ai-data-science-team 0.0.0.9013__py3-none-any.whl → 0.0.0.9015__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ai-data-science-team
3
- Version: 0.0.0.9013
3
+ Version: 0.0.0.9015
4
4
  Summary: Build and run an AI-powered data science team.
5
5
  Home-page: https://github.com/business-science/ai-data-science-team
6
6
  Author: Matt Dancho
@@ -18,7 +18,7 @@ Requires-Dist: langchain
18
18
  Requires-Dist: langchain_community
19
19
  Requires-Dist: langchain_openai
20
20
  Requires-Dist: langchain_experimental
21
- Requires-Dist: langgraph>=0.2.57
21
+ Requires-Dist: langgraph>=0.2.74
22
22
  Requires-Dist: openai
23
23
  Requires-Dist: pandas
24
24
  Requires-Dist: sqlalchemy
@@ -136,9 +136,9 @@ This project is a work in progress. New data science agents will be released soo
136
136
 
137
137
  ### NEW: Multi-Agents
138
138
 
139
- This is the internals of the SQL Data Analyst Agent that connects to SQL databases to pull data into the data science environment. It creates pipelines to automate data extraction, performs Joins, Aggregations, and other SQL Query operations. And it includes a Data Visualization Agent that creates visualizations to help you understand your data.:
139
+ **🔥 Pandas Data Analyst Agent:** Combines the ability to wrangle, transform, and analyze data with an optional data visualization agent that can create interactive plots.
140
140
 
141
- ![Business Intelligence SQL Agent](/img/multi_agent_sql_data_visualization.jpg)
141
+ ![Business Intelligence SQL Agent](/img/multi_agent_pandas_data_analyst.jpg)
142
142
 
143
143
  ### Data Science Apps
144
144
 
@@ -182,7 +182,8 @@ This is a top secret project I'm working on. It's a multi-agent data science app
182
182
 
183
183
  #### Multi-Agents
184
184
 
185
- 1. **SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
185
+ 1. **🔥🔥 Pandas Data Analyst Agent:** Combines the ability to wrangle, transform, and analyze data with an optional data visualization agent that can create interactive plots. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/pandas_data_analyst.ipynb)
186
+ 2. **🔥🔥 SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
186
187
 
