ai-data-science-team 0.0.0.9005__py3-none-any.whl → 0.0.0.9007__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_data_science_team/_version.py +1 -1
- ai_data_science_team/agents/__init__.py +3 -1
- ai_data_science_team/agents/data_cleaning_agent.py +213 -20
- ai_data_science_team/agents/data_visualization_agent.py +331 -0
- ai_data_science_team/agents/data_wrangling_agent.py +66 -24
- ai_data_science_team/agents/feature_engineering_agent.py +50 -13
- ai_data_science_team/agents/sql_database_agent.py +397 -0
- ai_data_science_team/templates/__init__.py +8 -0
- ai_data_science_team/templates/agent_templates.py +154 -37
- ai_data_science_team/tools/logging.py +1 -1
- ai_data_science_team/tools/metadata.py +230 -0
- ai_data_science_team/tools/regex.py +7 -1
- {ai_data_science_team-0.0.0.9005.dist-info → ai_data_science_team-0.0.0.9007.dist-info}/METADATA +43 -22
- ai_data_science_team-0.0.0.9007.dist-info/RECORD +21 -0
- {ai_data_science_team-0.0.0.9005.dist-info → ai_data_science_team-0.0.0.9007.dist-info}/WHEEL +1 -1
- ai_data_science_team/tools/data_analysis.py +0 -116
- ai_data_science_team-0.0.0.9005.dist-info/RECORD +0 -19
- {ai_data_science_team-0.0.0.9005.dist-info → ai_data_science_team-0.0.0.9007.dist-info}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9005.dist-info → ai_data_science_team-0.0.0.9007.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,331 @@
|
|
1
|
+
# BUSINESS SCIENCE UNIVERSITY
|
2
|
+
# AI DATA SCIENCE TEAM
|
3
|
+
# ***
|
4
|
+
# * Agents: Data Visualization Agent
|
5
|
+
|
6
|
+
|
7
|
+
|
8
|
+
# Libraries
|
9
|
+
from typing import TypedDict, Annotated, Sequence, Literal
|
10
|
+
import operator
|
11
|
+
|
12
|
+
from langchain.prompts import PromptTemplate
|
13
|
+
from langchain_core.output_parsers import StrOutputParser
|
14
|
+
from langchain_core.messages import BaseMessage
|
15
|
+
|
16
|
+
from langgraph.types import Command
|
17
|
+
from langgraph.checkpoint.memory import MemorySaver
|
18
|
+
|
19
|
+
import os
|
20
|
+
import io
|
21
|
+
import pandas as pd
|
22
|
+
|
23
|
+
from ai_data_science_team.templates import(
|
24
|
+
node_func_execute_agent_code_on_data,
|
25
|
+
node_func_human_review,
|
26
|
+
node_func_fix_agent_code,
|
27
|
+
node_func_explain_agent_code,
|
28
|
+
create_coding_agent_graph
|
29
|
+
)
|
30
|
+
from ai_data_science_team.tools.parsers import PythonOutputParser
|
31
|
+
from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top, format_agent_name
|
32
|
+
from ai_data_science_team.tools.metadata import get_dataframe_summary
|
33
|
+
from ai_data_science_team.tools.logging import log_ai_function
|
34
|
+
|
35
|
+
# Setup
|
36
|
+
AGENT_NAME = "data_visualization_agent"
|
37
|
+
LOG_PATH = os.path.join(os.getcwd(), "logs/")
|
38
|
+
|
39
|
+
# Agent
|
40
|
+
|
41
|
+
def make_data_visualization_agent(
|
42
|
+
model,
|
43
|
+
n_samples=30,
|
44
|
+
log=False,
|
45
|
+
log_path=None,
|
46
|
+
file_name="data_visualization.py",
