ai-data-science-team 0.0.0.9012__py3-none-any.whl → 0.0.0.9014__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/__init__.py +22 -0
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/data_cleaning_agent.py +17 -3
- ai_data_science_team/agents/data_loader_tools_agent.py +24 -1
- ai_data_science_team/agents/data_visualization_agent.py +17 -3
- ai_data_science_team/agents/data_wrangling_agent.py +30 -10
- ai_data_science_team/agents/feature_engineering_agent.py +17 -4
- ai_data_science_team/agents/sql_database_agent.py +15 -2
- ai_data_science_team/ds_agents/eda_tools_agent.py +28 -6
- ai_data_science_team/ml_agents/h2o_ml_agent.py +15 -3
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +23 -1
- ai_data_science_team/multiagents/__init__.py +2 -1
- ai_data_science_team/multiagents/pandas_data_analyst.py +305 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +119 -30
- ai_data_science_team/templates/agent_templates.py +41 -5
- ai_data_science_team/tools/dataframe.py +6 -1
- ai_data_science_team/tools/eda.py +75 -16
- ai_data_science_team/utils/messages.py +27 -0
- {ai_data_science_team-0.0.0.9012.dist-info → ai_data_science_team-0.0.0.9014.dist-info}/METADATA +7 -3
- {ai_data_science_team-0.0.0.9012.dist-info → ai_data_science_team-0.0.0.9014.dist-info}/RECORD +23 -21
- {ai_data_science_team-0.0.0.9012.dist-info → ai_data_science_team-0.0.0.9014.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9012.dist-info → ai_data_science_team-0.0.0.9014.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9012.dist-info → ai_data_science_team-0.0.0.9014.dist-info}/top_level.txt +0 -0
@@ -1,12 +1,8 @@
|
|
1
1
|
|
2
2
|
|
3
|
-
from typing import Any, Optional, Annotated, Sequence,
|
3
|
+
from typing import Any, Optional, Annotated, Sequence, Dict
|
4
4
|
import operator
|
5
5
|
import pandas as pd
|
6
|
-
import os
|
7
|
-
from io import StringIO, BytesIO
|
8
|
-
import base64
|
9
|
-
import matplotlib.pyplot as plt
|
10
6
|
|
11
7
|
from IPython.display import Markdown
|
12
8
|
|
@@ -14,22 +10,26 @@ from langchain_core.messages import BaseMessage, AIMessage
|
|
14
10
|
from langgraph.prebuilt import create_react_agent, ToolNode
|
15
11
|
from langgraph.prebuilt.chat_agent_executor import AgentState
|
16
12
|
from langgraph.graph import START, END, StateGraph
|
13
|
+
from langgraph.types import Checkpointer
|
17
14
|
|
18
15
|
from ai_data_science_team.templates import BaseAgent
|
19
16
|
from ai_data_science_team.utils.regex import format_agent_name
|
20
17
|
|
21
18
|
from ai_data_science_team.tools.eda import (
|
19
|
+
explain_data,
|
22
20
|
describe_dataset,
|
23
21
|
visualize_missing,
|
24
22
|
correlation_funnel,
|
25
23
|
generate_sweetviz_report,
|
26
24
|
)
|
25
|
+
from ai_data_science_team.utils.messages import get_tool_call_names
|
27
26
|
|
28
27
|
|
29
28
|
AGENT_NAME = "exploratory_data_analyst_agent"
|
30
29
|
|
31
30
|
# Updated tool list for EDA
|
32
31
|
EDA_TOOLS = [
|
32
|
+
explain_data,
|
33
33
|
describe_dataset,
|
34
34
|
visualize_missing,
|
35
35
|
correlation_funnel,
|
@@ -49,6 +49,8 @@ class EDAToolsAgent(BaseAgent):
|
|
49
49
|
Additional kwargs for create_react_agent.
|
50
50
|
invoke_react_agent_kwargs : dict
|
51
51
|
Additional kwargs for agent invocation.
|
52
|
+
checkpointer : Checkpointer, optional
|
53
|
+
The checkpointer for the agent.
