ai-data-science-team 0.0.0.9009__py3-none-any.whl → 0.0.0.9010__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/data_cleaning_agent.py +6 -6
- ai_data_science_team/agents/data_loader_tools_agent.py +69 -0
- ai_data_science_team/agents/data_visualization_agent.py +6 -7
- ai_data_science_team/agents/data_wrangling_agent.py +6 -6
- ai_data_science_team/agents/feature_engineering_agent.py +6 -6
- ai_data_science_team/agents/sql_database_agent.py +6 -6
- ai_data_science_team/ml_agents/__init__.py +1 -0
- ai_data_science_team/ml_agents/h2o_ml_agent.py +205 -385
- ai_data_science_team/ml_agents/mlflow_tools_agent.py +327 -0
- ai_data_science_team/multiagents/sql_data_analyst.py +3 -4
- ai_data_science_team/parsers/__init__.py +0 -0
- ai_data_science_team/{tools → parsers}/parsers.py +0 -1
- ai_data_science_team/templates/agent_templates.py +6 -6
- ai_data_science_team/tools/data_loader.py +378 -0
- ai_data_science_team/tools/dataframe.py +139 -0
- ai_data_science_team/tools/h2o.py +643 -0
- ai_data_science_team/tools/mlflow.py +961 -0
- ai_data_science_team/tools/{metadata.py → sql.py} +1 -137
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/METADATA +34 -16
- ai_data_science_team-0.0.0.9010.dist-info/RECORD +35 -0
- ai_data_science_team-0.0.0.9009.dist-info/RECORD +0 -28
- /ai_data_science_team/{tools → utils}/logging.py +0 -0
- /ai_data_science_team/{tools → utils}/regex.py +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/WHEEL +0 -0
- {ai_data_science_team-0.0.0.9009.dist-info → ai_data_science_team-0.0.0.9010.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,961 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
from typing import Optional, Dict, Any, Union, List, Annotated
|
4
|
+
from langgraph.prebuilt import InjectedState
|
5
|
+
from langchain.tools import tool
|
6
|
+
|
7
|
+
|
8
|
+
@tool(response_format='content_and_artifact')
|
9
|
+
def mlflow_search_experiments(
|
10
|
+
filter_string: Optional[str] = None,
|
11
|
+
tracking_uri: str | None = None,
|
12
|
+
registry_uri: str | None = None
|
13
|
+
) -> str:
|
14
|
+
"""
|
15
|
+
Search and list existing MLflow experiments.
|
16
|
+
|
17
|
+
Parameters
|
18
|
+
----------
|
19
|
+
filter_string : str, optional
|
20
|
+
Filter query string (e.g., "name = 'my_experiment'"), defaults to
|
21
|
+
searching for all experiments.
|
22
|
+
|
23
|
+
tracking_uri: str, optional
|
24
|
+
Address of local or remote tracking server.
|
25
|
+
If not provided, defaults
|
26
|
+
to the service set by mlflow.tracking.set_tracking_uri. See Where Runs Get Recorded <../tracking.html#where-runs-get-recorded>_ for more info.
|
27
|
+
registry_uri: str, optional
|
28
|
+
Address of local or remote model registry
|
29
|
+
server. If not provided,
|
30
|
+
defaults to the service set by mlflow.tracking.set_registry_uri. If no such service was set, defaults to the tracking uri of the client.
|
31
|
+
|
32
|
+
Returns
|
33
|
+
-------
|
34
|
+
tuple
|
35
|
+
- JSON-serialized list of experiment metadata (ID, name, etc.).
|
36
|
+
- DataFrame of experiment metadata.
|
37
|
+
"""
|
38
|
+
print(" * Tool: mlflow_search_experiments")
|
39
|
+
from mlflow.tracking import MlflowClient
|
40
|
+
import pandas as pd
|
41
|
+
|
42
|
+
client = MlflowClient(tracking_uri=tracking_uri, registry_uri=registry_uri)
|
43
|
+
experiments = client.search_experiments(filter_string=filter_string)
|
44
|
+
# Convert to a dictionary in a list
|
45
|
+
experiments_data = [
|
46
|
+
dict(e)
|
47
|
+
for e in experiments
|
48
|
+
]
|
49
|
+
# Convert to a DataFrame
|
50
|
+
experiments_df = pd.DataFrame(experiments_data)
|
51
|
+
# Convert timestamps to datetime objects
|
52
|
+
experiments_df["last_update_time"] = pd.to_datetime(experiments_df["last_update_time"], unit="ms")
|
53
|
+
experiments_df["creation_time"] = pd.to_datetime(experiments_df["creation_time"], unit="ms")
|
54
|
+
|
55
|
+
return (experiments_df.to_dict(), experiments_df.to_dict())
|
56
|
+
|
57
|
+
|
58
|
+
@tool(response_format='content_and_artifact')
|
59
|
+
def mlflow_search_runs(
|
60
|
+
experiment_ids: Optional[Union[List[str], List[int], str, int]] = None,
|
61
|
+
filter_string: Optional[str] = None,
|
62
|
+
tracking_uri: str | None = None,
|
63
|
+
registry_uri: str | None = None
|
64
|
+
) -> str:
|
65
|
+
"""
|
66
|
+
Search runs within one or more MLflow experiments, optionally filtering by a filter_string.
|
67
|
+
|
68
|
+
Parameters
|
69
|
+
----------
|
70
|
+
experiment_ids : list or str or int, optional
|
71
|
+
One or more Experiment IDs.
|
72
|
+
filter_string : str, optional
|
73
|
+
MLflow filter expression, e.g. "metrics.rmse < 1.0".
|
74
|
+
tracking_uri: str, optional
|
75
|
+
Address of local or remote tracking server.
