ai-data-science-team 0.0.0.9005__py3-none-any.whl → 0.0.0.9007__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,331 @@
1
+ # BUSINESS SCIENCE UNIVERSITY
2
+ # AI DATA SCIENCE TEAM
3
+ # ***
4
+ # * Agents: Data Visualization Agent
5
+
6
+
7
+
8
+ # Libraries
9
+ from typing import TypedDict, Annotated, Sequence, Literal
10
+ import operator
11
+
12
+ from langchain.prompts import PromptTemplate
13
+ from langchain_core.output_parsers import StrOutputParser
14
+ from langchain_core.messages import BaseMessage
15
+
16
+ from langgraph.types import Command
17
+ from langgraph.checkpoint.memory import MemorySaver
18
+
19
+ import os
20
+ import io
21
+ import pandas as pd
22
+
23
+ from ai_data_science_team.templates import(
24
+ node_func_execute_agent_code_on_data,
25
+ node_func_human_review,
26
+ node_func_fix_agent_code,
27
+ node_func_explain_agent_code,
28
+ create_coding_agent_graph
29
+ )
30
+ from ai_data_science_team.tools.parsers import PythonOutputParser
31
+ from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top, format_agent_name
32
+ from ai_data_science_team.tools.metadata import get_dataframe_summary
33
+ from ai_data_science_team.tools.logging import log_ai_function
34
+
35
+ # Setup
36
+ AGENT_NAME = "data_visualization_agent"
37
+ LOG_PATH = os.path.join(os.getcwd(), "logs/")
38
+
39
+ # Agent
40
+
41
+ def make_data_visualization_agent(
42
+ model,
43
+ n_samples=30,
44
+ log=False,
45
+ log_path=None,
46
+ file_name="data_visualization.py",
47
+ overwrite = True,
48
+ human_in_the_loop=False,
49
+ bypass_recommended_steps=False,
50
+ bypass_explain_code=False
51
+ ):
52
+
53
+ llm = model
54
+
55
+ # Setup Log Directory
56
+ if log:
57
+ if log_path is None:
58
+ log_path = LOG_PATH
59
+ if not os.path.exists(log_path):
60
+ os.makedirs(log_path)
61
+
62
+ # Define GraphState for the router
63
+ class GraphState(TypedDict):
64
+ messages: Annotated[Sequence[BaseMessage], operator.add]
65
+ user_instructions: str
66
+ user_instructions_processed: str
67
+ recommended_steps: str
68
+ data_raw: dict
69
+ plotly_graph: dict
70
+ all_datasets_summary: str
71
+ data_visualization_function: str
72
+ data_visualization_function_path: str
73
+ data_visualization_function_name: str
74
+ data_visualization_error: str
75
+ max_retries: int
76
+ retry_count: int
77
+
78
+ def chart_instructor(state: GraphState):
79
+
80
+ print(format_agent_name(AGENT_NAME))
81
+ print(" * CREATE CHART GENERATOR INSTRUCTIONS")
82
+
83
+ recommend_steps_prompt = PromptTemplate(
84
+ template="""
85
+ You are a supervisor that is an expert in providing instructions to a chart generator agent for plotting.
86
+
87
+ You will take a question that a user has and the data that was generated to answer the question, and create instructions to create a chart from the data that will be passed to a chart generator agent.
88
+
89
+ USER QUESTION / INSTRUCTIONS:
90
+ {user_instructions}
91
+
92
+ Previously Recommended Instructions (if any):
93
+ {recommended_steps}
94
+
95
+ DATA:
96
+ {all_datasets_summary}
97
+
98
+ Formulate chart generator instructions by informing the chart generator of what type of plotly plot to use (e.g. bar, line, scatter, etc) to best represent the data.
99
+
100
+ Come up with an informative title from the user's question and data provided. Also provide X and Y axis titles.
101
+
102
+ Instruct the chart generator to use the following theme colors, sizes, etc:
103
+
104
+ - Start with the "plotly_white" template
105
+ - Use a white background
106
+ - Use this color for bars and lines:
107
+ 'blue': '#3381ff',
108
+ - Base Font Size: 8.8 (Used for x and y axes tickfont, any annotations, hovertips)
109
+ - Title Font Size: 13.2
110
+ - Line Size: 0.65 (specify these within the xaxis and yaxis dictionaries)
111
+ - Add smoothers or trendlines to scatter plots unless not desired by the user
112
+ - Do not use color_discrete_map (this will result in an error)
113
+ - Hover tip size: 8.8
114
+
115
+ Return your instructions in the following format:
116