|
52
54
|
"""
|
53
55
|
|
54
56
|
def __init__(
|
@@ -56,11 +58,13 @@ class EDAToolsAgent(BaseAgent):
|
|
56
58
|
model: Any,
|
57
59
|
create_react_agent_kwargs: Optional[Dict] = {},
|
58
60
|
invoke_react_agent_kwargs: Optional[Dict] = {},
|
61
|
+
checkpointer: Optional[Checkpointer] = None,
|
59
62
|
):
|
60
63
|
self._params = {
|
61
64
|
"model": model,
|
62
65
|
"create_react_agent_kwargs": create_react_agent_kwargs,
|
63
66
|
"invoke_react_agent_kwargs": invoke_react_agent_kwargs,
|
67
|
+
"checkpointer": checkpointer
|
64
68
|
}
|
65
69
|
self._compiled_graph = self._make_compiled_graph()
|
66
70
|
self.response = None
|
@@ -162,11 +166,18 @@ class EDAToolsAgent(BaseAgent):
|
|
162
166
|
return Markdown(self.response["messages"][0].content)
|
163
167
|
else:
|
164
168
|
return self.response["messages"][0].content
|
169
|
+
|
170
|
+
def get_tool_calls(self):
|
171
|
+
"""
|
172
|
+
Returns the tool calls made by the agent.
|
173
|
+
"""
|
174
|
+
return self.response["tool_calls"]
|
165
175
|
|
166
176
|
def make_eda_tools_agent(
|
167
177
|
model: Any,
|
168
178
|
create_react_agent_kwargs: Optional[Dict] = {},
|
169
179
|
invoke_react_agent_kwargs: Optional[Dict] = {},
|
180
|
+
checkpointer: Optional[Checkpointer] = None,
|
170
181
|
):
|
171
182
|
"""
|
172
183
|
Creates an Exploratory Data Analyst Agent that can interact with EDA tools.
|
@@ -179,6 +190,8 @@ def make_eda_tools_agent(
|
|
179
190
|
Additional kwargs for create_react_agent.
|
180
191
|
invoke_react_agent_kwargs : dict
|
181
192
|
Additional kwargs for agent invocation.
|
193
|
+
checkpointer : Checkpointer, optional
|
194
|
+
The checkpointer for the agent.
|
182
195
|
|
183
196
|
Returns:
|
184
197
|
-------
|
@@ -191,6 +204,7 @@ def make_eda_tools_agent(
|
|
191
204
|
user_instructions: str
|
192
205
|
data_raw: dict
|
193
206
|
eda_artifacts: dict
|
207
|
+
tool_calls: list
|
194
208
|
|
195
209
|
def exploratory_agent(state):
|
196
210
|
print(format_agent_name(AGENT_NAME))
|
@@ -205,6 +219,7 @@ def make_eda_tools_agent(
|
|
205
219
|
tools=tool_node,
|
206
220
|
state_schema=GraphState,
|
207
221
|
**create_react_agent_kwargs,
|
222
|
+
checkpointer=checkpointer,
|
208
223
|
)
|
209
224
|
|
210
225
|
response = eda_agent.invoke(
|
@@ -229,11 +244,14 @@ def make_eda_tools_agent(
|
|
229
244
|
last_tool_artifact = last_message.artifact
|
230
245
|
elif isinstance(last_message, dict) and "artifact" in last_message:
|
231
246
|
last_tool_artifact = last_message["artifact"]
|
247
|
+
|
248
|
+
tool_calls = get_tool_call_names(internal_messages)
|
232
249
|
|
233
250
|
return {
|
234
251
|
"messages": [last_ai_message],
|
235
252
|
"internal_messages": internal_messages,
|
236
253
|
"eda_artifacts": last_tool_artifact,
|
254
|
+
"tool_calls": tool_calls,
|
237
255
|
}
|
238
256
|
|
239
257
|
workflow = StateGraph(GraphState)
|
@@ -241,5 +259,9 @@ def make_eda_tools_agent(
|
|
241
259
|
workflow.add_edge(START, "exploratory_agent")
|
242
260
|
workflow.add_edge("exploratory_agent", END)
|
243
261
|
|
244
|
-
app = workflow.compile(
|
262
|
+
app = workflow.compile(
|
263
|
+
checkpointer=checkpointer,
|
264
|
+
name=AGENT_NAME,
|
265
|
+
)
|
266
|
+
|
245
267
|
return app
|
@@ -5,7 +5,7 @@
|
|
5
5
|
|
6
6
|
import os
|
7
7
|
import json
|
8
|
-
from typing import TypedDict, Annotated, Sequence, Literal
|
8
|
+
from typing import TypedDict, Annotated, Sequence, Literal, Optional
|
9
9
|
import operator
|
10
10
|
|
11
11
|
import pandas as pd
|
@@ -14,7 +14,7 @@ from IPython.display import Markdown
|
|
14
14
|
from langchain.prompts import PromptTemplate
|
15
15
|
from langchain_core.messages import BaseMessage
|
16
16
|
|
17
|
-
from langgraph.types import Command
|
17
|
+
from langgraph.types import Command, Checkpointer
|
18
18
|
from langgraph.checkpoint.memory import MemorySaver
|
19
19
|
|
20
20
|
from ai_data_science_team.templates import(
|
@@ -79,6 +79,8 @@ class H2OMLAgent(BaseAgent):
|
|
79
79
|
Name of the MLflow experiment (created if doesn't exist).