|
76
|
+
If not provided, defaults
|
77
|
+
to the service set by mlflow.tracking.set_tracking_uri. See Where Runs Get Recorded <../tracking.html#where-runs-get-recorded>_ for more info.
|
78
|
+
registry_uri: str, optional
|
79
|
+
Address of local or remote model registry
|
80
|
+
server. If not provided,
|
81
|
+
defaults to the service set by mlflow.tracking.set_registry_uri. If no such service was set, defaults to the tracking uri of the client.
|
82
|
+
|
83
|
+
Returns
|
84
|
+
-------
|
85
|
+
str
|
86
|
+
JSON-formatted list of runs that match the query.
|
87
|
+
"""
|
88
|
+
print(" * Tool: mlflow_search_runs")
|
89
|
+
from mlflow.tracking import MlflowClient
|
90
|
+
import pandas as pd
|
91
|
+
|
92
|
+
client = MlflowClient(
|
93
|
+
tracking_uri=tracking_uri,
|
94
|
+
registry_uri=registry_uri
|
95
|
+
)
|
96
|
+
|
97
|
+
if experiment_ids is None:
|
98
|
+
experiment_ids = []
|
99
|
+
if isinstance(experiment_ids, (str, int)):
|
100
|
+
experiment_ids = [experiment_ids]
|
101
|
+
|
102
|
+
runs = client.search_runs(
|
103
|
+
experiment_ids=experiment_ids,
|
104
|
+
filter_string=filter_string
|
105
|
+
)
|
106
|
+
|
107
|
+
# If no runs are found, return an empty DataFrame
|
108
|
+
if not runs:
|
109
|
+
return "No runs found.", pd.DataFrame()
|
110
|
+
|
111
|
+
# Extract relevant information
|
112
|
+
data = []
|
113
|
+
for run in runs:
|
114
|
+
run_info = {
|
115
|
+
"run_id": run.info.run_id,
|
116
|
+
"run_name": run.info.run_name,
|
117
|
+
"status": run.info.status,
|
118
|
+
"start_time": pd.to_datetime(run.info.start_time, unit="ms"),
|
119
|
+
"end_time": pd.to_datetime(run.info.end_time, unit="ms"),
|
120
|
+
"experiment_id": run.info.experiment_id,
|
121
|
+
"user_id": run.info.user_id
|
122
|
+
}
|
123
|
+
|
124
|
+
# Flatten metrics, parameters, and tags
|
125
|
+
run_info.update(run.data.metrics)
|
126
|
+
run_info.update({f"param_{k}": v for k, v in run.data.params.items()})
|
127
|
+
run_info.update({f"tag_{k}": v for k, v in run.data.tags.items()})
|
128
|
+
|
129
|
+
data.append(run_info)
|
130
|
+
|
131
|
+
# Convert to DataFrame
|
132
|
+
df = pd.DataFrame(data)
|
133
|
+
|
134
|
+
return (df.iloc[:,0:15].to_dict(), df.to_dict())
|
135
|
+
|
136
|
+
|
137
|
+
|
138
|
+
@tool(response_format='content')
|
139
|
+
def mlflow_create_experiment(experiment_name: str) -> str:
|
140
|
+
"""
|
141
|
+
Create a new MLflow experiment by name.
|
142
|
+
|
143
|
+
Parameters
|
144
|
+
----------
|
145
|
+
experiment_name : str
|
146
|
+
The name of the experiment to create.
|
147
|
+
|
148
|
+
Returns
|
149
|
+
-------
|
150
|
+
str
|
151
|
+
The experiment ID or an error message if creation failed.
|
152
|
+
"""
|
153
|
+
print(" * Tool: mlflow_create_experiment")
|
154
|
+
from mlflow.tracking import MlflowClient
|
155
|
+
|
156
|
+
client = MlflowClient()
|
157
|
+
exp_id = client.create_experiment(experiment_name)
|
158
|
+
return f"Experiment created with ID: {exp_id}, name: {experiment_name}"
|
159
|
+
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
@tool(response_format='content_and_artifact')
|
164
|
+
def mlflow_predict_from_run_id(
|
165
|
+
run_id: str,
|
166
|
+
data_raw: Annotated[dict, InjectedState("data_raw")],
|
167
|
+
tracking_uri: Optional[str] = None
|
168
|
+
) -> tuple:
|
169
|
+
"""
|
170
|
+
Predict using an MLflow model (PyFunc) directly from a given run ID.
|
171
|
+
|
172
|
+
Parameters
|
173
|
+
----------
|
174
|
+
run_id : str
|
175
|
+
The ID of the MLflow run that logged the model.
|
176
|
+
data_raw : dict
|
177
|
+
The incoming data as a dictionary.
|
178
|
+
tracking_uri : str, optional
|
179
|
+
Address of local or remote tracking server.
