUM: schema.BuiltinOperator.MAXIMUM,
73
73
  _TFLOpName.PADV2: schema.BuiltinOperator.PADV2,
74
+ _TFLOpName.REDUCE_MIN: schema.BuiltinOperator.REDUCE_MIN,
74
75
  })
75
76
 
76
77
  TFL_OP_CODE_TO_NAME = immutabledict.immutabledict(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ai-edge-quantizer-nightly
3
- Version: 0.4.0.dev20250910
3
+ Version: 0.4.0.dev20250912
4
4
  Summary: A quantizer for advanced developers to quantize converted AI Edge models.
5
5
  Home-page: https://github.com/google-ai-edge/ai-edge-quantizer
6
6
  Keywords: On-Device ML,AI,Google,TFLite,Quantization,LLMs,GenAI
@@ -1,18 +1,18 @@
1
1
  ai_edge_quantizer/__init__.py,sha256=4pFSkukSwahYyzwqia0yPRyz8TnFQfGRthVJhYpMWas,793
2
- ai_edge_quantizer/algorithm_manager.py,sha256=3kmn-hTLEhHOfAQTkUoN8xXymFtoljzLU-ADpd7uBrE,13538
2
+ ai_edge_quantizer/algorithm_manager.py,sha256=zRDIOmtVdyRfCJdMOi-f3b7LcXiiKUIbMFj005A-HYs,13672
3
3
  ai_edge_quantizer/algorithm_manager_api.py,sha256=u903TG0s1uIDhJqfeJne3CFl8A93phZrwgV2-hwdcXU,9247
4
4
  ai_edge_quantizer/algorithm_manager_api_test.py,sha256=w6bSONvXkX6bzXAGc0-7b6gNDt9oz9ieq97KP8Sg_JU,7666
5
5
  ai_edge_quantizer/calibrator.py,sha256=Sms7_AIHPH9G5xFaz5Ef3a5gPhxuIWQI8d2LUM8C96I,12071
6
6
  ai_edge_quantizer/calibrator_test.py,sha256=ZLzIMWB2FSFU4TOatDioYuwp_kLh8iSCefZ5_Q9FU7s,11900
7
7
  ai_edge_quantizer/conftest.py,sha256=SxCz-5LlRD_lQm4hQc4c6IGG7DS8d7IyEWY9gnscPN0,794
8
- ai_edge_quantizer/default_policy.py,sha256=6kEYu0nOQqBKpclzgmxuzvatiVR0BF_ce6zoKCoudW4,11622
8
+ ai_edge_quantizer/default_policy.py,sha256=LljWT-fvoEIK-cJLS0c6tKg60C-zGhVT6JtBlzqtoAI,11662
9
9
  ai_edge_quantizer/model_modifier.py,sha256=teGa8I6kGvn6TQY6Xv53YFIc_pQEhNvM9Zb4bvhezyw,7110
10
10
  ai_edge_quantizer/model_modifier_test.py,sha256=cJd04SLOG-fQZZNZPcisoBLx3cLtWEwGqUBbLb-pif4,4751
11
11
  ai_edge_quantizer/model_validator.py,sha256=Hj0_5o-Oa3dSlJ3ryVjRhvsyelHNyek1GrtG9buMczg,13153
12
12
  ai_edge_quantizer/model_validator_test.py,sha256=EeqOP_mrZsnZ3rug756s0ryDDqd2KgIDld5Lm_gDuWY,13020
13
13
  ai_edge_quantizer/params_generator.py,sha256=hcgMHJlERZERUyIAEi6AHJcLJ8gsKIBAEojzFFz-tqk,20098
14
14
  ai_edge_quantizer/params_generator_test.py,sha256=RDYoRZDJfEZRtjlTAU2kZ_4t3JHOqEHxfJX9V4ETAhg,40597
15
- ai_edge_quantizer/qtyping.py,sha256=ygLmj_PPTYM1yAs3oCJ649q75cZPQYjJ8hXtFLVqfv8,16810
15
+ ai_edge_quantizer/qtyping.py,sha256=O952DgvdE4YwvWeDk5nIdYssrP8aFT4fgNT2eUbEwJg,16838
16
16
  ai_edge_quantizer/quantizer.py,sha256=ckAEOnnBxuCKZuvlzdChevCKPuE-IeDPHCNtFTWr250,17857
17
17
  ai_edge_quantizer/quantizer_test.py,sha256=m6f4ayyaF3yQb9i4V0aFAbmGw0OKZ2Zam1RoTPh-u24,22917
18
18
  ai_edge_quantizer/recipe.py,sha256=MEkfQ2Sg3KAE9LAORHWcbjYNPg06EUbwc1d-VspQA2U,6461
@@ -28,7 +28,7 @@ ai_edge_quantizer/algorithms/nonlinear_quantize/__init__.py,sha256=lpq1g2ayg3lCP
28
28
  ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting.py,sha256=Bs9CK7wZAw6jNaZ8xEtbwO2vM34VYXNZSMVWvxJo9nw,9297
29
29
  ai_edge_quantizer/algorithms/nonlinear_quantize/float_casting_test.py,sha256=EqIHGEZ1LgUrTN7zf880RuAzEv3Qy7kgh5ivObJGHSo,22646
30
30
  ai_edge_quantizer/algorithms/uniform_quantize/__init__.py,sha256=lpq1g2ayg3lCPLy79t2VicYcnGKw64FfYIj1V7J-4m8,676
31