|
80
80
|
mlflow_run_name : str, default None
|
81
81
|
A custom name for the MLflow run.
|
82
|
+
checkpointer : langgraph.checkpoint.memory.MemorySaver, optional
|
83
|
+
A checkpointer object for saving the agent's state. Defaults to None.
|
82
84
|
|
83
85
|
|
84
86
|
Methods
|
@@ -176,6 +178,7 @@ class H2OMLAgent(BaseAgent):
|
|
176
178
|
mlflow_tracking_uri=None,
|
177
179
|
mlflow_experiment_name="H2O AutoML",
|
178
180
|
mlflow_run_name=None,
|
181
|
+
checkpointer: Optional[Checkpointer]=None,
|
179
182
|
):
|
180
183
|
self._params = {
|
181
184
|
"model": model,
|
@@ -193,6 +196,7 @@ class H2OMLAgent(BaseAgent):
|
|
193
196
|
"mlflow_tracking_uri": mlflow_tracking_uri,
|
194
197
|
"mlflow_experiment_name": mlflow_experiment_name,
|
195
198
|
"mlflow_run_name": mlflow_run_name,
|
199
|
+
"checkpointer": checkpointer,
|
196
200
|
}
|
197
201
|
self._compiled_graph = self._make_compiled_graph()
|
198
202
|
self.response = None
|
@@ -350,6 +354,7 @@ def make_h2o_ml_agent(
|
|
350
354
|
mlflow_tracking_uri=None,
|
351
355
|
mlflow_experiment_name="H2O AutoML",
|
352
356
|
mlflow_run_name=None,
|
357
|
+
checkpointer=None,
|
353
358
|
):
|
354
359
|
"""
|
355
360
|
Creates a machine learning agent that uses H2O for AutoML.
|
@@ -384,6 +389,12 @@ def make_h2o_ml_agent(
|
|
384
389
|
" pip install h2o\n\n"
|
385
390
|
"Visit https://docs.h2o.ai/h2o/latest-stable/h2o-docs/downloading.html for details."
|
386
391
|
) from e
|
392
|
+
|
393
|
+
if human_in_the_loop:
|
394
|
+
if checkpointer is None:
|
395
|
+
print("Human in the loop is enabled. A checkpointer is required. Setting to MemorySaver().")
|
396
|
+
checkpointer = MemorySaver()
|
397
|
+
|
387
398
|
|
388
399
|
# Define GraphState
|
389
400
|
class GraphState(TypedDict):
|
@@ -844,9 +855,10 @@ def make_h2o_ml_agent(
|
|
844
855
|
retry_count_key="retry_count",
|
845
856
|
human_in_the_loop=human_in_the_loop,
|
846
857
|
human_review_node_name="human_review",
|
847
|
-
checkpointer=
|
858
|
+
checkpointer=checkpointer,
|
848
859
|
bypass_recommended_steps=bypass_recommended_steps,
|
849
860
|
bypass_explain_code=bypass_explain_code,
|
861
|
+
agent_name=AGENT_NAME,
|
850
862
|
)
|
851
863
|
|
852
864
|
return app
|
@@ -10,6 +10,7 @@ from langchain_core.messages import BaseMessage, AIMessage
|
|
10
10
|
|
11
11
|
from langgraph.prebuilt import create_react_agent, ToolNode
|
12
12
|
from langgraph.prebuilt.chat_agent_executor import AgentState
|
13
|
+
from langgraph.types import Checkpointer
|
13
14
|
from langgraph.graph import START, END, StateGraph
|
14
15
|
|
15
16
|
from ai_data_science_team.templates import BaseAgent
|
@@ -27,6 +28,7 @@ from ai_data_science_team.tools.mlflow import (
|
|
27
28
|
mlflow_search_registered_models,
|
28
29
|
mlflow_get_model_version_details,
|
29
30
|
)
|
31
|
+
from ai_data_science_team.utils.messages import get_tool_call_names
|
30
32
|
|
31
33
|
AGENT_NAME = "mlflow_tools_agent"
|
32
34
|
|
@@ -67,6 +69,8 @@ class MLflowToolsAgent(BaseAgent):
|
|
67
69
|
Additional keyword arguments to pass to the create_react_agent function.