|
180
|
+
|
181
|
+
Returns
|
182
|
+
-------
|
183
|
+
tuple
|
184
|
+
(user_facing_message, artifact_dict)
|
185
|
+
"""
|
186
|
+
print(" * Tool: mlflow_predict_from_run_id")
|
187
|
+
import mlflow
|
188
|
+
import mlflow.pyfunc
|
189
|
+
import pandas as pd
|
190
|
+
|
191
|
+
# 1. Check if data is loaded
|
192
|
+
if not data_raw:
|
193
|
+
return "No data provided for prediction. Please use `data_raw` parameter inside of `invoke_agent()` or `ainvoke_agent()`.", {}
|
194
|
+
df = pd.DataFrame(data_raw)
|
195
|
+
|
196
|
+
# 2. Prepare model URI
|
197
|
+
model_uri = f"runs:/{run_id}/model"
|
198
|
+
|
199
|
+
# 3. Load or cache the MLflow model
|
200
|
+
model = mlflow.pyfunc.load_model(model_uri)
|
201
|
+
|
202
|
+
# 4. Make predictions
|
203
|
+
try:
|
204
|
+
preds = model.predict(df)
|
205
|
+
except Exception as e:
|
206
|
+
return f"Error during inference: {str(e)}", {}
|
207
|
+
|
208
|
+
# 5. Convert predictions to a user-friendly summary + artifact
|
209
|
+
if isinstance(preds, pd.DataFrame):
|
210
|
+
sample_json = preds.head().to_json(orient='records')
|
211
|
+
artifact_dict = preds.to_dict(orient='records') # entire DF
|
212
|
+
message = f"Predictions returned. Sample: {sample_json}"
|
213
|
+
elif hasattr(preds, "to_json"):
|
214
|
+
# e.g., pd.Series
|
215
|
+
sample_json = preds[:5].to_json(orient='records')
|
216
|
+
artifact_dict = preds.to_dict()
|
217
|
+
message = f"Predictions returned. Sample: {sample_json}"
|
218
|
+
elif hasattr(preds, "tolist"):
|
219
|
+
# e.g., a NumPy array
|
220
|
+
preds_list = preds.tolist()
|
221
|
+
artifact_dict = {"predictions": preds_list}
|
222
|
+
message = f"Predictions returned. First 5: {preds_list[:5]}"
|
223
|
+
else:
|
224
|
+
# fallback
|
225
|
+
preds_str = str(preds)
|
226
|
+
artifact_dict = {"predictions": preds_str}
|
227
|
+
message = f"Predictions returned (unrecognized type). Example: {preds_str[:100]}..."
|
228
|
+
|
229
|
+
return (message, artifact_dict)
|
230
|
+
|
231
|
+
|
232
|
+
# MLflow tool to launch gui for mlflow
|
233
|
+
@tool(response_format='content')
|
234
|
+
def mlflow_launch_ui(
|
235
|
+
port: int = 5000,
|
236
|
+
host: str = "localhost",
|
237
|
+
tracking_uri: Optional[str] = None
|
238
|
+
) -> str:
|
239
|
+
"""
|
240
|
+
Launch the MLflow UI.
|
241
|
+
|
242
|
+
Parameters
|
243
|
+
----------
|
244
|
+
port : int, optional
|
245
|
+
The port on which to run the UI.
|
246
|
+
host : str, optional
|
247
|
+
The host address to bind the UI to.
|
248
|
+
tracking_uri : str, optional
|
249
|
+
Address of local or remote tracking server.
|
250
|
+
|
251
|
+
Returns
|
252
|
+
-------
|
253
|
+
str
|
254
|
+
Confirmation message.
|
255
|
+
"""
|
256
|
+
print(" * Tool: mlflow_launch_ui")
|
257
|
+
import subprocess
|
258
|
+
|
259
|
+
# Try binding to the user-specified port first
|
260
|
+
allocated_port = _find_free_port(start_port=port, host=host)
|
261
|
+
|
262
|
+
cmd = ["mlflow", "ui", "--host", host, "--port", str(allocated_port)]
|
263
|
+
if tracking_uri:
|
264
|
+
cmd.extend(["--backend-store-uri", tracking_uri])
|
265
|
+
|
266
|
+
process = subprocess.Popen(cmd)
|
267
|
+
return (f"MLflow UI launched at http://{host}:{allocated_port}. "
|
268
|
+
f"(PID: {process.pid})")
|
269
|
+
|
270
|
+
def _find_free_port(start_port: int, host: str) -> int:
|
271
|
+
"""
|
272
|
+
Find a free port >= start_port on the specified host.
|
273
|
+
If the start_port is free, returns start_port, else tries subsequent ports.
|
274
|
+
"""
|
275
|
+
import socket
|
276
|
+
for port_candidate in range(start_port, start_port + 1000):
|
277
|
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
|
278
|
+
try:
|
279
|
+
sock.bind((host, port_candidate))
|
280
|
+
except OSError:
|
281
|
+
# Port is in use, try the next one
|
282
|
+
continue
|
283
|
+
# If bind succeeds, it's free
|
284
|
+
return port_candidate
|
285
|
+
|
286
|
+
raise OSError("No available ports found in the range "
|
287
|
+
f"{start_port}-{start_port + 999}")
|
288
|
+
|
289
|
+
|
290
|
+
@tool(response_format='content')
|
291
|
+
def mlflow_stop_ui(port: int = 5000) -> str:
|
292
|
+
"""
|
293
|
+
Kill any process currently listening on the given MLflow UI port.
|
294
|
+
Requires `pip install psutil`.
|
295
|
+
|
296
|
+
Parameters
|
297
|
+
----------
|
298
|
+
port : int, optional
|
299
|
+
The port on which the UI is running.
|
300
|
+
"""
|
301
|
+
print(" * Tool: mlflow_stop_ui")
|
302
|
+
import psutil
|
303
|
+
|
304
|
+
# Gather system-wide inet connections
|
305
|
+
for conn in psutil.net_connections(kind="inet"):
|
306
|
+
# Check if this connection has a local address (laddr) and if
|
307
|
+
# the port matches the one we're trying to free
|
308
|
+
if conn.laddr and conn.laddr.port == port:
|
309
|
+
# Some connections may not have an associated PID
|
310
|
+
if conn.pid is not None:
|
311
|
+
try:
|
312
|
+
p = psutil.Process(conn.pid)
|
313
|
+
p_name = p.name() # optional: get process name for clarity
|
314
|
+
p.kill() # forcibly terminate the process
|
315
|
+
return (
|
316
|
+
f"Killed process {conn.pid} ({p_name}) listening on port {port}."
|
317
|
+
)
|
318
|
+
except psutil.NoSuchProcess:
|
319
|
+
return (
|
320
|
+
"Process was already terminated before we could kill it."
|
321
|
+
)
|
322
|
+
return f"No process found listening on port {port}."
