ai-edge-litert-nightly 2.2.0.dev20260102__cp312-cp312-manylinux_2_27_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. ai_edge_litert/__init__.py +1 -0
  2. ai_edge_litert/_pywrap_analyzer_wrapper.so +0 -0
  3. ai_edge_litert/_pywrap_litert_compiled_model_wrapper.so +0 -0
  4. ai_edge_litert/_pywrap_litert_interpreter_wrapper.so +0 -0
  5. ai_edge_litert/_pywrap_litert_tensor_buffer_wrapper.so +0 -0
  6. ai_edge_litert/_pywrap_modify_model_interface.so +0 -0
  7. ai_edge_litert/_pywrap_string_util.so +0 -0
  8. ai_edge_litert/_pywrap_tensorflow_lite_calibration_wrapper.so +0 -0
  9. ai_edge_litert/_pywrap_tensorflow_lite_metrics_wrapper.so +0 -0
  10. ai_edge_litert/any_pb2.py +37 -0
  11. ai_edge_litert/aot/__init__.py +0 -0
  12. ai_edge_litert/aot/ai_pack/__init__.py +0 -0
  13. ai_edge_litert/aot/ai_pack/export_lib.py +300 -0
  14. ai_edge_litert/aot/aot_compile.py +153 -0
  15. ai_edge_litert/aot/core/__init__.py +0 -0
  16. ai_edge_litert/aot/core/apply_plugin.py +148 -0
  17. ai_edge_litert/aot/core/common.py +97 -0
  18. ai_edge_litert/aot/core/components.py +93 -0
  19. ai_edge_litert/aot/core/mlir_transforms.py +36 -0
  20. ai_edge_litert/aot/core/tflxx_util.py +30 -0
  21. ai_edge_litert/aot/core/types.py +374 -0
  22. ai_edge_litert/aot/prepare_for_npu.py +152 -0
  23. ai_edge_litert/aot/vendors/__init__.py +22 -0
  24. ai_edge_litert/aot/vendors/example/__init__.py +0 -0
  25. ai_edge_litert/aot/vendors/example/example_backend.py +157 -0
  26. ai_edge_litert/aot/vendors/fallback_backend.py +128 -0
  27. ai_edge_litert/aot/vendors/google_tensor/__init__.py +0 -0
  28. ai_edge_litert/aot/vendors/google_tensor/google_tensor_backend.py +168 -0
  29. ai_edge_litert/aot/vendors/google_tensor/target.py +84 -0
  30. ai_edge_litert/aot/vendors/import_vendor.py +132 -0
  31. ai_edge_litert/aot/vendors/mediatek/__init__.py +0 -0
  32. ai_edge_litert/aot/vendors/mediatek/mediatek_backend.py +196 -0
  33. ai_edge_litert/aot/vendors/mediatek/target.py +94 -0
  34. ai_edge_litert/aot/vendors/qualcomm/__init__.py +0 -0
  35. ai_edge_litert/aot/vendors/qualcomm/qualcomm_backend.py +161 -0
  36. ai_edge_litert/aot/vendors/qualcomm/target.py +75 -0
  37. ai_edge_litert/api_pb2.py +43 -0
  38. ai_edge_litert/compiled_model.py +250 -0
  39. ai_edge_litert/descriptor_pb2.py +3361 -0
  40. ai_edge_litert/duration_pb2.py +37 -0
  41. ai_edge_litert/empty_pb2.py +37 -0
  42. ai_edge_litert/field_mask_pb2.py +37 -0
  43. ai_edge_litert/format_converter_wrapper_pybind11.so +0 -0
  44. ai_edge_litert/hardware_accelerator.py +22 -0
  45. ai_edge_litert/internal/__init__.py +0 -0
  46. ai_edge_litert/internal/litertlm_builder.py +584 -0
  47. ai_edge_litert/internal/litertlm_core.py +58 -0
  48. ai_edge_litert/internal/litertlm_header_schema_py_generated.py +1596 -0
  49. ai_edge_litert/internal/llm_metadata_pb2.py +45 -0
  50. ai_edge_litert/internal/llm_model_type_pb2.py +51 -0
  51. ai_edge_litert/internal/sampler_params_pb2.py +39 -0
  52. ai_edge_litert/internal/token_pb2.py +38 -0
  53. ai_edge_litert/interpreter.py +1039 -0
  54. ai_edge_litert/libLiteRt.so +0 -0
  55. ai_edge_litert/libpywrap_litert_common.so +0 -0
  56. ai_edge_litert/metrics_interface.py +48 -0
  57. ai_edge_litert/metrics_portable.py +70 -0
  58. ai_edge_litert/model_runtime_info_pb2.py +66 -0