|
47
|
+
overwrite = True,
|
48
|
+
human_in_the_loop=False,
|
49
|
+
bypass_recommended_steps=False,
|
50
|
+
bypass_explain_code=False
|
51
|
+
):
|
52
|
+
|
53
|
+
llm = model
|
54
|
+
|
55
|
+
# Setup Log Directory
|
56
|
+
if log:
|
57
|
+
if log_path is None:
|
58
|
+
log_path = LOG_PATH
|
59
|
+
if not os.path.exists(log_path):
|
60
|
+
os.makedirs(log_path)
|
61
|
+
|
62
|
+
# Define GraphState for the router
|
63
|
+
class GraphState(TypedDict):
|
64
|
+
messages: Annotated[Sequence[BaseMessage], operator.add]
|
65
|
+
user_instructions: str
|
66
|
+
user_instructions_processed: str
|
67
|
+
recommended_steps: str
|
68
|
+
data_raw: dict
|
69
|
+
plotly_graph: dict
|
70
|
+
all_datasets_summary: str
|
71
|
+
data_visualization_function: str
|
72
|
+
data_visualization_function_path: str
|
73
|
+
data_visualization_function_name: str
|
74
|
+
data_visualization_error: str
|
75
|
+
max_retries: int
|
76
|
+
retry_count: int
|
77
|
+
|
78
|
+
def chart_instructor(state: GraphState):
|
79
|
+
|
80
|
+
print(format_agent_name(AGENT_NAME))
|
81
|
+
print(" * CREATE CHART GENERATOR INSTRUCTIONS")
|
82
|
+
|
83
|
+
recommend_steps_prompt = PromptTemplate(
|
84
|
+
template="""
|
85
|
+
You are a supervisor that is an expert in providing instructions to a chart generator agent for plotting.
|
86
|
+
|
87
|
+
You will take a question that a user has and the data that was generated to answer the question, and create instructions to create a chart from the data that will be passed to a chart generator agent.
|
88
|
+
|
89
|
+
USER QUESTION / INSTRUCTIONS:
|
90
|
+
{user_instructions}
|
91
|
+
|
92
|
+
Previously Recommended Instructions (if any):
|
93
|
+
{recommended_steps}
|
94
|
+
|
95
|
+
DATA:
|
96
|
+
{all_datasets_summary}
|
97
|
+
|
98
|
+
Formulate chart generator instructions by informing the chart generator of what type of plotly plot to use (e.g. bar, line, scatter, etc) to best represent the data.
|
99
|
+
|
100
|
+
Come up with an informative title from the user's question and data provided. Also provide X and Y axis titles.
|
101
|
+
|
102
|
+
Instruct the chart generator to use the following theme colors, sizes, etc:
|
103
|
+
|
104
|
+
- Start with the "plotly_white" template
|
105
|
+
- Use a white background
|
106
|
+
- Use this color for bars and lines:
|
107
|
+
'blue': '#3381ff',
|
108
|
+
- Base Font Size: 8.8 (Used for x and y axes tickfont, any annotations, hovertips)
|
109
|
+
- Title Font Size: 13.2
|
110
|
+
- Line Size: 0.65 (specify these within the xaxis and yaxis dictionaries)
|
111
|
+
- Add smoothers or trendlines to scatter plots unless not desired by the user
|
112
|
+
- Do not use color_discrete_map (this will result in an error)
|
113
|
+
- Hover tip size: 8.8
|
114
|
+
|
115
|
+
Return your instructions in the following format:
|
116
|
+
CHART GENERATOR INSTRUCTIONS:
|
117
|
+
FILL IN THE INSTRUCTIONS HERE
|
118
|
+
|
119
|
+
Avoid these:
|
120
|
+
1. Do not include steps to save files.
|
121
|
+
2. Do not include unrelated user instructions that are not related to the chart generation.
|
122
|
+
""",
|
123
|
+
input_variables=["user_instructions", "recommended_steps", "all_datasets_summary"]
|
124
|
+
|
125
|
+
)
|
126
|
+
|
127
|
+
data_raw = state.get("data_raw")
|
128
|
+
df = pd.DataFrame.from_dict(data_raw)
|
129
|
+
|
130
|
+
all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples, skip_stats=False)
|
131
|
+
|
132
|
+
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
133
|
+
|
134
|
+
chart_instructor = recommend_steps_prompt | llm
|
135
|
+
|
136
|
+
recommended_steps = chart_instructor.invoke({
|
137
|
+
"user_instructions": state.get("user_instructions"),
|
138
|
+
"recommended_steps": state.get("recommended_steps"),
|
139
|
+
"all_datasets_summary": all_datasets_summary_str
|
140
|
+
})
|
141
|
+
|
142
|
+
return {
|
143
|
+
"recommended_steps": "\n\n# Recommended Data Cleaning Steps:\n" + recommended_steps.content.strip(),
|
144
|
+
"all_datasets_summary": all_datasets_summary_str
|
145
|
+
}
|
146
|
+
|
147
|
+
def chart_generator(state: GraphState):
|
148
|
+
|
149
|
+
print(" * CREATE DATA VISUALIZATION CODE")
|
150
|
+
|
151
|
+
|
152
|
+
if bypass_recommended_steps:
|
153
|
+
print(format_agent_name(AGENT_NAME))
|
154
|
+
|
155
|
+
data_raw = state.get("data_raw")
|
156
|
+
df = pd.DataFrame.from_dict(data_raw)
|
157
|
+
|
158
|
+
all_datasets_summary = get_dataframe_summary([df], n_sample=n_samples, skip_stats=False)
|
159
|
+
|
160
|
+
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
161
|
+
|
162
|
+
chart_generator_instructions = state.get("user_instructions")
|
163
|
+
|
164
|
+
else:
|
165
|
+
all_datasets_summary_str = state.get("all_datasets_summary")
|
166
|
+
chart_generator_instructions = state.get("recommended_steps")
|
167
|
+
|
168
|
+
prompt_template = PromptTemplate(
|
169
|
+
template="""
|
170
|
+
You are a chart generator agent that is an expert in generating plotly charts. You must use plotly or plotly.express to produce plots.
|
171
|
+
|
172
|
+
Your job is to produce python code to generate visualizations.
|
173
|
+
|
174
|
+
You will take instructions from a Chart Instructor and generate a plotly chart from the data provided.
|
175
|
+
|
176
|
+
CHART INSTRUCTIONS:
|
177
|
+
{chart_generator_instructions}
|
178
|
+
|
179
|
+
DATA:
|
180
|
+
{all_datasets_summary}
|
181
|
+
|
182
|
+
RETURN:
|
183
|
+
|
184
|
+
Return Python code in ```python ``` format with a single function definition, data_visualization(data_raw), that includes all imports inside the function.
|
185
|
+
|
186
|
+
Return the plotly chart as a dictionary.
|
187
|
+
|
188
|
+
Return code to provide the data visualization function:
|
189
|
+
|
190
|
+
def data_visualization(data_raw):
|
191
|
+
import pandas as pd
|
192
|
+
import numpy as np
|
193
|
+
import json
|
194
|
+
import plotly.graph_objects as go
|
195
|
+
import plotly.io as pio
|
196
|
+
|
197
|
+
...
|
198
|
+
|
199
|
+
fig_json = pio.to_json(fig)
|
200
|
+
fig_dict = json.loads(fig_json)
|
201
|
+
|
202
|
+
return fig_dict
|
203
|
+
|
204
|
+
Avoid these:
|
205
|
+
1. Do not include steps to save files.
|
206
|
+
2. Do not include unrelated user instructions that are not related to the chart generation.
|
207
|
+
|
208
|
+
""",
|
209
|
+
input_variables=["chart_generator_instructions", "all_datasets_summary"]
|
210
|
+
)
|
211
|
+
|
212
|
+
data_visualization_agent = prompt_template | llm | PythonOutputParser()
|
213
|
+
|
214
|
+
response = data_visualization_agent.invoke({
|
215
|
+
"chart_generator_instructions": chart_generator_instructions,
|
216
|
+
"all_datasets_summary": all_datasets_summary_str
|
217
|
+
})
|
218
|
+
|
219
|
+
response = relocate_imports_inside_function(response)
|
220
|
+
response = add_comments_to_top(response, agent_name=AGENT_NAME)
|
221
|
+
|
222
|
+
# For logging: store the code generated:
|
223
|
+
file_path, file_name_2 = log_ai_function(
|
224
|
+
response=response,
|
225
|
+
file_name=file_name,
|
226
|
+
log=log,
|
227
|
+
log_path=log_path,
|
228
|
+
overwrite=overwrite
|
229
|
+
)
|
230
|
+
|
231
|
+
return {
|
232
|
+
"data_visualization_function": response,
|
233
|
+
"data_visualization_function_path": file_path,
|
234
|
+
"data_visualization_function_name": file_name_2,
|
235
|
+
"all_datasets_summary": all_datasets_summary_str
|
236
|
+
}
|
237
|
+
|
238
|
+
def human_review(state: GraphState) -> Command[Literal["chart_instructor", "chart_generator"]]:
|
239
|
+
return node_func_human_review(
|
240
|
+
state=state,
|
241
|
+
prompt_text="Is the following data visualization instructions correct? (Answer 'yes' or provide modifications)\n{steps}",
|
242
|
+
yes_goto="chart_generator",
|
243
|
+
no_goto="chart_instructor",
|
244
|
+
user_instructions_key="user_instructions",
|
245
|
+
recommended_steps_key="recommended_steps"
|
246
|
+
)
|
247
|
+
|
248
|
+
|
249
|
+
def execute_data_visualization_code(state):
|
250
|
+
return node_func_execute_agent_code_on_data(
|
251
|
+
state=state,
|
252
|
+
data_key="data_raw",
|
253
|
+
result_key="plotly_graph",
|
254
|
+
error_key="data_visualization_error",
|
255
|
+
code_snippet_key="data_visualization_function",
|
256
|
+
agent_function_name="data_visualization",
|
257
|
+
pre_processing=lambda data: pd.DataFrame.from_dict(data),
|
258
|
+
# post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
|
259
|
+
error_message_prefix="An error occurred during data visualization: "
|
260
|
+
)
|
261
|
+
|
262
|
+
def fix_data_visualization_code(state: GraphState):
|
263
|
+
prompt = """
|
264
|
+
You are a Data Visualization Agent. Your job is to create a data_visualization() function that can be run on the data provided. The function is currently broken and needs to be fixed.
|
265
|
+
|
266
|
+
Make sure to only return the function definition for data_visualization().
|
267
|
+
|
268
|
+
Return Python code in ```python``` format with a single function definition, data_visualization(data_raw), that includes all imports inside the function.
|
269
|
+
|
270
|
+
This is the broken code (please fix):
|
271
|
+
{code_snippet}
|
272
|
+
|
273
|
+
Last Known Error:
|
274
|
+
{error}
|
275
|
+
"""
|
276
|
+
|
277
|
+
return node_func_fix_agent_code(
|
278
|
+
state=state,
|
279
|
+
code_snippet_key="data_visualization_function",
|
280
|
+
error_key="data_visualization_error",
|
281
|
+
llm=llm,
|
282
|
+
prompt_template=prompt,
|
283
|
+
agent_name=AGENT_NAME,
|
284
|
+
log=log,
|
285
|
+
file_path=state.get("data_visualization_function_path"),
|
286
|
+
)
|
287
|
+
|
288
|
+
def explain_data_visualization_code(state: GraphState):
|
289
|
+
return node_func_explain_agent_code(
|
290
|
+
state=state,
|
291
|
+
code_snippet_key="data_visualization_function",
|
292
|
+
result_key="messages",
|
293
|
+
error_key="data_visualization_error",
|
294
|
+
llm=llm,
|
295
|
+
role=AGENT_NAME,
|
296
|
+
explanation_prompt_template="""
|
297
|
+
Explain the data visualization steps that the data visualization agent performed in this function.
|
298
|
+
Keep the summary succinct and to the point.\n\n# Data Visualization Agent:\n\n{code}
|
299
|
+
""",
|
300
|
+
success_prefix="# Data Visualization Agent:\n\n ",
|
301
|
+
error_message="The Data Visualization Agent encountered an error during data visualization. No explanation could be provided."