|
323
|
+
|
324
|
+
|
325
|
+
@tool(response_format='content_and_artifact')
|
326
|
+
def mlflow_list_artifacts(
|
327
|
+
run_id: str,
|
328
|
+
path: Optional[str] = None,
|
329
|
+
tracking_uri: Optional[str] = None
|
330
|
+
) -> tuple:
|
331
|
+
"""
|
332
|
+
List artifacts under a given MLflow run.
|
333
|
+
|
334
|
+
Parameters
|
335
|
+
----------
|
336
|
+
run_id : str
|
337
|
+
The ID of the run whose artifacts to list.
|
338
|
+
path : str, optional
|
339
|
+
Path within the run's artifact directory to list. Defaults to the root.
|
340
|
+
tracking_uri : str, optional
|
341
|
+
Custom tracking server URI.
|
342
|
+
|
343
|
+
Returns
|
344
|
+
-------
|
345
|
+
tuple
|
346
|
+
(summary_message, artifact_listing)
|
347
|
+
"""
|
348
|
+
print(" * Tool: mlflow_list_artifacts")
|
349
|
+
from mlflow.tracking import MlflowClient
|
350
|
+
|
351
|
+
client = MlflowClient(tracking_uri=tracking_uri)
|
352
|
+
# If path is None, list the root folder
|
353
|
+
artifact_list = client.list_artifacts(run_id, path or "")
|
354
|
+
|
355
|
+
# Convert to a more user-friendly structure
|
356
|
+
artifacts_data = []
|
357
|
+
for artifact in artifact_list:
|
358
|
+
artifacts_data.append({
|
359
|
+
"path": artifact.path,
|
360
|
+
"is_dir": artifact.is_dir,
|
361
|
+
"file_size": artifact.file_size
|
362
|
+
})
|
363
|
+
|
364
|
+
return (
|
365
|
+
f"Found {len(artifacts_data)} artifacts.",
|
366
|
+
artifacts_data
|
367
|
+
)
|
368
|
+
|
369
|
+
|
370
|
+
@tool(response_format='content_and_artifact')
|
371
|
+
def mlflow_download_artifacts(
|
372
|
+
run_id: str,
|
373
|
+
path: Optional[str] = None,
|
374
|
+
dst_path: Optional[str] = "./downloaded_artifacts",
|
375
|
+
tracking_uri: Optional[str] = None
|
376
|
+
) -> tuple:
|
377
|
+
"""
|
378
|
+
Download artifacts from MLflow to a local directory.
|
379
|
+
|
380
|
+
Parameters
|
381
|
+
----------
|
382
|
+
run_id : str
|
383
|
+
The ID of the run whose artifacts to download.
|
384
|
+
path : str, optional
|
385
|
+
Path within the run's artifact directory to download. Defaults to the root.
|
386
|
+
dst_path : str, optional
|
387
|
+
Local destination path to store artifacts.
|
388
|
+
tracking_uri : str, optional
|
389
|
+
MLflow tracking server URI.
|
390
|
+
|
391
|
+
Returns
|
392
|
+
-------
|
393
|
+
tuple
|
394
|
+
(summary_message, artifact_dict)
|
395
|
+
"""
|
396
|
+
print(" * Tool: mlflow_download_artifacts")
|
397
|
+
from mlflow.tracking import MlflowClient
|
398
|
+
import os
|
399
|
+
|
400
|
+
client = MlflowClient(tracking_uri=tracking_uri)
|
401
|
+
local_path = client.download_artifacts(run_id, path or "", dst_path)
|
402
|
+
|
403
|
+
# Build a recursive listing of what was downloaded
|
404
|
+
downloaded_files = []
|
405
|
+
for root, dirs, files in os.walk(local_path):
|
406
|
+
for f in files:
|
407
|
+
downloaded_files.append(os.path.join(root, f))
|
408
|
+
|
409
|
+
message = (
|
410
|
+
f"Artifacts for run_id='{run_id}' have been downloaded to: {local_path}. "
|
411
|
+
f"Total files: {len(downloaded_files)}."
|
412
|
+
)
|
413
|
+
|
414
|
+
return (
|
415
|
+
message,
|
416
|
+
{"downloaded_files": downloaded_files}
|
417
|
+
)
|
418
|
+
|
419
|
+
|
420
|
+
@tool(response_format='content_and_artifact')
|
421
|
+
def mlflow_list_registered_models(
|
422
|
+
max_results: int = 100,
|
423
|
+
tracking_uri: Optional[str] = None,
|
424
|
+
registry_uri: Optional[str] = None
|
425
|
+
) -> tuple:
|
426
|
+
"""
|
427
|
+
List all registered models in MLflow's model registry.
|
428
|
+
|
429
|
+
Parameters
|
430
|
+
----------
|
431
|
+
max_results : int, optional
|
432
|
+
Maximum number of models to return.
|
433
|
+
tracking_uri : str, optional
|
434
|
+
registry_uri : str, optional
|
435
|
+
|
436
|
+
Returns
|
437
|
+
-------
|
438
|
+
tuple
|
439
|
+
(summary_message, model_list)
|
440
|
+
"""
|
441
|
+
print(" * Tool: mlflow_list_registered_models")
|
442
|
+
from mlflow.tracking import MlflowClient
|
443
|
+
|
444
|
+
client = MlflowClient(tracking_uri=tracking_uri, registry_uri=registry_uri)
|
445
|
+
# The list_registered_models() call can be paginated; for simplicity, we just pass max_results
|
446
|
+
models = client.list_registered_models(max_results=max_results)
|
447
|
+
|
448
|
+
models_data = []
|
449
|
+
for m in models:
|
450
|
+
models_data.append({
|
451
|
+
"name": m.name,
|
452
|
+
"latest_versions": [
|
453
|
+
{
|
454
|
+
"version": v.version,
|
455
|
+
"run_id": v.run_id,
|
456
|
+
"current_stage": v.current_stage,
|
457
|
+
}
|
458
|
+
for v in m.latest_versions
|
459
|
+
]
|
460
|
+
})
|
461
|
+
|
462
|
+
return (
|
463
|
+
f"Found {len(models_data)} registered models.",
|
464
|
+
models_data
|
465
|
+
)
|
466
|
+
|
467
|
+
|
468
|
+
@tool(response_format='content_and_artifact')
|
469
|
+
def mlflow_search_registered_models(
|
470
|
+
filter_string: Optional[str] = None,
|
471
|
+
order_by: Optional[List[str]] = None,
|
472
|
+
max_results: int = 100,
|
473
|
+
tracking_uri: Optional[str] = None,
|
474
|
+
registry_uri: Optional[str] = None
|
475
|
+
) -> tuple:
|
476
|
+
"""
|
477
|
+
Search registered models in MLflow's registry using optional filters.