|
68
70
|
invoke_react_agent_kwargs : dict
|
69
71
|
Additional keyword arguments to pass to the invoke method of the react agent.
|
72
|
+
checkpointer : langchain.checkpointing.Checkpointer, optional
|
73
|
+
A checkpointer to use for saving and loading the agent's state. Defaults to None.
|
70
74
|
|
71
75
|
Methods:
|
72
76
|
--------
|
@@ -118,6 +122,7 @@ class MLflowToolsAgent(BaseAgent):
|
|
118
122
|
mlflow_registry_uri: Optional[str]=None,
|
119
123
|
create_react_agent_kwargs: Optional[Dict]={},
|
120
124
|
invoke_react_agent_kwargs: Optional[Dict]={},
|
125
|
+
checkpointer: Optional[Checkpointer]=None,
|
121
126
|
):
|
122
127
|
self._params = {
|
123
128
|
"model": model,
|
@@ -125,6 +130,7 @@ class MLflowToolsAgent(BaseAgent):
|
|
125
130
|
"mlflow_registry_uri": mlflow_registry_uri,
|
126
131
|
"create_react_agent_kwargs": create_react_agent_kwargs,
|
127
132
|
"invoke_react_agent_kwargs": invoke_react_agent_kwargs,
|
133
|
+
"checkpointer": checkpointer,
|
128
134
|
}
|
129
135
|
self._compiled_graph = self._make_compiled_graph()
|
130
136
|
self.response = None
|
@@ -228,6 +234,12 @@ class MLflowToolsAgent(BaseAgent):
|
|
228
234
|
return Markdown(self.response["messages"][0].content)
|
229
235
|
else:
|
230
236
|
return self.response["messages"][0].content
|
237
|
+
|
238
|
+
def get_tool_calls(self):
|
239
|
+
"""
|
240
|
+
Returns the tool calls made by the agent.
|
241
|
+
"""
|
242
|
+
return self.response["tool_calls"]
|
231
243
|
|
232
244
|
|
233
245
|
|
@@ -238,6 +250,7 @@ def make_mlflow_tools_agent(
|
|
238
250
|
mlflow_registry_uri: str=None,
|
239
251
|
create_react_agent_kwargs: Optional[Dict]={},
|
240
252
|
invoke_react_agent_kwargs: Optional[Dict]={},
|
253
|
+
checkpointer: Optional[Checkpointer]=None,
|
241
254
|
):
|
242
255
|
"""
|
243
256
|
MLflow Tool Calling Agent
|
@@ -254,6 +267,8 @@ def make_mlflow_tools_agent(
|
|
254
267
|
Additional keyword arguments to pass to the agent's create_react_agent method.
|
255
268
|
invoke_react_agent_kwargs : dict, optional
|
256
269
|
Additional keyword arguments to pass to the agent's invoke method.
|
270
|
+
checkpointer : langchain.checkpointing.Checkpointer, optional
|
271
|
+
A checkpointer to use for saving and loading the agent's state. Defaults to None.
|
257
272
|
|
258
273
|
Returns
|
259
274
|
-------
|
@@ -296,6 +311,7 @@ def make_mlflow_tools_agent(
|
|
296
311
|
model,
|
297
312
|
tools=tool_node,
|
298
313
|
state_schema=GraphState,
|
314
|
+
checkpointer=checkpointer,
|
299
315
|
**create_react_agent_kwargs,
|
300
316
|
)
|
301
317
|
|
@@ -330,10 +346,13 @@ def make_mlflow_tools_agent(
|
|
330
346
|
elif isinstance(last_message, dict) and "artifact" in last_message:
|
331
347
|
last_tool_artifact = last_message["artifact"]
|
332
348
|
|
349
|
+
tool_calls = get_tool_call_names(internal_messages)
|
350
|
+
|
333
351
|
return {
|
334
352
|
"messages": [last_ai_message],
|
335
353
|
"internal_messages": internal_messages,
|
336
354
|
"mlflow_artifacts": last_tool_artifact,
|
355
|
+
"tool_calls": tool_calls,
|
337
356
|
}
|
338
357
|
|
339
358
|
|
@@ -344,7 +363,10 @@ def make_mlflow_tools_agent(
|
|
344
363
|
workflow.add_edge(START, "mlflow_tools_agent")
|
345
364
|
workflow.add_edge("mlflow_tools_agent", END)
|
346
365
|
|
347
|
-
app = workflow.compile(
|
366
|
+
app = workflow.compile(
|
367
|
+
checkpointer=checkpointer,
|
368
|
+
name=AGENT_NAME,
|
369
|
+
)
|
348
370
|
|
349
371
|