|
302
|
+
)
|
303
|
+
|
304
|
+
# Define the graph
|
305
|
+
node_functions = {
|
306
|
+
"chart_instructor": chart_instructor,
|
307
|
+
"human_review": human_review,
|
308
|
+
"chart_generator": chart_generator,
|
309
|
+
"execute_data_visualization_code": execute_data_visualization_code,
|
310
|
+
"fix_data_visualization_code": fix_data_visualization_code,
|
311
|
+
"explain_data_visualization_code": explain_data_visualization_code
|
312
|
+
}
|
313
|
+
|
314
|
+
app = create_coding_agent_graph(
|
315
|
+
GraphState=GraphState,
|
316
|
+
node_functions=node_functions,
|
317
|
+
recommended_steps_node_name="chart_instructor",
|
318
|
+
create_code_node_name="chart_generator",
|
319
|
+
execute_code_node_name="execute_data_visualization_code",
|
320
|
+
fix_code_node_name="fix_data_visualization_code",
|
321
|
+
explain_code_node_name="explain_data_visualization_code",
|
322
|
+
error_key="data_visualization_error",
|
323
|
+
human_in_the_loop=human_in_the_loop, # or False
|
324
|
+
human_review_node_name="human_review",
|
325
|
+
checkpointer=MemorySaver() if human_in_the_loop else None,
|
326
|
+
bypass_recommended_steps=bypass_recommended_steps,
|
327
|
+
bypass_explain_code=bypass_explain_code,
|
328
|
+
)
|
329
|
+
|
330
|
+
return app
|
331
|
+
|
@@ -15,7 +15,7 @@ from langchain_core.messages import BaseMessage
|
|
15
15
|
from langgraph.types import Command
|
16
16
|
from langgraph.checkpoint.memory import MemorySaver
|
17
17
|
|
18
|
-
from ai_data_science_team.templates
|
18
|
+
from ai_data_science_team.templates import(
|
19
19
|
node_func_execute_agent_code_on_data,
|
20
20
|
node_func_human_review,
|
21
21
|
node_func_fix_agent_code,
|
@@ -23,15 +23,25 @@ from ai_data_science_team.templates.agent_templates import(
|
|
23
23
|
create_coding_agent_graph
|
24
24
|
)
|
25
25
|
from ai_data_science_team.tools.parsers import PythonOutputParser
|
26
|
-
from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top
|
27
|
-
from ai_data_science_team.tools.
|
26
|
+
from ai_data_science_team.tools.regex import relocate_imports_inside_function, add_comments_to_top, format_agent_name
|
27
|
+
from ai_data_science_team.tools.metadata import get_dataframe_summary
|
28
28
|
from ai_data_science_team.tools.logging import log_ai_function
|
29
29
|
|
30
30
|
# Setup Logging Path
|
31
31
|
AGENT_NAME = "data_wrangling_agent"
|
32
32
|
LOG_PATH = os.path.join(os.getcwd(), "logs/")
|
33
33
|
|
34
|
-
def make_data_wrangling_agent(
|
34
|
+
def make_data_wrangling_agent(
|
35
|
+
model,
|
36
|
+
n_samples=30,
|
37
|
+
log=False,
|
38
|
+
log_path=None,
|
39
|
+
file_name="data_wrangler.py",
|
40
|
+
overwrite = True,
|
41
|
+
human_in_the_loop=False,
|
42
|
+
bypass_recommended_steps=False,
|
43
|
+
bypass_explain_code=False
|
44
|
+
):
|
35
45
|
"""
|
36
46
|
Creates a data wrangling agent that can be run on one or more datasets. The agent can be
|
37
47
|
instructed to perform common data wrangling steps such as:
|
@@ -52,17 +62,27 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
52
62
|
----------
|
53
63
|
model : langchain.llms.base.LLM
|
54
64
|
The language model to use to generate code.
|
65
|
+
n_samples : int, optional
|
66
|
+
The number of samples to show in the data summary. Defaults to 30.
|
67
|
+
If you get an error due to maximum tokens, try reducing this number.