|
478
|
+
|
479
|
+
Parameters
|
480
|
+
----------
|
481
|
+
filter_string : str, optional
|
482
|
+
e.g. "name LIKE 'my_model%'" or "tags.stage = 'production'".
|
483
|
+
order_by : list, optional
|
484
|
+
e.g. ["name ASC"] or ["timestamp DESC"].
|
485
|
+
max_results : int, optional
|
486
|
+
Max number of results.
|
487
|
+
tracking_uri : str, optional
|
488
|
+
registry_uri : str, optional
|
489
|
+
|
490
|
+
Returns
|
491
|
+
-------
|
492
|
+
tuple
|
493
|
+
(summary_message, model_dict_list)
|
494
|
+
"""
|
495
|
+
print(" * Tool: mlflow_search_registered_models")
|
496
|
+
from mlflow.tracking import MlflowClient
|
497
|
+
|
498
|
+
client = MlflowClient(tracking_uri=tracking_uri, registry_uri=registry_uri)
|
499
|
+
models = client.search_registered_models(
|
500
|
+
filter_string=filter_string,
|
501
|
+
order_by=order_by,
|
502
|
+
max_results=max_results
|
503
|
+
)
|
504
|
+
|
505
|
+
models_data = []
|
506
|
+
for m in models:
|
507
|
+
models_data.append({
|
508
|
+
"name": m.name,
|
509
|
+
"description": m.description,
|
510
|
+
"creation_timestamp": m.creation_timestamp,
|
511
|
+
"last_updated_timestamp": m.last_updated_timestamp,
|
512
|
+
"latest_versions": [
|
513
|
+
{
|
514
|
+
"version": v.version,
|
515
|
+
"run_id": v.run_id,
|
516
|
+
"current_stage": v.current_stage
|
517
|
+
}
|
518
|
+
for v in m.latest_versions
|
519
|
+
]
|
520
|
+
})
|
521
|
+
|
522
|
+
return (
|
523
|
+
f"Found {len(models_data)} models matching filter={filter_string}.",
|
524
|
+
models_data
|
525
|
+
)
|
526
|
+
|
527
|
+
|
528
|
+
@tool(response_format='content_and_artifact')
|
529
|
+
def mlflow_get_model_version_details(
|
530
|
+
name: str,
|
531
|
+
version: str,
|
532
|
+
tracking_uri: Optional[str] = None,
|
533
|
+
registry_uri: Optional[str] = None
|
534
|
+
) -> tuple:
|
535
|
+
"""
|
536
|
+
Retrieve details about a specific model version in the MLflow registry.
|
537
|
+
|
538
|
+
Parameters
|
539
|
+
----------
|
540
|
+
name : str
|
541
|
+
Name of the registered model.
|
542
|
+
version : str
|
543
|
+
Version number of that model.
|
544
|
+
tracking_uri : str, optional
|
545
|
+
registry_uri : str, optional
|
546
|
+
|
547
|
+
Returns
|
548
|
+
-------
|
549
|
+
tuple
|
550
|
+
(summary_message, version_data_dict)
|
551
|
+
"""
|
552
|
+
print(" * Tool: mlflow_get_model_version_details")
|
553
|
+
from mlflow.tracking import MlflowClient
|
554
|
+
|
555
|
+
client = MlflowClient(tracking_uri=tracking_uri, registry_uri=registry_uri)
|
556
|
+
version_details = client.get_model_version(name, version)
|
557
|
+
|
558
|
+
data = {
|
559
|
+
"name": version_details.name,
|
560
|
+
"version": version_details.version,
|
561
|
+
"run_id": version_details.run_id,
|
562
|
+
"creation_timestamp": version_details.creation_timestamp,
|
563
|
+
"current_stage": version_details.current_stage,
|
564
|
+
"description": version_details.description,
|
565
|
+
"status": version_details.status
|
566
|
+
}
|
567
|
+
|
568
|
+
return (
|
569
|
+
f"Model version details retrieved for {name} v{version}",
|
570
|
+
data
|
571
|
+
)