  59. ai_edge_litert/plugin_pb2.py +46 -0
  60. ai_edge_litert/profiling_info_pb2.py +47 -0
  61. ai_edge_litert/pywrap_genai_ops.so +0 -0
  62. ai_edge_litert/schema_py_generated.py +19640 -0
  63. ai_edge_litert/source_context_pb2.py +37 -0
  64. ai_edge_litert/struct_pb2.py +47 -0
  65. ai_edge_litert/tensor_buffer.py +167 -0
  66. ai_edge_litert/timestamp_pb2.py +37 -0
  67. ai_edge_litert/tools/__init__.py +0 -0
  68. ai_edge_litert/tools/apply_plugin_main +0 -0
  69. ai_edge_litert/tools/flatbuffer_utils.py +534 -0
  70. ai_edge_litert/type_pb2.py +53 -0
  71. ai_edge_litert/vendors/google_tensor/compiler/libLiteRtCompilerPlugin_google_tensor.so +0 -0
  72. ai_edge_litert/vendors/mediatek/compiler/libLiteRtCompilerPlugin_MediaTek.so +0 -0
  73. ai_edge_litert/vendors/qualcomm/compiler/libLiteRtCompilerPlugin_Qualcomm.so +0 -0
  74. ai_edge_litert/wrappers_pb2.py +53 -0
  75. ai_edge_litert_nightly-2.2.0.dev20260102.dist-info/METADATA +52 -0
  76. ai_edge_litert_nightly-2.2.0.dev20260102.dist-info/RECORD +78 -0
  77. ai_edge_litert_nightly-2.2.0.dev20260102.dist-info/WHEEL +5 -0
  78. ai_edge_litert_nightly-2.2.0.dev20260102.dist-info/top_level.txt +1 -0
@@ -0,0 +1 @@
1
+ __version__ = "2.2.0.dev20260102"
Binary file
@@ -0,0 +1,37 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Generated by the protocol buffer compiler. DO NOT EDIT!
3
+ # NO CHECKED-IN PROTOBUF GENCODE
4
+ # source: google/protobuf/any.proto
5
+ # Protobuf Python Version: 6.31.1
6
+ """Generated protocol buffer code."""
7
+ from google.protobuf import descriptor as _descriptor
8
+ from google.protobuf import descriptor_pool as _descriptor_pool
9
+ from google.protobuf import runtime_version as _runtime_version
10
+ from google.protobuf import symbol_database as _symbol_database
11
+ from google.protobuf.internal import builder as _builder
12
+ _runtime_version.ValidateProtobufRuntimeVersion(
13
+ _runtime_version.Domain.PUBLIC,
14
+ 6,
15
+ 31,
16
+ 1,
17
+ '',
18
+ 'google/protobuf/any.proto'
19
+ )
20
+ # @@protoc_insertion_point(imports)
21
+
22
+ _sym_db = _symbol_database.Default()
23
+
24
+
25
+
26
+
27
+ DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x19google/protobuf/any.proto\x12\x0fgoogle.protobuf\"&\n\x03\x41ny\x12\x10\n\x08type_url\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x0c\x42v\n\x13\x63om.google.protobufB\x08\x41nyProtoP\x01Z,google.golang.org/protobuf/types/known/anypb\xa2\x02\x03GPB\xaa\x02\x1eGoogle.Protobuf.WellKnownTypesb\x06proto3')
28
+
29
+ _globals = globals()
30
+ _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
31
+ _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'google.protobuf.any_pb2', _globals)
32
+ if not _descriptor._USE_C_DESCRIPTORS:
33
+ _globals['DESCRIPTOR']._loaded_options = None
34
+ _globals['DESCRIPTOR']._serialized_options = b'\n\023com.google.protobufB\010AnyProtoP\001Z,google.golang.org/protobuf/types/known/anypb\242\002\003GPB\252\002\036Google.Protobuf.WellKnownTypes'
35
+ _globals['_ANY']._serialized_start=46
36
+ _globals['_ANY']._serialized_end=84
37
+ # @@protoc_insertion_point(module_scope)
File without changes
File without changes
@@ -0,0 +1,300 @@
1
+ # Copyright 2025 Google LLC.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Utility functions for exporting models to AI pack format."""