|
68
|
+
> "This model's maximum context length is 128000 tokens. However, your messages resulted in 333858 tokens. Please reduce the length of the messages."
|
55
69
|
log : bool, optional
|
56
70
|
Whether or not to log the code generated and any errors that occur.
|
57
71
|
Defaults to False.
|
58
72
|
log_path : str, optional
|
59
73
|
The path to the directory where the log files should be stored. Defaults to "logs/".
|
74
|
+
file_name : str, optional
|
75
|
+
The name of the file to save the response to. Defaults to "data_wrangler.py".
|
60
76
|
overwrite : bool, optional
|
61
77
|
Whether or not to overwrite the log file if it already exists. If False, a unique file name will be created.
|
62
78
|
Defaults to True.
|
63
79
|
human_in_the_loop : bool, optional
|
64
80
|
Whether or not to use human in the loop. If True, adds an interrupt and human-in-the-loop
|
65
81
|
step that asks the user to review the data wrangling instructions. Defaults to False.
|
82
|
+
bypass_recommended_steps : bool, optional
|
83
|
+
Bypass the recommendation step, by default False
|
84
|
+
bypass_explain_code : bool, optional
|
85
|
+
Bypass the code explanation step, by default False.
|
66
86
|
|
67
87
|
Example
|
68
88
|
-------
|
@@ -90,7 +110,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
90
110
|
|
91
111
|
Returns
|
92
112
|
-------
|
93
|
-
app : langchain.graphs.
|
113
|
+
app : langchain.graphs.CompiledStateGraph
|
94
114
|
The data wrangling agent as a state graph.
|
95
115
|
"""
|
96
116
|
llm = model
|
@@ -118,7 +138,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
118
138
|
retry_count: int
|
119
139
|
|
120
140
|
def recommend_wrangling_steps(state: GraphState):
|
121
|
-
print(
|
141
|
+
print(format_agent_name(AGENT_NAME))
|
122
142
|
print(" * RECOMMEND WRANGLING STEPS")
|
123
143
|
|
124
144
|
data_raw = state.get("data_raw")
|
@@ -139,7 +159,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
139
159
|
|
140
160
|
# Create a summary for all datasets
|
141
161
|
# We'll include a short sample and info for each dataset
|
142
|
-
all_datasets_summary =
|
162
|
+
all_datasets_summary = get_dataframe_summary(dataframes, n_sample=n_samples)
|
143
163
|
|
144
164
|
# Join all datasets summaries into one big text block
|
145
165
|
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
@@ -172,6 +192,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
172
192
|
|
173
193
|
Avoid these:
|
174
194
|
1. Do not include steps to save files.
|
195
|
+
2. Do not include unrelated user instructions that are not related to the data wrangling.
|
175
196
|
""",
|
176
197
|
input_variables=["user_instructions", "recommended_steps", "all_datasets_summary"]
|
177
198
|
)
|
@@ -190,6 +211,35 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
190
211
|
|
191
212
|
|
192
213
|
def create_data_wrangler_code(state: GraphState):
|
214
|
+
if bypass_recommended_steps:
|
215
|
+
print(format_agent_name(AGENT_NAME))
|
216
|
+
|
217
|
+
data_raw = state.get("data_raw")
|
218
|
+
|
219
|
+
if isinstance(data_raw, dict):
|
220
|
+
# Single dataset scenario
|
221
|
+
primary_dataset_name = "main"
|
222
|
+
datasets = {primary_dataset_name: data_raw}
|
223
|
+
elif isinstance(data_raw, list) and all(isinstance(item, dict) for item in data_raw):
|
224
|
+
# Multiple datasets scenario
|
225
|
+
datasets = {f"dataset_{i}": d for i, d in enumerate(data_raw, start=1)}
|
226
|
+
primary_dataset_name = "dataset_1"
|
227
|
+
else:
|
228
|
+
raise ValueError("data_raw must be a dict or a list of dicts.")