|
572
|
+
|
573
|
+
|
574
|
+
# @tool
|
575
|
+
# def get_or_create_experiment(experiment_name):
|
576
|
+
# """
|
577
|
+
# Retrieve the ID of an existing MLflow experiment or create a new one if it doesn't exist.
|
578
|
+
|
579
|
+
# This function checks if an experiment with the given name exists within MLflow.
|
580
|
+
# If it does, the function returns its ID. If not, it creates a new experiment
|
581
|
+
# with the provided name and returns its ID.
|
582
|
+
|
583
|
+
# Parameters:
|
584
|
+
# - experiment_name (str): Name of the MLflow experiment.
|
585
|
+
|
586
|
+
# Returns:
|
587
|
+
# - str: ID of the existing or newly created MLflow experiment.
|
588
|
+
# """
|
589
|
+
# import mlflow
|
590
|
+
# if experiment := mlflow.get_experiment_by_name(experiment_name):
|
591
|
+
# return experiment.experiment_id
|
592
|
+
# else:
|
593
|
+
# return mlflow.create_experiment(experiment_name)
|
594
|
+
|
595
|
+
|
596
|
+
|
597
|
+
# @tool("mlflow_set_tracking_uri", return_direct=True)
|
598
|
+
# def mlflow_set_tracking_uri(tracking_uri: str) -> str:
|
599
|
+
# """
|
600
|
+
# Set or change the MLflow tracking URI.
|
601
|
+
|
602
|
+
# Parameters
|
603
|
+
# ----------
|
604
|
+
# tracking_uri : str
|
605
|
+
# The URI/path where MLflow logs & metrics are stored.
|
606
|
+
|
607
|
+
# Returns
|
608
|
+
# -------
|
609
|
+
# str
|
610
|
+
# Confirmation message.
|
611
|
+
# """
|
612
|
+
# import mlflow
|
613
|
+
# mlflow.set_tracking_uri(tracking_uri)
|
614
|
+
# return f"MLflow tracking URI set to: {tracking_uri}"
|
615
|
+
|
616
|
+
|
617
|
+
# @tool("mlflow_list_experiments", return_direct=True)
|
618
|
+
# def mlflow_list_experiments() -> str:
|
619
|
+
# """
|
620
|
+
# List existing MLflow experiments.
|
621
|
+
|
622
|
+
# Returns
|
623
|
+
# -------
|
624
|
+
# str
|
625
|
+
# JSON-serialized list of experiment metadata (ID, name, etc.).
|
626
|
+
# """
|
627
|
+
# from mlflow.tracking import MlflowClient
|
628
|
+
# import json
|
629
|
+
|
630
|
+
# client = MlflowClient()
|
631
|
+
# experiments = client.list_experiments()
|
632
|
+
# # Convert to a JSON-like structure
|
633
|
+
# experiments_data = [
|
634
|
+
# dict(experiment_id=e.experiment_id, name=e.name, artifact_location=e.artifact_location)
|
635
|
+
# for e in experiments
|
636
|
+
# ]
|
637
|
+
|
638
|
+
# return json.dumps(experiments_data)
|
639
|
+
|
640
|
+
|
641
|
+
# @tool("mlflow_create_experiment", return_direct=True)
|
642
|
+
# def mlflow_create_experiment(experiment_name: str) -> str:
|
643
|
+
# """
|
644
|
+
# Create a new MLflow experiment by name.
|
645
|
+
|
646
|
+
# Parameters
|
647
|
+
# ----------
|
648
|
+
# experiment_name : str
|
649
|
+
# The name of the experiment to create.
|
650
|
+
|
651
|
+
# Returns
|
652
|
+
# -------
|
653
|
+
# str
|
654
|
+
# The experiment ID or an error message if creation failed.
|
655
|
+
# """
|
656
|
+
# from mlflow.tracking import MlflowClient
|
657
|
+
|
658
|
+
# client = MlflowClient()
|
659
|
+
# exp_id = client.create_experiment(experiment_name)
|
660
|
+
# return f"Experiment created with ID: {exp_id}"
|
661
|
+
|
662
|
+
|
663
|
+
# @tool("mlflow_set_experiment", return_direct=True)
|
664
|
+
# def mlflow_set_experiment(experiment_name: str) -> str:
|
665
|
+
# """
|
666
|
+
# Set or create an MLflow experiment for subsequent logging.
|
667
|
+
|
668
|
+
# Parameters
|
669
|
+
# ----------
|
670
|
+
# experiment_name : str
|
671
|
+
# The name of the experiment to set.
|
672
|
+
|
673
|
+
# Returns
|
674
|
+
# -------
|
675
|
+
# str
|
676
|
+
# Confirmation of the chosen experiment name.
|
677
|
+
# """
|
678
|
+
# import mlflow
|
679
|
+
# mlflow.set_experiment(experiment_name)
|
680
|
+
# return f"Active MLflow experiment set to: {experiment_name}"
|
681
|
+
|
682
|
+
|
683
|
+
# @tool("mlflow_start_run", return_direct=True)
|
684
|
+
# def mlflow_start_run(run_name: Optional[str] = None) -> str:
|
685
|
+
# """
|
686
|
+
# Start a new MLflow run under the current experiment.
|
687
|
+
|
688
|
+
# Parameters
|
689
|
+
# ----------
|
690
|
+
# run_name : str, optional
|
691
|
+
# Optional run name.
|
692
|
+
|
693
|
+
# Returns
|
694
|
+
# -------
|
695
|
+
# str
|
696
|
+
# The run_id of the newly started MLflow run.
|
697
|
+
# """
|
698
|
+
# import mlflow
|
699
|
+
# with mlflow.start_run(run_name=run_name) as run:
|
700
|
+
# run_id = run.info.run_id
|
701
|
+
# return f"MLflow run started with run_id: {run_id}"
|
702
|
+
|
703
|
+
|
704
|
+
# @tool("mlflow_log_params", return_direct=True)
|
705
|
+
# def mlflow_log_params(params: Dict[str, Any]) -> str:
|
706
|
+
# """
|
707
|
+