15
+
16
+ import itertools
17
+ import os
18
+ import pathlib
19
+ from typing import cast
20
+
21
+ from ai_edge_litert.aot.core import common
22
+ from ai_edge_litert.aot.core import types
23
+ from ai_edge_litert.aot.vendors import fallback_backend
24
+ from ai_edge_litert.aot.vendors.google_tensor import target as google_tensor_target
25
+ from ai_edge_litert.aot.vendors.mediatek import mediatek_backend
26
+ from ai_edge_litert.aot.vendors.mediatek import target as mtk_target
27
+ from ai_edge_litert.aot.vendors.qualcomm import qualcomm_backend
28
+ from ai_edge_litert.aot.vendors.qualcomm import target as qnn_target
29
+
30
+ # TODO: b/407453529 - Add unittests.
31
+
32
+
33
+ _DEVICE_TARGETING_CONFIGURATION = """<config:device-targeting-config
34
+ xmlns:config="http://schemas.android.com/apk/config">
35
+ {device_groups}
36
+ </config:device-targeting-config>"""
37
+
38
+ _DEVICE_GROUP_TEMPLATE = """ <config:device-group name="{device_group_name}">
39
+ {device_selectors}
40
+ </config:device-group>"""
41
+
42
+ _DEVICE_SELECTOR_TEMPLATE = """ <config:device-selector>
43
+ <config:system-on-chip manufacturer="{soc_man}" model="{soc_model}"/>
44
+ </config:device-selector>"""
45
+
46
+
47
+ def _is_mobile_device_backend(backend: types.Backend):
48
+ target = backend.target
49
+ if backend.id() == qualcomm_backend.QualcommBackend.id():
50
+ target = cast(qnn_target.Target, target)
51
+ # Non Android QNN targets.
52
+ if target.soc_model in (
53
+ qnn_target.SocModel.SA8255,
54
+ qnn_target.SocModel.SA8295,
55
+ ):
56
+ return False
57
+ return True
58
+
59
+
60
+ def _export_model_files_to_ai_pack(
61
+ compiled_models: types.CompilationResult,
62
+ ai_pack_dir: pathlib.Path,
63
+ ai_pack_name: str,
64
+ litert_model_name: str,
65
+ *,
66
+ separate_mtk_ai_pack: bool = True,
67
+ ):
68
+ """Exports the model tflite files to the AI pack directory structure.
69
+
70
+ Args:
71
+ compiled_models: The compiled models to export.
72
+ ai_pack_dir: The directory to export the AI pack to.
73
+ ai_pack_name: The name of the AI pack.
74
+ litert_model_name: The name of the model in the litert format.
75
+ separate_mtk_ai_pack: Whether to separate the MTK AI pack. If True, the main
76
+ AI pack will use the fallback model for MTK targets. The MTK AI pack will
77
+ contain all MTK models, and empty directories for non-MTK targets.
78
+ """
79
+ fallback_model = None
80
+ for backend, model in compiled_models.models_with_backend:
81
+ if backend.target_id == fallback_backend.FallbackBackend.id():
82
+ fallback_model = model
83
+ assert fallback_model is not None, 'Fallback model is required.'