- ai_edge_quantizer/algorithms/uniform_quantize/common_quantize.py,sha256=TUxqc3cG66H77Rz0N3ynFnKKmFySDUAExK--3-VS7a4,36487
31
+ ai_edge_quantizer/algorithms/uniform_quantize/common_quantize.py,sha256=7VvH9torbs6O3VZhfsKhr5x1JvdKZ9xrX7IYPBg9Bss,37064
32
32
  ai_edge_quantizer/algorithms/uniform_quantize/common_quantize_test.py,sha256=GGf_n3wIeg3GB_eGsmyNJ0fTcxgpeMMbugTMRONK6TQ,3553
33
33
  ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery.py,sha256=BDdn_uBZakfHyzdMJPKadsOqxqyC-s6W2ZzFH99L4fE,8652
34
34
  ai_edge_quantizer/algorithms/uniform_quantize/dequantized_weight_recovery_test.py,sha256=sT5eX5TLZEHTtPfnSkCPDlS0sQxlTFWbCsbvOuj--yY,8889
@@ -62,16 +62,16 @@ ai_edge_quantizer/utils/__init__.py,sha256=lpq1g2ayg3lCPLy79t2VicYcnGKw64FfYIj1V
62
62
  ai_edge_quantizer/utils/calibration_utils.py,sha256=iMf_bSCf-O86MzDt5D9hLKqbTydqLwirluaC6BJ9yHo,11553
63
63
  ai_edge_quantizer/utils/calibration_utils_test.py,sha256=4BlksXl7b4yptL8xPR67hmJCnjhN9V10a2PunzfHrUE,9372
64
64
  ai_edge_quantizer/utils/constrained_ops_utils.py,sha256=EAITCf7Ku_PFZcw3K-wd-8hGbyuRd5W5UtNdGvalwAE,4478
65
- ai_edge_quantizer/utils/constrained_ops_utils_test.py,sha256=xWujKhNR_OFXReFM-njFbiaC_4W7kMNr7lmFFRlGNLw,1756
65
+ ai_edge_quantizer/utils/constrained_ops_utils_test.py,sha256=TA6bwVyJP_HlGLJzysMpI_kTsdKeMxZ4RP7HLRU98KY,1756
66
66
  ai_edge_quantizer/utils/test_utils.py,sha256=a4Nk-wbeB09dFjTDZiA0K67d26j5DD0UDH_GIVmVG_4,8685
67
- ai_edge_quantizer/utils/tfl_flatbuffer_utils.py,sha256=1NnRPdvqdvZ5sKbIdePcBv8SaCS2LqZXX_B51oDRXrQ,11770
67
+ ai_edge_quantizer/utils/tfl_flatbuffer_utils.py,sha256=tCNv2sY8j8P0WD7u8AO7yDgA5IKOvO6BU1xl3SJ33KU,11832
68
68
  ai_edge_quantizer/utils/tfl_flatbuffer_utils_test.py,sha256=K1SbK8q92qYVtiVj0I0GtugsPTkpIpEKv9zakvFV_Sc,8555
69
69
  ai_edge_quantizer/utils/tfl_interpreter_utils.py,sha256=EoVjI_hplX_Rml3hfRsGmQOihexmizeJqt4SQcET9aA,14925
70
70
  ai_edge_quantizer/utils/tfl_interpreter_utils_test.py,sha256=6fjkM-rycZ95L4yfvlr0TN6RlrhfPzxNUYrZaYO_F0A,12013
71
71
  ai_edge_quantizer/utils/validation_utils.py,sha256=oYw33Sg547AqtGw-choPUJmp9SAKkV46J_ddqSsum2Q,3950
72
72
  ai_edge_quantizer/utils/validation_utils_test.py,sha256=V_qNDikPD4OPB-siOLQCWNVWTAu87h2IgNYt7teFd-o,2934
73
- ai_edge_quantizer_nightly-0.4.0.dev20250910.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
74
- ai_edge_quantizer_nightly-0.4.0.dev20250910.dist-info/METADATA,sha256=OHvvjpu55-8eASitbDgp6fKhpBkVhF-AXT652QFhswg,1508
75
- ai_edge_quantizer_nightly-0.4.0.dev20250910.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
76
- ai_edge_quantizer_nightly-0.4.0.dev20250910.dist-info/top_level.txt,sha256=8QTfPnFXNVUhScFLaa-NWZMFWMn72M50DVPubpwWB1g,18
77
- ai_edge_quantizer_nightly-0.4.0.dev20250910.dist-info/RECORD,,
73
+ ai_edge_quantizer_nightly-0.4.0.dev20250912.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
74
+ ai_edge_quantizer_nightly-0.4.0.dev20250912.dist-info/METADATA,sha256=1EW3IW2eFbh8KX4c_qB-lwuxKHfe5esPQkxNRMH6VXQ,1508
75
+ ai_edge_quantizer_nightly-0.4.0.dev20250912.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
76
+ ai_edge_quantizer_nightly-0.4.0.dev20250912.dist-info/top_level.txt,sha256=8QTfPnFXNVUhScFLaa-NWZMFWMn72M50DVPubpwWB1g,18
77
+ ai_edge_quantizer_nightly-0.4.0.dev20250912.dist-info/RECORD,,