# Log a batch of parameters to the current MLflow run.
|
708
|
+
|
709
|
+
# Parameters
|
710
|
+
# ----------
|
711
|
+
# params : dict
|
712
|
+
# A dictionary of parameter name -> parameter value.
|
713
|
+
|
714
|
+
# Returns
|
715
|
+
# -------
|
716
|
+
# str
|
717
|
+
# Confirmation message.
|
718
|
+
# """
|
719
|
+
# import mlflow
|
720
|
+
# mlflow.log_params(params)
|
721
|
+
# return f"Logged parameters: {params}"
|
722
|
+
|
723
|
+
|
724
|
+
# @tool("mlflow_log_metrics", return_direct=True)
|
725
|
+
# def mlflow_log_metrics(metrics: Dict[str, float], step: Optional[int] = None) -> str:
|
726
|
+
# """
|
727
|
+
# Log a dictionary of metrics to the current MLflow run.
|
728
|
+
|
729
|
+
# Parameters
|
730
|
+
# ----------
|
731
|
+
# metrics : dict
|
732
|
+
# Metric name -> numeric value.
|
733
|
+
# step : int, optional
|
734
|
+
# The training step or iteration number.
|
735
|
+
|
736
|
+
# Returns
|
737
|
+
# -------
|
738
|
+
# str
|
739
|
+
# Confirmation message.
|
740
|
+
# """
|
741
|
+
# import mlflow
|
742
|
+
# mlflow.log_metrics(metrics, step=step)
|
743
|
+
# return f"Logged metrics: {metrics} at step {step}"
|
744
|
+
|
745
|
+
|
746
|
+
# @tool("mlflow_log_artifact", return_direct=True)
|
747
|
+
# def mlflow_log_artifact(artifact_path: str, artifact_folder_name: Optional[str] = None) -> str:
|
748
|
+
# """
|
749
|
+
# Log a local file or directory as an MLflow artifact.
|
750
|
+
|
751
|
+
# Parameters
|
752
|
+
# ----------
|
753
|
+
# artifact_path : str
|
754
|
+
# The local path to the file/directory to be logged.
|
755
|
+
# artifact_folder_name : str, optional
|
756
|
+
# Subfolder within the run's artifact directory.
|
757
|
+
|
758
|
+
# Returns
|
759
|
+
# -------
|
760
|
+
# str
|
761
|
+
# Confirmation message.
|
762
|
+
# """
|
763
|
+
# import mlflow
|
764
|
+
# if artifact_folder_name:
|
765
|
+
# mlflow.log_artifact(artifact_path, artifact_folder_name)
|
766
|
+
# return f"Artifact logged from {artifact_path} into folder '{artifact_folder_name}'"
|
767
|
+
# else:
|
768
|
+
# mlflow.log_artifact(artifact_path)
|
769
|
+
# return f"Artifact logged from {artifact_path}"
|
770
|
+
|
771
|
+
|
772
|
+
# @tool("mlflow_log_model", return_direct=True)
|
773
|
+
# def mlflow_log_model(model_path: str, registered_model_name: Optional[str] = None) -> str:
|
774
|
+
# """
|
775
|
+
# Log a model artifact (e.g., an H2O-saved model directory) to MLflow.
|
776
|
+
|
777
|
+
# Parameters
|
778
|
+
# ----------
|
779
|
+
# model_path : str
|
780
|
+
# The local filesystem path containing the model artifacts.
|
781
|
+
# registered_model_name : str, optional
|
782
|
+
# If provided, will also attempt to register the model under this name.
|
783
|
+
|
784
|
+
# Returns
|
785
|
+
# -------
|
786
|
+
# str
|
787
|
+
# Confirmation message with any relevant registration details.
|
788
|
+
# """
|
789
|
+
# import mlflow
|
790
|
+
# if registered_model_name:
|
791
|
+
# mlflow.pyfunc.log_model(
|
792
|
+
# artifact_path="model",
|
793
|
+
# python_model=None, # if you have a pyfunc wrapper, specify it
|
794
|
+
# registered_model_name=registered_model_name,
|
795
|
+
# code_path=None,
|
796
|
+
# conda_env=None,
|
797
|
+
# model_path=model_path # for certain model flavors, or use flavors
|
798
|
+
# )
|
799
|
+
# return f"Model logged and registered under '{registered_model_name}' from path {model_path}"
|
800
|
+
# else:
|
801
|
+
# # Simple log as generic artifact
|
802
|
+
# mlflow.pyfunc.log_model(
|
803
|
+
# artifact_path="model",
|
804
|
+
# python_model=None,
|
805
|
+
# code_path=None,
|
806
|
+
# conda_env=None,
|
807
|
+
# model_path=model_path
|
808
|
+
# )
|
809
|
+
# return f"Model logged (no registration) from path {model_path}"
|
810
|
+
|
811
|
+
|
812
|
+
# @tool("mlflow_end_run", return_direct=True)
|
813
|
+
# def mlflow_end_run() -> str:
|
814
|
+
# """
|
815
|
+
# End the current MLflow run (if one is active).
|
816
|
+
|
817
|
+
# Returns
|
818
|
+
# -------
|
819
|
+
# str
|
820
|
+
# Confirmation message.
|
821
|
+
# """
|
822
|
+
# import mlflow
|
823
|
+
# mlflow.end_run()
|
824
|
+
# return "MLflow run ended."
|
825
|
+
|
826
|
+
|
827
|
+
# @tool("mlflow_search_runs", return_direct=True)
|
828
|
+
# def mlflow_search_runs(
|
829
|
+
# experiment_names_or_ids: Optional[Union[List[str], List[int], str, int]] = None,
|
830
|
+
# filter_string: Optional[str] = None
|
831
|
+
# ) -> str:
|
832
|
+
# """
|
833
|
+
# Search runs within one or more MLflow experiments, optionally filtering by a filter_string.
|
834
|
+
|
835
|
+
# Parameters
|
836
|
+
# ----------
|
837
|
+
# experiment_names_or_ids : list or str or int, optional
|
838