84
+
85
+ model_export_dir = ai_pack_dir / ai_pack_name / 'src/main/assets'
86
+ os.makedirs(model_export_dir, exist_ok=True)
87
+ for backend, model in compiled_models.models_with_backend:
88
+ if not _is_mobile_device_backend(backend):
89
+ continue
90
+ target_id = backend.target_id
91
+ backend_id = backend.id()
92
+ if backend_id == fallback_backend.FallbackBackend.id():
93
+ target_id = 'other'
94
+ elif backend_id == mediatek_backend.MediaTekBackend.id():
95
+ target_id = backend.target_id.replace(
96
+ mtk_target.SocManufacturer.MEDIATEK, 'Mediatek'
97
+ )
98
+ group_name = 'model#group_' + target_id
99
+ export_dir = model_export_dir / group_name
100
+ os.makedirs(export_dir, exist_ok=True)
101
+ model_export_path = export_dir / (litert_model_name + common.DOT_TFLITE)
102
+ if (
103
+ separate_mtk_ai_pack
104
+ and backend_id == mediatek_backend.MediaTekBackend.id()
105
+ ):
106
+ # Use the fallback model for MTK targets in main AI pack.
107
+ model_to_export = fallback_model
108
+ else:
109
+ model_to_export = model
110
+ if not model_to_export.in_memory:
111
+ model_to_export.load()
112
+ model_to_export.save(model_export_path, export_only=True)
113
+
114
+ if separate_mtk_ai_pack:
115
+ _export_model_files_to_mtk_ai_pack(
116
+ compiled_models=compiled_models,
117
+ ai_pack_dir=ai_pack_dir,
118
+ ai_pack_name=ai_pack_name + '_mtk',
119
+ litert_model_name=litert_model_name + '_mtk',
120
+ )
121
+
122
+
123
+ def _export_model_files_to_mtk_ai_pack(
124
+ compiled_models: types.CompilationResult,
125
+ ai_pack_dir: pathlib.Path,
126
+ ai_pack_name: str,
127
+ litert_model_name: str,
128
+ ):
129
+ """Exports the model tflite files to the MTK AI pack directory structure."""
130
+ model_export_dir = ai_pack_dir / ai_pack_name / 'src/main/assets'
131
+ os.makedirs(model_export_dir, exist_ok=True)
132
+ for backend, model in compiled_models.models_with_backend:
133
+ if not _is_mobile_device_backend(backend):
134
+ continue
135
+ backend_id = backend.id()
136
+ target_id = backend.target_id
137
+ if backend_id == fallback_backend.FallbackBackend.id():
138
+ target_id = 'other'
139
+ elif backend_id == mediatek_backend.MediaTekBackend.id():
140
+ target_id = backend.target_id.replace(
141
+ mtk_target.SocManufacturer.MEDIATEK, 'Mediatek'
142
+ )
143
+ group_name = 'model#group_' + target_id
144
+ export_dir = model_export_dir / group_name
145
+ os.makedirs(export_dir, exist_ok=True)
146
+ if backend_id != mediatek_backend.MediaTekBackend.id():
147
+ # Skip non-MTK targets, just create a placeholder file.
148
+ placeholder_file = export_dir / 'placeholder.txt'
149
+ placeholder_file.touch()
150
+ continue
151
+ model_export_path = export_dir / (litert_model_name + common.DOT_TFLITE)
152
+ if not model.in_memory:
153
+ model.load()
154
+ model.save(model_export_path, export_only=True)
155
+
156
+
157
+ def _build_targeting_config(compiled_backends: list[types.Backend]) -> str:
158
+ """Builds device-targeting-config in device_targeting_configuration.xml."""
159
+ device_groups = []
160
+ for backend in compiled_backends:
161
+ if not _is_mobile_device_backend(backend):
162
+ continue
163
+ target = backend.target
164
+ device_group = _target_to_ai_pack_info(target)
165
+ if device_group:
166
+ device_groups.append(device_group)
167
+ device_groups = '\n'.join(device_groups)
168
+ return _DEVICE_TARGETING_CONFIGURATION.format(device_groups=device_groups)
169
+
170
+
171
+ def _target_to_ai_pack_info(target: types.Target) -> str | None:
172
+ """Builds the device group used in device_targeting_configuration.xml."""