return app
|
350
372
|
|
@@ -1 +1,2 @@
|
|
1
|
-
from ai_data_science_team.multiagents.sql_data_analyst import SQLDataAnalyst, make_sql_data_analyst
|
1
|
+
from ai_data_science_team.multiagents.sql_data_analyst import SQLDataAnalyst, make_sql_data_analyst
|
2
|
+
from ai_data_science_team.multiagents.pandas_data_analyst import PandasDataAnalyst, make_pandas_data_analyst
|
@@ -0,0 +1,305 @@
|
|
1
|
+
from langchain_core.messages import BaseMessage
|
2
|
+
from langchain.prompts import PromptTemplate
|
3
|
+
from langchain_core.output_parsers import JsonOutputParser
|
4
|
+
from langgraph.types import Checkpointer
|
5
|
+
from langgraph.graph import START, END, StateGraph
|
6
|
+
from langgraph.graph.state import CompiledStateGraph
|
7
|
+
|
8
|
+
from typing import TypedDict, Annotated, Sequence, Union
|
9
|
+
import operator
|
10
|
+
|
11
|
+
import pandas as pd
|
12
|
+
import json
|
13
|
+
from IPython.display import Markdown
|
14
|
+
|
15
|
+
from ai_data_science_team.templates import BaseAgent
|
16
|
+
from ai_data_science_team.agents import DataWranglingAgent, DataVisualizationAgent
|
17
|
+
from ai_data_science_team.utils.plotly import plotly_from_dict
|
18
|
+
from ai_data_science_team.utils.regex import remove_consecutive_duplicates, get_generic_summary
|
19
|
+
|
20
|
+
AGENT_NAME = "pandas_data_analyst"
|
21
|
+
|
22
|
+
class PandasDataAnalyst(BaseAgent):
|
23
|
+
"""
|
24
|
+
PandasDataAnalyst is a multi-agent class that combines data wrangling and visualization capabilities.
|
25
|
+
|
26
|
+
Parameters:
|
27
|
+
-----------
|
28
|
+
model:
|
29
|
+
The language model to be used for the agents.
|
30
|
+
data_wrangling_agent: DataWranglingAgent
|
31
|
+
The Data Wrangling Agent for transforming raw data.
|
32
|
+
data_visualization_agent: DataVisualizationAgent
|
33
|
+
The Data Visualization Agent for generating plots.
|
34
|
+
checkpointer: Checkpointer (optional)
|
35
|
+
The checkpointer to save the state of the multi-agent system.
|
36
|
+
|
37
|
+
Methods:
|
38
|
+
--------
|
39
|
+
ainvoke_agent(user_instructions, data_raw, **kwargs)
|
40
|
+
Asynchronously invokes the multi-agent with user instructions and raw data.
|
41
|
+
invoke_agent(user_instructions, data_raw, **kwargs)
|
42
|
+
Synchronously invokes the multi-agent with user instructions and raw data.
|
43
|
+
get_data_wrangled()
|
44
|
+
Returns the wrangled data as a Pandas DataFrame.
|
45
|
+
get_plotly_graph()
|
46
|
+
Returns the Plotly graph as a Plotly object.
|
47
|
+
get_data_wrangler_function(markdown=False)
|
48
|
+
Returns the data wrangling function as a string, optionally in Markdown.
|
49
|
+
get_data_visualization_function(markdown=False)
|
50
|
+
Returns the data visualization function as a string, optionally in Markdown.
|
51
|
+
"""
|
52
|
+
|
53
|
+
def __init__(
|
54
|
+
self,
|
55
|
+
model,
|
56
|
+
data_wrangling_agent: DataWranglingAgent,
|
57
|
+
data_visualization_agent: DataVisualizationAgent,
|
58
|
+
checkpointer: Checkpointer = None,
|
59
|
+
):
|
60
|
+
self._params = {
|
61
|
+
"model": model,
|
62
|
+
"data_wrangling_agent": data_wrangling_agent,
|
63
|
+
"data_visualization_agent": data_visualization_agent,
|
64
|
+
"checkpointer": checkpointer,
|
65
|
+
}
|
66
|
+
self._compiled_graph = self._make_compiled_graph()
|
67
|
+
self.response = None
|
68
|
+
|
69
|
+
def _make_compiled_graph(self):
|
70
|
+
"""Create or rebuild the compiled graph. Resets response to None."""