|
+
# Experiment IDs or names.
|
839
|
+
# filter_string : str, optional
|
840
|
+
# MLflow filter expression, e.g. "metrics.rmse < 1.0".
|
841
|
+
|
842
|
+
# Returns
|
843
|
+
# -------
|
844
|
+
# str
|
845
|
+
# JSON-formatted list of runs that match the query.
|
846
|
+
# """
|
847
|
+
# import mlflow
|
848
|
+
# import json
|
849
|
+
# if experiment_names_or_ids is None:
|
850
|
+
# experiment_names_or_ids = []
|
851
|
+
# if isinstance(experiment_names_or_ids, (str, int)):
|
852
|
+
# experiment_names_or_ids = [experiment_names_or_ids]
|
853
|
+
|
854
|
+
# df = mlflow.search_runs(
|
855
|
+
# experiment_names=experiment_names_or_ids if all(isinstance(e, str) for e in experiment_names_or_ids) else None,
|
856
|
+
# experiment_ids=experiment_names_or_ids if all(isinstance(e, int) for e in experiment_names_or_ids) else None,
|
857
|
+
# filter_string=filter_string
|
858
|
+
# )
|
859
|
+
# return df.to_json(orient="records")
|
860
|
+
|
861
|
+
|
862
|
+
# @tool("mlflow_get_run", return_direct=True)
|
863
|
+
# def mlflow_get_run(run_id: str) -> str:
|
864
|
+
# """
|
865
|
+
# Retrieve details (params, metrics, etc.) for a specific MLflow run by ID.
|
866
|
+
|
867
|
+
# Parameters
|
868
|
+
# ----------
|
869
|
+
# run_id : str
|
870
|
+
# The ID of the MLflow run to retrieve.
|
871
|
+
|
872
|
+
# Returns
|
873
|
+
# -------
|
874
|
+
# str
|
875
|
+
# JSON-formatted data containing run info, params, and metrics.
|
876
|
+
# """
|
877
|
+
# from mlflow.tracking import MlflowClient
|
878
|
+
# import json
|
879
|
+
|
880
|
+
# client = MlflowClient()
|
881
|
+
# run = client.get_run(run_id)
|
882
|
+
# data = {
|
883
|
+
# "run_id": run.info.run_id,
|
884
|
+
# "experiment_id": run.info.experiment_id,
|
885
|
+
# "status": run.info.status,
|
886
|
+
# "start_time": run.info.start_time,
|
887
|
+
# "end_time": run.info.end_time,
|
888
|
+
# "artifact_uri": run.info.artifact_uri,
|
889
|
+
# "params": run.data.params,
|
890
|
+
# "metrics": run.data.metrics,
|
891
|
+
# "tags": run.data.tags
|
892
|
+
# }
|
893
|
+
# return json.dumps(data)
|
894
|
+
|
895
|
+
|
896
|
+
# @tool("mlflow_load_model", return_direct=True)
|
897
|
+
# def mlflow_load_model(model_uri: str) -> str:
|
898
|
+
# """
|
899
|
+
# Load an MLflow-model (PyFunc flavor or other) into memory, returning a handle reference.
|
900
|
+
# For demonstration, we store the loaded model globally in a registry dict.
|
901
|
+
|
902
|
+
# Parameters
|
903
|
+
# ----------
|
904
|
+
# model_uri : str
|
905
|
+
# The URI of the model to load, e.g. "runs:/<RUN_ID>/model" or "models:/MyModel/Production".
|
906
|
+
|
907
|
+
# Returns
|
908
|
+
# -------
|
909
|
+
# str
|
910
|
+
# A reference key identifying the loaded model (for subsequent predictions),
|
911
|
+
# or a direct message if you prefer to store it differently.
|
912
|
+
# """
|
913
|
+
# import mlflow.pyfunc
|
914
|
+
# from uuid import uuid4
|
915
|
+
|
916
|
+
# # For demonstration, create a global registry:
|
917
|
+
# global _LOADED_MODELS
|
918
|
+
# if "_LOADED_MODELS" not in globals():
|
919
|
+
# _LOADED_MODELS = {}
|
920
|
+
|
921
|
+
# loaded_model = mlflow.pyfunc.load_model(model_uri)
|
922
|
+
# model_key = f"model_{uuid4().hex}"
|
923
|
+
# _LOADED_MODELS[model_key] = loaded_model
|
924
|
+
|
925
|
+
# return f"Model loaded with reference key: {model_key}"
|
926
|
+
|
927
|
+
|
928
|
+
# @tool("mlflow_predict", return_direct=True)
|
929
|
+
# def mlflow_predict(model_key: str, data: List[Dict[str, Any]]) -> str:
|
930
|
+
# """
|
931
|
+
# Predict using a previously loaded MLflow model (PyFunc), identified by its reference key.
|
932
|
+
|
933
|
+
# Parameters
|
934
|
+
# ----------
|
935
|
+
# model_key : str
|
936
|
+
# The reference key for the loaded model (returned by mlflow_load_model).
|
937
|
+
# data : List[Dict[str, Any]]
|
938
|
+
# The data rows for which predictions should be made.
|
939
|
+
|
940
|
+
# Returns
|
941
|
+
# -------
|
942
|
+
# str
|
943
|
+
# JSON-formatted prediction results.
|
944
|
+
# """
|
945
|
+
# import pandas as pd
|
946
|
+
# import json
|
947
|
+
|
948
|
+
# global _LOADED_MODELS
|
949
|
+
# if model_key not in _LOADED_MODELS:
|
950
|
+
# return f"No model found for key: {model_key}"
|
951
|
+
|
952
|
+
# model = _LOADED_MODELS[model_key]
|
953
|
+
# df = pd.DataFrame(data)
|
954
|
+
# preds = model.predict(df)
|
955
|
+
# # Convert to JSON (DataFrame or Series)
|
956
|
+
# if hasattr(preds, "to_json"):
|
957
|
+
# return preds.to_json(orient="records")
|
958
|
+
# else:
|
959
|
+
# # If preds is just a numpy array or list
|
960
|
+
# return json.dumps(preds.tolist())
|
961
|
+
|