173
+ if isinstance(target, qnn_target.Target):
174
+ group_name = str(target)
175
+ selector = _process_qnn_target(target)
176
+ device_selectors = [
177
+ _DEVICE_SELECTOR_TEMPLATE.format(soc_man=man, soc_model=model)
178
+ for man, model in selector
179
+ ]
180
+ device_selectors = '\n'.join(device_selectors)
181
+ device_group = _DEVICE_GROUP_TEMPLATE.format(
182
+ device_group_name=group_name, device_selectors=device_selectors
183
+ )
184
+ return device_group
185
+ elif isinstance(target, mtk_target.Target):
186
+ group_name = str(target).replace(
187
+ mtk_target.SocManufacturer.MEDIATEK, 'Mediatek'
188
+ )
189
+ # TODO: b/407453529 - Support MTK SDK Version / OS version in selector.
190
+ selector = _process_mtk_target(target)
191
+ device_selector = _DEVICE_SELECTOR_TEMPLATE.format(
192
+ soc_man=selector[0], soc_model=selector[1]
193
+ )
194
+ device_group = _DEVICE_GROUP_TEMPLATE.format(
195
+ device_group_name=group_name, device_selectors=device_selector
196
+ )
197
+ return device_group
198
+ elif isinstance(target, google_tensor_target.Target):
199
+ group_name = str(target)
200
+ soc_manufacturer, soc_model = _process_google_tensor_target(target)
201
+ device_selector = _DEVICE_SELECTOR_TEMPLATE.format(
202
+ soc_man=soc_manufacturer, soc_model=soc_model
203
+ )
204
+ device_group = _DEVICE_GROUP_TEMPLATE.format(
205
+ device_group_name=group_name, device_selectors=device_selector
206
+ )
207
+ return device_group
208
+ elif isinstance(target, fallback_backend.FallbackTarget):
209
+ # Don't need to have device selector for fallback target.
210
+ return None
211
+ else:
212
+ print('unsupported target ', target)
213
+ return None
214
+
215
+
216
+ # TODO: b/407453529 - Auto-generate this function from CSVs.
217
+ def _process_qnn_target(target: qnn_target.Target) -> list[tuple[str, str]]:
218
+ """Returns the list of (manufacturer, model) for the given QNN target."""
219
+ # Play cannot distinguish between Qualcomm and QTI for now.
220
+ manufacturer = ['Qualcomm', 'QTI']
221
+ models = [str(target.soc_model)]
222
+ return list(itertools.product(manufacturer, models))
223
+
224
+
225
+ # TODO: b/407453529 - Auto-generate this function from CSVs.
226
+ def _process_mtk_target(
227
+ target: mtk_target.Target,
228
+ ) -> tuple[str, str]:
229
+ """Returns tuple of (manufacturer, model) for the given MTK target."""
230
+ # Play cannot distinguish between Qualcomm and QTI for now.
231
+ return str(target.soc_manufacturer).replace(
232
+ mtk_target.SocManufacturer.MEDIATEK, 'Mediatek'
233
+ ), str(target.soc_model)
234
+
235
+
236
+ # TODO: b/407453529 - Auto-generate this function from CSVs.
237
+ def _process_google_tensor_target(
238
+ target: google_tensor_target.Target,
239
+ ) -> tuple[str, str]:
240
+ """Returns tuple of (manufacturer, model) for the given Google Tensor target."""
241
+ return str(target.soc_manufacturer), str(target.soc_model).replace('_', ' ')
242
+
243
+
244
+ def _write_targeting_config(
245
+ compiled_models: types.CompilationResult, ai_pack_dir: pathlib.Path
246
+ ) -> None:
247
+ """Writes device_targeting_configuration.xml for the given compiled models."""
248
+ compiled_backends = [x for x, _ in compiled_models.models_with_backend]
249
+ targeting_config = _build_targeting_config(
250
+ compiled_backends=compiled_backends
251
+ )
252
+
253
+ targeting_config_path = ai_pack_dir / 'device_targeting_configuration.xml'
254
+ targeting_config_path.write_text(targeting_config)
255
+
256
+
257
+ def export(
258
+ compiled_models: types.CompilationResult,
259
+ ai_pack_dir: pathlib.Path | str,
260
+ ai_pack_name: str,
261
+ litert_model_name: str,
262
+ ) -> None:
263
+ """Exports the compiled models to AI pack format.