187
188
  ### Agents Coming Soon
188
189
 
@@ -1,31 +1,32 @@
1
- ai_data_science_team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- ai_data_science_team/_version.py,sha256=8mQbNYWB914j3xlCMQYaR14g26vq-2SV31Xf8uer_L0,26
1
+ ai_data_science_team/__init__.py,sha256=LmogkhGnxvvVe1ukJM6I6lXy4B7SuCr5eXZpwjyDMKQ,444
2
+ ai_data_science_team/_version.py,sha256=c-XrUvZG3E6SWR9NMQqLxISzMZJUpsnK0FlIEMHAOls,27
3
3
  ai_data_science_team/orchestration.py,sha256=xiIFOsrLwPdkSmtme7wNCCGv8XopnMTNElNzlZokL-4,303
4
4
  ai_data_science_team/agents/__init__.py,sha256=Gnotza9SKr_0IxuaX8k1nsZK48wXkkeZcGcrR1EqNks,668
5
- ai_data_science_team/agents/data_cleaning_agent.py,sha256=V5tJMwGJK0JwrF_H-7r3S0E8UkAY6ci4BGxqjhZiGBI,27352
6
- ai_data_science_team/agents/data_loader_tools_agent.py,sha256=23Uuqt-oaJfj3CFRKT7NErNkodXpraXl0HOWvXjMcJs,8802
7
- ai_data_science_team/agents/data_visualization_agent.py,sha256=tJy9Ehnh9mvAu6H--TXI8esSHmK1RW_L1RDAdn7Xek4,28821
8
- ai_data_science_team/agents/data_wrangling_agent.py,sha256=LxzphH-TmrFG0GjejGOjulhPq4SsWFo5Y9tk4WEuN4M,32347
9
- ai_data_science_team/agents/feature_engineering_agent.py,sha256=KmPBkj7WUBz6LFUlDDfQHMi7ujXwsH5P9LWRS-F4tdM,31026
10
- ai_data_science_team/agents/sql_database_agent.py,sha256=1K2o3NiuKgGKdbMz_Tq9IeQ8xhXjpfGOxx9lArZh1yE,31173
5
+ ai_data_science_team/agents/data_cleaning_agent.py,sha256=aZLhnN2EBlY_hmAg_r73dwi1w5utSFNEgEs8aWl8Cho,27991
6
+ ai_data_science_team/agents/data_loader_tools_agent.py,sha256=TFKzYqV6cvU-sMbfL-hg8-NgF_Hz3nysGFldvb5K3fM,9327
7
+ ai_data_science_team/agents/data_visualization_agent.py,sha256=IHNagAVY4XIRfyKKj3jdJZV0vUpzBqqnQBVbzP1lZj0,29829
8
+ ai_data_science_team/agents/data_wrangling_agent.py,sha256=jyBrEfLsgIqSF6xcmRgnkzvNqJfkXdjn6FDefQij62o,33439
9
+ ai_data_science_team/agents/feature_engineering_agent.py,sha256=xZGDFnmM6wx4bi3e4c_dNOZzGcxBmX8k0iveL7dlA-k,31608
10
+ ai_data_science_team/agents/sql_database_agent.py,sha256=fln8unefn5Jd2exeyGs-9PljyLXAK60HI81tJACYeCY,31726
11
11
  ai_data_science_team/ds_agents/__init__.py,sha256=dnuagUTebTDHhGXbCt-hZIilzXMSUwyHaEI7sOxhvoE,95
12
- ai_data_science_team/ds_agents/eda_tools_agent.py,sha256=VJkqyQCNxoV0kvUTpUZh8SXTTZ0K1tUlg3jq6LDnpPQ,8009
12
+ ai_data_science_team/ds_agents/eda_tools_agent.py,sha256=x0kTwDo0BNbYzgA0YamMWdqRjx0upZgeXp9nF6C6_8E,8364
13
13
  ai_data_science_team/ds_agents/modeling_tools_agent.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  ai_data_science_team/ml_agents/__init__.py,sha256=qq3UlDCRV_z4FHQ1jj3YR6zPbA6kuCvYCisj_bHYfO4,190
15
- ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=DamR72agrTKfdcdhablmP2mpbj0CqtMonP-QU8p7o9w,33394
15
+ ai_data_science_team/ml_agents/h2o_ml_agent.py,sha256=S0uayngaVwVUyA4zy05QYlq5NXrNHb723NeF2rns0Y0,33934
16
16
  ai_data_science_team/ml_agents/h2o_ml_tools_agent.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
- ai_data_science_team/ml_agents/mlflow_tools_agent.py,sha256=bRTT53_pHV0qAYl07iZcwUEYffGH_ZfJICdrLeOUPn4,11394
18
- ai_data_science_team/multiagents/__init__.py,sha256=aI4GztEwmkexZKT5XHcH3cAjO-xYUhncb3yfPJQDqTA,99
19
- ai_data_science_team/multiagents/sql_data_analyst.py,sha256=kmmED3gLf5STWWY6ZVJYd7_Pt8NMl6SHyBocuQzRDGk,14193
17