+ CHART GENERATOR INSTRUCTIONS:
117
+ FILL IN THE INSTRUCTIONS HERE
118
+
119
+ Avoid these:
120
+ 1. Do not include steps to save files.
121
+ 2. Do not include unrelated user instructions that are not related to the chart generation.
122
+ """,
123
+ input_variables=["user_instructions", "recommended_steps", "all_datasets_summary"]
124
+
125
+ )
126
+
127
+ data_raw = state.get("data_raw")
128
+ df = pd.DataFrame.from_dict(data_raw)
129
+
130
+ all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples, skip_stats=False)
131
+
132
+ all_datasets_summary_str = "\n\n".join(all_datasets_summary)
133
+
134
+ chart_instructor = recommend_steps_prompt | llm
135
+
136
+ recommended_steps = chart_instructor.invoke({
137
+ "user_instructions": state.get("user_instructions"),
138
+ "recommended_steps": state.get("recommended_steps"),
139
+ "all_datasets_summary": all_datasets_summary_str
140
+ })
141
+
142
+ return {
143
+ "recommended_steps": "\n\n# Recommended Data Cleaning Steps:\n" + recommended_steps.content.strip(),
144
+ "all_datasets_summary": all_datasets_summary_str
145
+ }
146
+
147
+ def chart_generator(state: GraphState):
148
+
149
+ print(" * CREATE DATA VISUALIZATION CODE")
150
+
151
+
152
+ if bypass_recommended_steps:
153
+ print(format_agent_name(AGENT_NAME))
154
+
155
+ data_raw = state.get("data_raw")
156
+ df = pd.DataFrame.from_dict(data_raw)
157
+
158
+ all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples, skip_stats=False)
159
+
160
+ all_datasets_summary_str = "\n\n".join(all_datasets_summary)
161
+
162
+ chart_generator_instructions = state.get("user_instructions")
163
+
164
+ else:
165
+ all_datasets_summary_str = state.get("all_datasets_summary")
166
+ chart_generator_instructions = state.get("recommended_steps")
167
+
168
+ prompt_template = PromptTemplate(
169
+ template="""
170
+ You are a chart generator agent that is an expert in generating plotly charts. You must use plotly or plotly.express to produce plots.
171
+
172
+ Your job is to produce python code to generate visualizations.
173
+
174
+ You will take instructions from a Chart Instructor and generate a plotly chart from the data provided.
175
+
176
+ CHART INSTRUCTIONS:
177
+ {chart_generator_instructions}
178
+
179
+ DATA:
180
+ {all_datasets_summary}
181
+
182
+ RETURN:
183
+
184
+ Return Python code in ```python ``` format with a single function definition, data_visualization(data_raw), that includes all imports inside the function.
185
+
186
+ Return the plotly chart as a dictionary.
187
+
188
+ Return code to provide the data visualization function:
189
+
190
+ def data_visualization(data_raw):
191
+ import pandas as pd
192
+ import numpy as np
193
+ import json
194
+ import plotly.graph_objects as go
195
+ import plotly.io as pio
196
+
197
+ ...
198
+
199
+ fig_json = pio.to_json(fig)
200
+ fig_dict = json.loads(fig_json)
201
+
202
+ return fig_dict
203
+
204
+ Avoid these:
205
+ 1. Do not include steps to save files.
206
+ 2. Do not include unrelated user instructions that are not related to the chart generation.
207
+
208
+ """,
209
+ input_variables=["chart_generator_instructions", "all_datasets_summary"]
210
+ )
211
+
212
+ data_visualization_agent = prompt_template | llm | PythonOutputParser()
213
+
214
+ response = data_visualization_agent.invoke({
215
+ "chart_generator_instructions": chart_generator_instructions,
216
+ "all_datasets_summary": all_datasets_summary_str
217
+ })
218
+
219
+ response = relocate_imports_inside_function(response)
220
+ response = add_comments_to_top(response, agent_name=AGENT_NAME)
221
+
222
+ # For logging: store the code generated:
223
+ file_path, file_name_2 = log_ai_function(
224
+ response=response,
225
+ file_name=file_name,
226
+ log=log,
227
+ log_path=log_path,
228
+ overwrite=overwrite
229
+ )
230
+
231
+ return {
232
+ "data_visualization_function": response,
233
+ "data_visualization_function_path": file_path,
234
+ "data_visualization_function_name": file_name_2,
235
+ "all_datasets_summary": all_datasets_summary_str
236
+ }
237