264
+
265
+ This function will export the compiled models to corresponding directory
266
+ structure:
267
+
268
+ {ai_pack_dir}/
269
+ AiPackManifest.xml
270
+ device_targeting_configuration.xml
271
+ {ai_pack_name}/src/main/assets/
272
+ model#group_target_1/
273
+ {litert_model_name}.tflite
274
+ model#group_target_2/
275
+ {litert_model_name}.tflite
276
+ model#group_target_3/
277
+ {litert_model_name}.tflite
278
+ model#group_other/
279
+ {litert_model_name}.tflite
280
+
281
+ Args:
282
+ compiled_models: The compiled models to export.
283
+ ai_pack_dir: The directory to export the AI pack to.
284
+ ai_pack_name: The name of the AI pack.
285
+ litert_model_name: The name of the model in the litert format.
286
+ """
287
+ if isinstance(ai_pack_dir, str):
288
+ ai_pack_dir = pathlib.Path(ai_pack_dir)
289
+
290
+ ai_pack_dir.mkdir(parents=True, exist_ok=True)
291
+
292
+ _export_model_files_to_ai_pack(
293
+ compiled_models=compiled_models,
294
+ ai_pack_dir=ai_pack_dir,
295
+ ai_pack_name=ai_pack_name,
296
+ litert_model_name=litert_model_name,
297
+ )
298
+ _write_targeting_config(
299
+ compiled_models=compiled_models, ai_pack_dir=ai_pack_dir
300
+ )
@@ -0,0 +1,153 @@
1
+ # Copyright 2025 The LiteRT Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """AOT Compilation for LiteRT model."""
17
+ import pathlib
18
+ import tempfile
19
+
20
+ from ai_edge_litert.aot import prepare_for_npu as core
21
+ from ai_edge_litert.aot.core import apply_plugin
22
+ from ai_edge_litert.aot.core import components
23
+ from ai_edge_litert.aot.core import mlir_transforms
24
+ from ai_edge_litert.aot.core import types
25
+ from ai_edge_litert.aot.vendors import import_vendor
26
+
27
+
28
+ def aot_compile(
29
+ input_model: types.Model | str,
30
+ output_dir: str | pathlib.Path | None = None,
31
+ target: types.Target | list[types.Target] | None = None,
32
+ config: (
33
+ types.CompilationConfig | list[types.CompilationConfig] | None
34
+ ) = None,
35
+ quantizer: components.AieQuantizerT | None = None,
36
+ keep_going: bool = True,
37
+ subgraphs_to_compile: list[int] | None = None,
38
+ **kwargs,
39
+ ) -> types.CompilationResult:
40
+ """Prepares a TFLite model for NPU execution.
41
+
42
+ High level command that erforms various backend specific pre-processing steps
43
+ and then applies an NPU compiler to the given model.
44
+
45
+ Args:
46
+ input_model: The input model to compile.
47
+ output_dir: Directory to write the output files to. If not specified, the
48
+ output files will be written to the same directory as the input file.
49
+ target: The target to compile for. If not specified, will compile to all
50
+ registered targets.
51
+ config: The compilation config(s). Cannot be specified with target.
52
+ quantizer: The quantizer to use for quantization.
53
+ keep_going: Whether to keep going if some backends fail. If False, fail fast
54
+ on the first error and raise an exception.
55
+ subgraphs_to_compile: The subgraph index list to compile to NPU. If None,
56
+ compile all subgraphs.
57
+ **kwargs: Additional arguments to pass to the backend.
58
+
59
+ Returns:
60
+ Compiled models.
61
+ """
62
+ # Only one of target or config is needed.
63
+ if target and config:
64
+ raise ValueError("Cannot specify both target and config.")
65
+
66
+ if config is None:
67
+ if target is None:
68
+ target = import_vendor.AllRegisteredTarget()
69
+ if isinstance(target, types.Target):
70
+ config = types.CompilationConfig(target=target)
71
+ elif isinstance(target, list):
72
+ config = [types.CompilationConfig(target=t) for t in target]
73
+ else:
74
+ raise ValueError("Unsupported target type.")
75
+
76
+ if isinstance(input_model, str):
77
+ input_path = pathlib.Path(input_model)
78
+ input_model = types.Model.create_from_path(input_path)
79
+
80
+ # Resolve output paths.