|
71
|
+
self.response = None
|
72
|
+
return make_pandas_data_analyst(
|
73
|
+
model=self._params["model"],
|
74
|
+
data_wrangling_agent=self._params["data_wrangling_agent"]._compiled_graph,
|
75
|
+
data_visualization_agent=self._params["data_visualization_agent"]._compiled_graph,
|
76
|
+
checkpointer=self._params["checkpointer"],
|
77
|
+
)
|
78
|
+
|
79
|
+
def update_params(self, **kwargs):
|
80
|
+
"""Updates parameters and rebuilds the compiled graph."""
|
81
|
+
for k, v in kwargs.items():
|
82
|
+
self._params[k] = v
|
83
|
+
self._compiled_graph = self._make_compiled_graph()
|
84
|
+
|
85
|
+
async def ainvoke_agent(self, user_instructions, data_raw: Union[pd.DataFrame, dict, list], max_retries: int = 3, retry_count: int = 0, **kwargs):
|
86
|
+
"""Asynchronously invokes the multi-agent."""
|
87
|
+
response = await self._compiled_graph.ainvoke({
|
88
|
+
"user_instructions": user_instructions,
|
89
|
+
"data_raw": self._convert_data_input(data_raw),
|
90
|
+
"max_retries": max_retries,
|
91
|
+
"retry_count": retry_count,
|
92
|
+
}, **kwargs)
|
93
|
+
if response.get("messages"):
|
94
|
+
response["messages"] = remove_consecutive_duplicates(response["messages"])
|
95
|
+
self.response = response
|
96
|
+
|
97
|
+
def invoke_agent(self, user_instructions, data_raw: Union[pd.DataFrame, dict, list], max_retries: int = 3, retry_count: int = 0, **kwargs):
|
98
|
+
"""Synchronously invokes the multi-agent."""
|
99
|
+
response = self._compiled_graph.invoke({
|
100
|
+
"user_instructions": user_instructions,
|
101
|
+
"data_raw": self._convert_data_input(data_raw),
|
102
|
+
"max_retries": max_retries,
|
103
|
+
"retry_count": retry_count,
|
104
|
+
}, **kwargs)
|
105
|
+
if response.get("messages"):
|
106
|
+
response["messages"] = remove_consecutive_duplicates(response["messages"])
|
107
|
+
self.response = response
|
108
|
+
|
109
|
+
def get_data_wrangled(self):
|
110
|
+
"""Returns the wrangled data as a Pandas DataFrame."""
|
111
|
+
if self.response and self.response.get("data_wrangled"):
|
112
|
+
return pd.DataFrame(self.response.get("data_wrangled"))
|
113
|
+
|
114
|
+
def get_plotly_graph(self):
|
115
|
+
"""Returns the Plotly graph as a Plotly object."""
|
116
|
+
if self.response and self.response.get("plotly_graph"):
|
117
|
+
return plotly_from_dict(self.response.get("plotly_graph"))
|
118
|
+
|
119
|
+
def get_data_wrangler_function(self, markdown=False):
|
120
|
+
"""Returns the data wrangling function as a string."""
|
121
|
+
if self.response and self.response.get("data_wrangler_function"):
|
122
|
+
code = self.response.get("data_wrangler_function")
|
123
|
+
return Markdown(f"```python\n{code}\n```") if markdown else code
|
124
|
+
|
125
|
+
def get_data_visualization_function(self, markdown=False):
|
126
|
+
"""Returns the data visualization function as a string."""
|
127
|
+
if self.response and self.response.get("data_visualization_function"):
|
128
|
+
code = self.response.get("data_visualization_function")
|
129
|
+
return Markdown(f"```python\n{code}\n```") if markdown else code
|
130
|
+
|
131
|
+
def get_workflow_summary(self, markdown=False):
|
132
|
+
"""Returns a summary of the workflow."""
|
133
|
+
if self.response and self.response.get("messages"):
|
134
|
+
agents = [msg.role for msg in self.response["messages"]]
|
135
|
+
agent_labels = [f"- **Agent {i+1}:** {role}" for i, role in enumerate(agents)]
|
136
|
+
header = f"# Pandas Data Analyst Workflow Summary\n\nThis workflow contains {len(agents)} agents:\n\n" + "\n".join(agent_labels)
|
137
|
+
reports = [get_generic_summary(json.loads(msg.content)) for msg in self.response["messages"]]
|
138
|
+
summary = "\n" +header + "\n\n".join(reports)
|
139
|
+
return Markdown(summary) if markdown else summary
|
140
|
+
|
141
|
+
@staticmethod
|
142
|
+
def _convert_data_input(data_raw: Union[pd.DataFrame, dict, list]) -> Union[dict, list]:
|
143
|
+
"""Converts input data to the expected format (dict or list of dicts)."""