+
238
+ def human_review(state: GraphState) -> Command[Literal["chart_instructor", "chart_generator"]]:
239
+ return node_func_human_review(
240
+ state=state,
241
+ prompt_text="Is the following data visualization instructions correct? (Answer 'yes' or provide modifications)\n{steps}",
242
+ yes_goto="chart_generator",
243
+ no_goto="chart_instructor",
244
+ user_instructions_key="user_instructions",
245
+ recommended_steps_key="recommended_steps"
246
+ )
247
+
248
+
249
+ def execute_data_visualization_code(state):
250
+ return node_func_execute_agent_code_on_data(
251
+ state=state,
252
+ data_key="data_raw",
253
+ result_key="plotly_graph",
254
+ error_key="data_visualization_error",
255
+ code_snippet_key="data_visualization_function",
256
+ agent_function_name="data_visualization",
257
+ pre_processing=lambda data: pd.DataFrame.from_dict(data),
258
+ # post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
259
+ error_message_prefix="An error occurred during data visualization: "
260
+ )
261
+
262
+ def fix_data_visualization_code(state: GraphState):
263
+ prompt = """
264
+ You are a Data Visualization Agent. Your job is to create a data_visualization() function that can be run on the data provided. The function is currently broken and needs to be fixed.
265
+
266
+ Make sure to only return the function definition for data_visualization().
267
+
268
+ Return Python code in ```python``` format with a single function definition, data_visualization(data_raw), that includes all imports inside the function.
269
+
270
+ This is the broken code (please fix):
271
+ {code_snippet}
272
+
273
+ Last Known Error:
274
+ {error}
275
+ """
276
+
277
+ return node_func_fix_agent_code(
278
+ state=state,
279
+ code_snippet_key="data_visualization_function",
280
+ error_key="data_visualization_error",
281
+ llm=llm,
282
+ prompt_template=prompt,
283
+ agent_name=AGENT_NAME,
284
+ log=log,
285
+ file_path=state.get("data_visualization_function_path"),
286
+ )
287
+
288
+ def explain_data_visualization_code(state: GraphState):
289
+ return node_func_explain_agent_code(
290
+ state=state,
291
+ code_snippet_key="data_visualization_function",
292
+ result_key="messages",
293
+ error_key="data_visualization_error",
294
+ llm=llm,
295
+ role=AGENT_NAME,
296
+ explanation_prompt_template="""
297
+ Explain the data visualization steps that the data visualization agent performed in this function.
298
+ Keep the summary succinct and to the point.\n\n# Data Visualization Agent:\n\n{code}
299
+ """,
300
+ success_prefix="# Data Visualization Agent:\n\n ",
301
+ error_message="The Data Visualization Agent encountered an error during data visualization. No explanation could be provided."
302
+ )
303
+
304
+ # Define the graph
305
+ node_functions = {
306
+ "chart_instructor": chart_instructor,
307
+ "human_review": human_review,
308
+ "chart_generator": chart_generator,
309
+ "execute_data_visualization_code": execute_data_visualization_code,
310
+ "fix_data_visualization_code": fix_data_visualization_code,
311
+ "explain_data_visualization_code": explain_data_visualization_code
312
+ }
313
+
314
+ app = create_coding_agent_graph(
315
+ GraphState=GraphState,
316
+ node_functions=node_functions,
317
+ recommended_steps_node_name="chart_instructor",
318
+ create_code_node_name="chart_generator",
319
+ execute_code_node_name="execute_data_visualization_code",
320
+ fix_code_node_name="fix_data_visualization_code",
321
+ explain_code_node_name="explain_data_visualization_code",
322
+ error_key="data_visualization_error",
323
+ human_in_the_loop=human_in_the_loop, # or False
324
+ human_review_node_name="human_review",
325
+ checkpointer=MemorySaver() if human_in_the_loop else None,
326
+ bypass_recommended_steps=bypass_recommended_steps,
327
+ bypass_explain_code=bypass_explain_code,
328
+ )
329
+
330
+ return app
331
+
@@ -15,7 +15,7 @@ from langchain_core.messages import BaseMessage
15
15
  from langgraph.types import Command
16
16
  from langgraph.checkpoint.memory import MemorySaver
17
17
 