81
+ temp_dir = None
82
+ if not output_dir:
83
+ if input_model.in_memory:
84
+ # Use a temp dir for in-memory models.
85
+ # The temp dir will be cleaned up after the models are compiled and loaded
86
+ # back to memory (i.e. function returns).
87
+ temp_dir = tempfile.TemporaryDirectory()
88
+ output_dir = temp_dir.name
89
+ else:
90
+ input_path = input_model.path
91
+ output_dir = input_path.parent / "_compiled_models"
92
+ output_dir.mkdir(parents=True, exist_ok=True)
93
+ output_dir = str(output_dir)
94
+ output_dir_path = pathlib.Path(output_dir)
95
+ output_dir_path.mkdir(parents=True, exist_ok=True)
96
+
97
+ if isinstance(config, types.CompilationConfig) or not config:
98
+ if config:
99
+ # Make pytype happy.
100
+ assert isinstance(config, types.CompilationConfig)
101
+ kw_config = config.to_dict() | kwargs
102
+ else:
103
+ kw_config = kwargs
104
+
105
+ backend_class = core.resolve_backend(kw_config)
106
+
107
+ quant_recipe = kw_config.get("quantize_recipe", None)
108
+ if quant_recipe:
109
+ assert quantizer is not None, "Quantizer is required for quantization."
110
+
111
+ results = core.prepare_for_npu(
112
+ input_model,
113
+ output_dir_path,
114
+ backend_class,
115
+ kw_config,
116
+ transforms=mlir_transforms.MlirTransforms(),
117
+ quantizer=quantizer,
118
+ plugin=apply_plugin.ApplyPlugin(
119
+ experimental_capture_stderr=True,
120
+ subgraphs_to_compile=subgraphs_to_compile,
121
+ ),
122
+ keep_going=keep_going,
123
+ )
124
+ elif isinstance(config, list):
125
+ kw_configs = [c.to_dict() | kwargs for c in config]
126
+
127
+ configs_with_backend = [(core.resolve_backend(c), c) for c in kw_configs]
128
+ requires_quantizer = any("quantize_recipe" in c for c in kw_configs)
129
+ if requires_quantizer and quantizer is None:
130
+ raise ValueError("Quantizer is required for quantization.")
131
+
132
+ results = core.prepare_for_npu_multiple_configs(
133
+ input_model,
134
+ output_dir_path,
135
+ configs_with_backend,
136
+ transforms=mlir_transforms.MlirTransforms(),
137
+ quantizer=quantizer,
138
+ plugin=apply_plugin.ApplyPlugin(
139
+ experimental_capture_stderr=True,
140
+ subgraphs_to_compile=subgraphs_to_compile,
141
+ ),
142
+ keep_going=keep_going,
143
+ )
144
+ else:
145
+ # Should not reach here.
146
+ raise ValueError("Unsupported config type.")
147
+
148
+ if temp_dir:
149
+ # Load the models to memory before cleaning up the temp dir.
150
+ results.load()
151
+ temp_dir.cleanup()
152
+
153
+ return results
File without changes
@@ -0,0 +1,148 @@
1
+ # Copyright 2024 The TensorFlow Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Wrapper for calling the apply plugin tooling."""
17
+
18
+
19
+ import os
20
+ import pathlib
21
+ import re
22
+ import subprocess
23
+ import tempfile
24
+
25
+ from ai_edge_litert.aot.core import common
26
+ from ai_edge_litert.aot.core import components
27
+ from ai_edge_litert.aot.core import types
28
+
29
+ _BINARY = pathlib.Path("tools/apply_plugin_main")
30
+
31
+ _RE_PARTITION_STATS = re.compile(
32
+ r"Partitioned subgraph<(\d+)>, selected (\d+) ops, from a total of "
33
+ r"(\d+) ops. resulted in (\d+) partitions."
34
+ )
35
+
36
+
37
+ class ApplyPlugin(components.ApplyPluginT):
38
+ """Wrapper for calling the apply plugin tooling."""