+ ai_data_science_team/ml_agents/mlflow_tools_agent.py,sha256=QImaZnS8hPdrU7GI6pZ0dUDO-LXx40MSA3XyMDppIh0,12003
18
+ ai_data_science_team/multiagents/__init__.py,sha256=5tpmZBQ_UT5SKDCS_NivZhN19HEStKIcstiqSXPXDl0,208
19
+ ai_data_science_team/multiagents/pandas_data_analyst.py,sha256=6JvcGFvDH7_ozRo-RQvjA_to5R27c7ZSEdKt4VQGL6U,13935
20
+ ai_data_science_team/multiagents/sql_data_analyst.py,sha256=ZZx3Edzff6zf27iPl8lUGoqaZkPaJQtCJIgNx9wdCZY,18232
20
21
  ai_data_science_team/multiagents/supervised_data_analyst.py,sha256=uduCYpicga-UCf9nPQktQggW96-HDlqvioYmEdWejtI,158
21
22
  ai_data_science_team/parsers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
23
  ai_data_science_team/parsers/parsers.py,sha256=hIsMZXRHz9hqs8R1ebymKA7D6NxOf5UVMpDAr_gGhE8,2027
23
24
  ai_data_science_team/templates/__init__.py,sha256=_IcyFUu_mM8dFtttz95h0csJZ-XWDP3cEFuf22-R5RM,330
24
- ai_data_science_team/templates/agent_templates.py,sha256=Lezp0ugtIP3m5WUOmjLwghNnjjyQVQecysONeIHWwi0,29133
25
+ ai_data_science_team/templates/agent_templates.py,sha256=QHRNZVmIfeClEef2Fr2Wb9J2GG91REJOKUUEY71Dszs,30767
25
26
  ai_data_science_team/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
27
  ai_data_science_team/tools/data_loader.py,sha256=ITs_6UAJ0m9h68R9_LruiaJSElv9l7SxTQYryI7YZPY,14702
27
28
  ai_data_science_team/tools/dataframe.py,sha256=cckplDWu9SsA_PRo89pYsyVCmBE0PoDIwMv6tuLunT4,4572
28
- ai_data_science_team/tools/eda.py,sha256=KoryXso_5zOPDq7jwcUAMEXV-AIzpWb62zzbUHVtgtM,12687
29
+ ai_data_science_team/tools/eda.py,sha256=orabE8qaYj5TC5n7CRS6rHOPkyBVxr488631AwkVKVg,12726
29
30
  ai_data_science_team/tools/h2o.py,sha256=gSK0f2FULfAfipFTTjDMUS6DjHwFFvvl4jxshr6QpS0,38997
30
31
  ai_data_science_team/tools/mlflow.py,sha256=8NTkSOvbTk01GOmwFaMkLBRse80w9Kk7Ypi6Fv4kTII,29475
31
32
  ai_data_science_team/tools/sql.py,sha256=vvz_CiOg6GqXo2_mlF4kq5IS6if79dpaizAgLR9sRyg,4784
@@ -36,8 +37,8 @@ ai_data_science_team/utils/matplotlib.py,sha256=d6DZfCXvZ5Kocxtsp92etIymKW2cRBcU
36
37
  ai_data_science_team/utils/messages.py,sha256=feWIPGsv8ly9jpNnS97SoPsn1feaY1Km0VCbHTbRpI8,549
37
38
  ai_data_science_team/utils/plotly.py,sha256=nST-NG0oizKVHhH6HsjHUpTUumq9bCccBdxjuaJWnVQ,504
38
39
  ai_data_science_team/utils/regex.py,sha256=lwarbLqTA2VfNQSyqKCl-PBlH_0WH3zXZvYGBYGUiu4,5144
39
- ai_data_science_team-0.0.0.9013.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
40
- ai_data_science_team-0.0.0.9013.dist-info/METADATA,sha256=z18MmCwNdEgovskYmYmd4CS1I4WKTvh_mSnmzKOaHZs,13021
41
- ai_data_science_team-0.0.0.9013.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
42
- ai_data_science_team-0.0.0.9013.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
43
- ai_data_science_team-0.0.0.9013.dist-info/RECORD,,
40
+ ai_data_science_team-0.0.0.9015.dist-info/LICENSE,sha256=Xif0IRLdd2HGLATxV2EVp91aSY6KOuacRr_6BorKGzA,1084
41
+ ai_data_science_team-0.0.0.9015.dist-info/METADATA,sha256=tIcThz7trmAG6TZAnDHxy8ntBslXMKS5xSUbvaTygyQ,13164
42
+ ai_data_science_team-0.0.0.9015.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
43
+ ai_data_science_team-0.0.0.9015.dist-info/top_level.txt,sha256=CnoMgOphCoAdGTLueWdCVByVyjwOubaGiTB1lchdy4M,21
44
+ ai_data_science_team-0.0.0.9015.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (75.8.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5