|
144
|
+
if isinstance(data_raw, pd.DataFrame):
|
145
|
+
return data_raw.to_dict()
|
146
|
+
if isinstance(data_raw, dict):
|
147
|
+
return data_raw
|
148
|
+
if isinstance(data_raw, list):
|
149
|
+
return [item.to_dict() if isinstance(item, pd.DataFrame) else item for item in data_raw]
|
150
|
+
raise ValueError("data_raw must be a DataFrame, dict, or list of DataFrames/dicts")
|
151
|
+
|
152
|
+
def make_pandas_data_analyst(
|
153
|
+
model,
|
154
|
+
data_wrangling_agent: CompiledStateGraph,
|
155
|
+
data_visualization_agent: CompiledStateGraph,
|
156
|
+
checkpointer: Checkpointer = None
|
157
|
+
):
|
158
|
+
"""
|
159
|
+
Creates a multi-agent system that wrangles data and optionally visualizes it.
|
160
|
+
|
161
|
+
Parameters:
|
162
|
+
-----------
|
163
|
+
model: The language model to be used.
|
164
|
+
data_wrangling_agent: CompiledStateGraph
|
165
|
+
The Data Wrangling Agent.
|
166
|
+
data_visualization_agent: CompiledStateGraph
|
167
|
+
The Data Visualization Agent.
|
168
|
+
checkpointer: Checkpointer (optional)
|
169
|
+
The checkpointer to save the state.
|
170
|
+
|
171
|
+
Returns:
|
172
|
+
--------
|
173
|
+
CompiledStateGraph: The compiled multi-agent system.
|
174
|
+
"""
|
175
|
+
|
176
|
+
llm = model
|
177
|
+
|
178
|
+
routing_preprocessor_prompt = PromptTemplate(
|
179
|
+
template="""
|
180
|
+
You are an expert in routing decisions for a Pandas Data Manipulation Wrangling Agent, a Charting Visualization Agent, and a Pandas Table Agent. Your job is to:
|
181
|
+
|
182
|
+
1. Determine what the correct format for a Users Question should be for use with a Pandas Data Wrangling Agent based on the incoming user question. Anything related to data wrangling and manipulation should be passed along.
|
183
|
+
2. Determine whether or not a chart should be generated or a table should be returned based on the users question.
|
184
|
+
3. If a chart is requested, determine the correct format of a Users Question should be used with a Data Visualization Agent. Anything related to plotting and visualization should be passed along.
|
185
|
+
|
186
|
+
Use the following criteria on how to route the the initial user question:
|
187
|
+
|
188
|
+
From the incoming user question, remove any details about the format of the final response as either a Chart or Table and return only the important part of the incoming user question that is relevant for the SQL generator agent. This will be the 'user_instructions_data_wrangling'. If 'None' is found, return the original user question.
|
189
|
+
|
190
|
+
Next, determine if the user would like a data visualization ('chart') or a 'table' returned with the results of the Data Wrangling Agent. If unknown, not specified or 'None' is found, then select 'table'.
|
191
|
+
|
192
|
+
If a 'chart' is requested, return the 'user_instructions_data_visualization'. If 'None' is found, return None.
|
193
|
+
|
194
|
+
Return JSON with 'user_instructions_data_wrangling', 'user_instructions_data_visualization' and 'routing_preprocessor_decision'.