|
229
|
+
|
230
|
+
# Convert all datasets to DataFrames for inspection
|
231
|
+
dataframes = {name: pd.DataFrame.from_dict(d) for name, d in datasets.items()}
|
232
|
+
|
233
|
+
# Create a summary for all datasets
|
234
|
+
# We'll include a short sample and info for each dataset
|
235
|
+
all_datasets_summary = get_dataframe_summary(dataframes, n_sample=n_samples)
|
236
|
+
|
237
|
+
# Join all datasets summaries into one big text block
|
238
|
+
all_datasets_summary_str = "\n\n".join(all_datasets_summary)
|
239
|
+
|
240
|
+
else:
|
241
|
+
all_datasets_summary_str = state.get("all_datasets_summary")
|
242
|
+
|
193
243
|
print(" * CREATE DATA WRANGLER CODE")
|
194
244
|
|
195
245
|
data_wrangling_prompt = PromptTemplate(
|
@@ -236,16 +286,16 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
236
286
|
|
237
287
|
response = data_wrangling_agent.invoke({
|
238
288
|
"recommended_steps": state.get("recommended_steps"),
|
239
|
-
"all_datasets_summary":
|
289
|
+
"all_datasets_summary": all_datasets_summary_str
|
240
290
|
})
|
241
291
|
|
242
292
|
response = relocate_imports_inside_function(response)
|
243
293
|
response = add_comments_to_top(response, agent_name=AGENT_NAME)
|
244
294
|
|
245
295
|
# For logging: store the code generated
|
246
|
-
file_path,
|
296
|
+
file_path, file_name_2 = log_ai_function(
|
247
297
|
response=response,
|
248
|
-
file_name=
|
298
|
+
file_name=file_name,
|
249
299
|
log=log,
|
250
300
|
log_path=log_path,
|
251
301
|
overwrite=overwrite
|
@@ -254,7 +304,8 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
254
304
|
return {
|
255
305
|
"data_wrangler_function" : response,
|
256
306
|
"data_wrangler_function_path": file_path,
|
257
|
-
"data_wrangler_function_name":
|
307
|
+
"data_wrangler_function_name": file_name_2,
|
308
|
+
"all_datasets_summary": all_datasets_summary_str
|
258
309
|
}
|
259
310
|
|
260
311
|
|
@@ -269,17 +320,6 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
269
320
|
)
|
270
321
|
|
271
322
|
def execute_data_wrangler_code(state: GraphState):
|
272
|
-
|
273
|
-
# Handle multiple datasets as lists
|
274
|
-
# def pre_processing(data):
|
275
|
-
# df = []
|
276
|
-
# for i in range(len(data)):
|
277
|
-
# df[i] = pd.DataFrame.from_dict(data[i])
|
278
|
-
# return df
|
279
|
-
|
280
|
-
# def post_processing(df):
|
281
|
-
# return df.to_dict()
|
282
|
-
|
283
323
|
return node_func_execute_agent_code_on_data(
|
284
324
|
state=state,
|
285
325
|
data_key="data_raw",
|
@@ -288,7 +328,7 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
288
328
|
code_snippet_key="data_wrangler_function",
|
289
329
|
agent_function_name="data_wrangler",
|
290
330
|
# pre_processing=pre_processing,
|
291
|
-
|
331
|
+
post_processing=lambda df: df.to_dict() if isinstance(df, pd.DataFrame) else df,
|
292
332
|
error_message_prefix="An error occurred during data wrangling: "
|
293
333
|
)
|
294
334
|
|
@@ -355,7 +395,9 @@ def make_data_wrangling_agent(model, log=False, log_path=None, overwrite = True,
|
|
355
395
|
error_key="data_wrangler_error",
|
356
396
|
human_in_the_loop=human_in_the_loop,
|
357
397
|
human_review_node_name="human_review",
|
358
|
-
checkpointer=MemorySaver() if human_in_the_loop else None
|
398
|
+
checkpointer=MemorySaver() if human_in_the_loop else None,
|
399
|
+
bypass_recommended_steps=bypass_recommended_steps,
|
400
|
+
bypass_explain_code=bypass_explain_code,
|
359
401
|
)
|
360
402
|
|
361
403
|
return app
|