39
+
40
+ def __init__(
41
+ self,
42
+ experimental_capture_stderr: bool = False,
43
+ subgraphs_to_compile: list[int] | None = None,
44
+ ):
45
+ self._experimental_capture_stderr = experimental_capture_stderr
46
+ self._subgraphs_to_compile = subgraphs_to_compile
47
+
48
+ @property
49
+ def default_err(self) -> str:
50
+ # NOTE: Capture stderr from underlying binary.
51
+ return "--"
52
+
53
+ @property
54
+ def component_name(self) -> str:
55
+ return "apply_plugin"
56
+
57
+ def __call__(
58
+ self,
59
+ input_model: types.Model,
60
+ output_model: types.Model,
61
+ soc_manufacturer: str,
62
+ soc_model: str,
63
+ sdk_libs_path: str | None = None,
64
+ **kwargs,
65
+ ):
66
+ """Applies a plugin to the input model.
67
+
68
+ Args:
69
+ input_model: The path to the input model.
70
+ output_model: The path to the output model.
71
+ soc_manufacturer: The SOC manufacturer of the plugin.
72
+ soc_model: The SOC model of the plugin.
73
+ sdk_libs_path: The path to the SDK libs. If not provided,
74
+ the default SDK path will be used.
75
+ **kwargs: Additional arguments to pass to the underlying binary.
76
+
77
+ Returns:
78
+ The output model.
79
+
80
+ Raises:
81
+ ValueError: If no tflite model was created by the underying binary.
82
+ """
83
+ if input_model.in_memory:
84
+ tmp_file = tempfile.NamedTemporaryFile(mode="wb")
85
+ input_model.save(tmp_file.name)
86
+ else:
87
+ tmp_file = None
88
+
89
+ binary = common.get_resource(_BINARY)
90
+ args = [
91
+ str(binary),
92
+ "--cmd=apply",
93
+ f"--model={str(input_model.path)}",
94
+ f"--o={str(output_model.path)}",
95
+ f"--soc_manufacturer={soc_manufacturer}",
96
+ f"--soc_model={soc_model}",
97
+ f"--err={self.default_err}",
98
+ ]
99
+ extra_args = [f"--{key}={value}" for key, value in kwargs.items()]
100
+ args.extend(extra_args)
101
+ if self._subgraphs_to_compile:
102
+ subgraphs_to_compile = ",".join(
103
+ str(s) for s in self._subgraphs_to_compile
104
+ )
105
+ args.append(f"--subgraphs={subgraphs_to_compile}")
106
+ env = os.environ.copy()
107
+ ld_library_path = common.construct_ld_library_path()
108
+ if ld_library_path:
109
+ if sdk_libs_path:
110
+ ld_library_path = f"{sdk_libs_path}{os.pathsep}{ld_library_path}"
111
+ env["LD_LIBRARY_PATH"] = ld_library_path
112
+
113
+ result = subprocess.run(
114
+ args,
115
+ check=False,
116
+ text=True,
117
+ stdout=subprocess.PIPE,
118
+ stderr=subprocess.STDOUT,
119
+ env=env,
120
+ )
121
+ if result.returncode:
122
+ log_file = tempfile.NamedTemporaryFile(
123
+ suffix=".error", mode="w", delete=False
124
+ )
125
+ log_file.write(result.stdout)
126
+ log_file.close()
127
+ raise ValueError(
128
+ f"{self.component_name} failed to apply plugin. See"
129
+ f" {log_file.name} for details."
130
+ )
131
+
132
+ if not common.is_tflite(output_model.path):
133
+ raise ValueError(f"{output_model.path} is not a TFLite model.")
134
+
135
+ partition_stats = _RE_PARTITION_STATS.findall(result.stdout)
136
+ output_model.partition_stats = types.PartitionStats(
137
+ subgraph_stats=[
138
+ types.SubgraphPartitionStats(
139
+ subgraph_index=int(s[0]),
140
+ num_ops_offloaded=int(s[1]),
141
+ num_total_ops=int(s[2]),
142
+ num_partitions_offloaded=int(s[3]),
143
+ )
144
+ for s in partition_stats
145
+ ]
146
+ )
147
+ if tmp_file is not None:
148
+ tmp_file.close()