|
195
|
+
|
196
|
+
INITIAL_USER_QUESTION: {user_instructions}
|
197
|
+
""",
|
198
|
+
input_variables=["user_instructions"]
|
199
|
+
)
|
200
|
+
|
201
|
+
routing_preprocessor = routing_preprocessor_prompt | llm | JsonOutputParser()
|
202
|
+
|
203
|
+
class PrimaryState(TypedDict):
|
204
|
+
messages: Annotated[Sequence[BaseMessage], operator.add]
|
205
|
+
user_instructions: str
|
206
|
+
user_instructions_data_wrangling: str
|
207
|
+
user_instructions_data_visualization: str
|
208
|
+
routing_preprocessor_decision: str
|
209
|
+
data_raw: Union[dict, list]
|
210
|
+
data_wrangled: dict
|
211
|
+
data_wrangler_function: str
|
212
|
+
data_visualization_function: str
|
213
|
+
plotly_graph: dict
|
214
|
+
plotly_error: str
|
215
|
+
max_retries: int
|
216
|
+
retry_count: int
|
217
|
+
|
218
|
+
|
219
|
+
def preprocess_routing(state: PrimaryState):
|
220
|
+
print("---PANDAS DATA ANALYST---")
|
221
|
+
print("*************************")
|
222
|
+
print("---PREPROCESS ROUTER---")
|
223
|
+
question = state.get("user_instructions")
|
224
|
+
|
225
|
+
# Chart Routing and SQL Prep
|
226
|
+
response = routing_preprocessor.invoke({"user_instructions": question})
|
227
|
+
|
228
|
+
return {
|
229
|
+
"user_instructions_data_wrangling": response.get('user_instructions_data_wrangling'),
|
230
|
+
"user_instructions_data_visualization": response.get('user_instructions_data_visualization'),
|
231
|
+
"routing_preprocessor_decision": response.get('routing_preprocessor_decision'),
|
232
|
+
}
|
233
|
+
|
234
|
+
def router_chart_or_table(state: PrimaryState):
|
235
|
+
print("---ROUTER: CHART OR TABLE---")
|
236
|
+
return "chart" if state.get('routing_preprocessor_decision') == "chart" else "table"
|
237
|
+
|
238
|
+
|
239
|
+
def invoke_data_wrangling_agent(state: PrimaryState):
|
240
|
+
|
241
|
+
response = data_wrangling_agent.invoke({
|
242
|
+
"user_instructions": state.get("user_instructions_data_wrangling"),
|
243
|
+
"data_raw": state.get("data_raw"),
|
244
|
+
"max_retries": state.get("max_retries"),
|
245
|
+
"retry_count": state.get("retry_count"),
|
246
|
+
})
|
247
|
+
|
248
|
+
return {
|
249
|
+
"messages": response.get("messages"),
|
250
|
+
"data_wrangled": response.get("data_wrangled"),
|
251
|
+
"data_wrangler_function": response.get("data_wrangler_function"),
|
252
|
+
"plotly_error": response.get("data_visualization_error"),
|
253
|
+
|
254
|
+
}
|
255
|
+
|
256
|
+
def invoke_data_visualization_agent(state: PrimaryState):
|
257
|
+
|
258
|
+
response = data_visualization_agent.invoke({
|
259
|
+
"user_instructions": state.get("user_instructions_data_visualization"),
|
260
|
+
"data_raw": state.get("data_wrangled") if state.get("data_wrangled") else state.get("data_raw"),
|
261
|
+
"max_retries": state.get("max_retries"),
|
262
|
+
"retry_count": state.get("retry_count"),
|
263
|
+
})
|
264
|
+
|
265
|
+
return {
|
266
|
+
"messages": response.get("messages"),
|
267
|
+
"data_visualization_function": response.get("data_visualization_function"),
|
268
|
+
"plotly_graph": response.get("plotly_graph"),
|
269
|
+
"plotly_error": response.get("data_visualization_error"),
|
270
|
+
}
|
271
|
+
|
272
|
+
def route_printer(state: PrimaryState):
|
273
|
+
print("---ROUTE PRINTER---")
|
274
|
+
print(f" Route: {state.get('routing_preprocessor_decision')}")
|
275
|
+
print("---END---")
|
276
|
+
return {}
|
277
|
+
|
278
|
+
workflow = StateGraph(PrimaryState)
|
279
|
+
|
280
|
+
workflow.add_node("routing_preprocessor", preprocess_routing)
|
281
|
+
workflow.add_node("data_wrangling_agent", invoke_data_wrangling_agent)
|
282
|
+
workflow.add_node("data_visualization_agent", invoke_data_visualization_agent)
|
283
|
+
workflow.add_node("route_printer", route_printer)
|
284
|
+
|
285
|
+
workflow.add_edge(START, "routing_preprocessor")
|
286
|
+
workflow.add_edge("routing_preprocessor", "data_wrangling_agent")
|
287
|
+
|
288
|
+
workflow.add_conditional_edges(
|
289
|
+
"data_wrangling_agent",
|
290
|
+
router_chart_or_table,
|
291
|
+
{
|
292
|
+
"chart": "data_visualization_agent",
|
293
|
+
"table": "route_printer"
|
294
|
+
}
|
295
|
+
)
|
296
|
+
|
297
|
+
workflow.add_edge("data_visualization_agent", "route_printer")
|
298
|
+
workflow.add_edge("route_printer", END)
|
299
|
+
|
300
|
+
app = workflow.compile(
|
301
|
+
checkpointer=checkpointer,
|
302
|
+
name=AGENT_NAME
|
303
|
+
)
|
304
|
+
|
305
|
+
return app
|