18
- from ai_data_science_team.templates.agent_templates import(
18
+ from ai_data_science_team.templates import(
19
19
  node_func_execute_agent_code_on_data,
20
20
  node_func_human_review,
21
21
  node_func_fix_agent_code,
@@ -23,15 +23,25 @@ from ai_data_science_team.templates.agent_templates import(
23
23
  create_coding_agent_graph
24
24
  )
25
25
  from ai_data_science_team.tools.parsers import PythonOutputParser
26
- from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top
27
- from ai_data_science_team.tools.data_analysis import summarize_dataframes
26
+ from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top, format_agent_name
27
+ from ai_data_science_team.tools.metadata import get_dataframe_summary
28
28
  from ai_data_science_team.tools.logging import log_ai_function
29
29
 
30
30
  # Setup Logging Path
31
31
  AGENT_NAME = "data_wrangling_agent"
32
32
  LOG_PATH = os.path.join(os.getcwd(), "logs/")
33
33
 
34
- def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True, human_in_the_loop=False):
34
+ def make_data_wrangling_agent(
35
+ model,
36
+ n_samples=30,
37
+ log=False,
38
+ log_path=None,
39
+ file_name="data_wrangler.py",
40
+ overwrite = True,
41
+ human_in_the_loop=False,
42
+ bypass_recommended_steps=False,
43
+ bypass_explain_code=False
44
+ ):
35
45
  """
36
46
  Creates a data wrangling agent that can be run on one or more datasets. The agent can be
37
47
  instructed to perform common data wrangling steps such as:
@@ -52,17 +62,27 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
52
62
  ----------
53
63
  model : langchain.llms.base.LLM
54
64
  The language model to use to generate code.
65
+ n_samples : int, optional
66
+ The number of samples to show in the data summary. Defaults to 30.
67
+ If you get an error due to maximum tokens, try reducing this number.
68
+ > "This model's maximum context length is 128000 tokens. However, your messages resulted in 333858 tokens. Please reduce the length of the messages."
55
69
  log : bool, optional
56
70
  Whether or not to log the code generated and any errors that occur.
57
71
  Defaults to False.
58
72
  log_path : str, optional
59
73
  The path to the directory where the log files should be stored. Defaults to "logs/".
74
+ file_name : str, optional
75
+ The name of the file to save the response to. Defaults to "data_wrangler.py".
60
76
  overwrite : bool, optional
61
77
  Whether or not to overwrite the log file if it already exists. If False, a unique file name will be created.
62
78
  Defaults to True.
63
79
  human_in_the_loop : bool, optional
64
80
  Whether or not to use human in the loop. If True, adds an interrupt and human-in-the-loop
65
81
  step that asks the user to review the data wrangling instructions. Defaults to False.
82
+ bypass_recommended_steps : bool, optional
83
+ Bypass the recommendation step, by default False
84
+ bypass_explain_code : bool, optional
85
+ Bypass the code explanation step, by default False.
66
86
 
67
87
  Example
68
88
  -------
@@ -90,7 +110,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
90
110
 
91
111
  Returns
92
112
  -------
93
- app : langchain.graphs.StateGraph
113
+ app : langchain.graphs.CompiledStateGraph
94
114
  The data wrangling agent as a state graph.
95
115
  """
96
116
  llm = model
@@ -118,7 +138,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
118
138
  retry_count: int
119
139
 
120
140
  def recommend_wrangling_steps(state: GraphState):
121
- print("---DATA WRANGLING AGENT----")
141
+ print(format_agent_name(AGENT_NAME))
122
142
  print(" * RECOMMEND WRANGLING STEPS")
123
143
 
124
144
  data_raw = state.get("data_raw")
@@ -139,7 +159,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
139
159
 
140
160
  # Create a summary for all datasets
141
161
  # We'll include a short sample and info for each dataset
142
- all_datasets_summary = summarize_dataframes(dataframes)
162
+ all_datasets_summary = get_dataframe_summary(dataframes, n_sample=n_samples)
143
163
 
144
164
  # Join all datasets summaries into one big text block
145
165
  all_datasets_summary_str = "\n\n".join(all_datasets_summary)
@@ -172,6 +192,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
172
192
 
173
193
  Avoid these:
174
194
  1. Do not include steps to save files.
195
+ 2. Do not include unrelated user instructions that are not related to the data wrangling.
175
196
  """,
176
197
  input_variables=["user_instructions", "recommended_steps", "all_datasets_summary"]
177
198
  )
@@ -190,6 +211,35 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
190
211
 
191
212
 
192
213
  def create_data_wrangler_code(state: GraphState):
214
+ if bypass_recommended_steps:
215
+ print(format_agent_name(AGENT_NAME))
216
+
217
+ data_raw = state.get("data_raw")
218
+
219
+ if isinstance(data_raw, dict):
220
+ # Single dataset scenario
221
+ primary_dataset_name = "main"
222
+ datasets = {primary_dataset_name: data_raw}
223
+ elif isinstance(data_raw, list) and all(isinstance(item, dict) for item in data_raw):
224
+ # Multiple datasets scenario
225
+ datasets = {f"dataset_{i}": d for i, d in enumerate(data_raw, start=1)}
226
+ primary_dataset_name = "dataset_1"
227
+ else:
228
+ raise ValueError("data_raw must be a dict or a list of dicts.")
229
+
230
+ # Convert all datasets to DataFrames for inspection
231
+ dataframes = {name: pd.DataFrame.from_dict(d) for name, d in datasets.items()}
232
+
233
+ # Create a summary for all datasets
234
+ # We'll include a short sample and info for each dataset
235
+ all_datasets_summary = get_dataframe_summary(dataframes, n_sample=n_samples)
236
+
237
+ # Join all datasets summaries into one big text block
238
+ all_datasets_summary_str = "\n\n".join(all_datasets_summary)
239
+
240
+ else:
241
+ all_datasets_summary_str = state.get("all_datasets_summary")
242
+
193
243
  print(" * CREATE DATA WRANGLER CODE")
194
244
 
195
245
  data_wrangling_prompt = PromptTemplate(
@@ -236,16 +286,16 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
236
286
 
237
287
  response = data_wrangling_agent.invoke({
238
288
  "recommended_steps": state.get("recommended_steps"),
239
- "all_datasets_summary": state.get("all_datasets_summary")
289
+ "all_datasets_summary": all_datasets_summary_str
240
290
  })
241
291
 
242
292
  response = relocate_imports_inside_function(response)
243
293
  response = add_comments_to_top(response, agent_name=AGENT_NAME)
244
294
 
245
295
  # For logging: store the code generated
246
- file_path, file_name = log_ai_function(
296
+ file_path, file_name_2 = log_ai_function(
247
297
  response=response,
248
- file_name="data_wrangler.py",
298
+ file_name=file_name,
249
299
  log=log,
250
300
  log_path=log_path,
251
301
  overwrite=overwrite
@@ -254,7 +304,8 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
254
304
  return {
255
305
  "data_wrangler_function" : response,
256
306
  "data_wrangler_function_path": file_path,
257
- "data_wrangler_function_name": file_name
307
+ "data_wrangler_function_name": file_name_2,
308
+ "all_datasets_summary": all_datasets_summary_str
258
309
  }
259
310
 
260
311
 
@@ -269,17 +320,6 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
269
320
  )
270
321
 
271
322
  def execute_data_wrangler_code(state: GraphState):
272
-
273
- # Handle multiple datasets as lists
274
- # def pre_processing(data):
275
- # df = []
276
- # for i in range(len(data)):
277
- # df[i] = pd.DataFrame.from_dict(data[i])
278
- # return df
279
-
280
- # def post_processing(df):
281
- # return df.to_dict()
282
-
283
323
  return node_func_execute_agent_code_on_data(
284
324
  state=state,
285
325
  data_key="data_raw",
@@ -288,7 +328,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
288
328
  code_snippet_key="data_wrangler_function",
289
329
  agent_function_name="data_wrangler",
290
330
  # pre_processing=pre_processing,
291
- # post_processing=post_processing,
331
+ post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
292
332
  error_message_prefix="An error occurred during data wrangling: "
293
333
  )
294
334
 
@@ -355,7 +395,9 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
355
395
  error_key="data_wrangler_error",
356
396
  human_in_the_loop=human_in_the_loop,
357
397
  human_review_node_name="human_review",
358
- checkpointer=MemorySaver() if human_in_the_loop else None
398
+ checkpointer=MemorySaver() if human_in_the_loop else None,
399
+ bypass_recommended_steps=bypass_recommended_steps,
400
+ bypass_explain_code=bypass_explain_code,
359
401
  )
360
402
 
361
403
  return app