ai-critic 1.2.0__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,290 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: ai-critic
3
- Version: 1.2.0
4
- Summary: Fast AI evaluator for scikit-learn models
5
- Author-email: Luiz Seabra <filipedemarco@yahoo.com>
6
- Requires-Python: >=3.9
7
- Description-Content-Type: text/markdown
8
- Requires-Dist: numpy
9
- Requires-Dist: scikit-learn
10
-
11
- # ai-critic 🧠: The Quality Gate for Machine Learning Models
12
-
13
- **ai-critic** is a specialized **decision-making** tool designed to audit the reliability and readiness for deployment of **scikit-learn**, **PyTorch**, and **TensorFlow** models.
14
-
15
- Instead of merely measuring performance (accuracy, F1 score), **ai-critic** acts as a **Quality Gate**, actively probing the model to uncover *hidden risks* that commonly cause production failures — such as **data leakage**, **structural overfitting**, and **fragility under noise**.
16
-
17
- > **ai-critic does not ask “How good is this model?”**
18
- > It asks **“Can this model be trusted?”**
19
-
20
- ---
21
-
22
- ## 🚀 Getting Started (The Basics)
23
-
24
- This section is ideal for beginners who need a **fast and reliable verdict** on a trained model.
25
-
26
- ### Installation
27
-
28
- Install directly from PyPI:
29
-
30
- ```bash
31
- pip install ai-critic
32
- ```
33
-
34
- ---
35
-
36
- ### The Quick Verdict
37
-
38
- With just a few lines of code, you obtain an **executive-level assessment** and a **deployment recommendation**.
39
-
40
- ```python
41
- from ai_critic import AICritic
42
- from sklearn.ensemble import RandomForestClassifier
43
- from sklearn.datasets import make_classification
44
-
45
- # 1. Prepare data and model
46
- X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
47
- model = RandomForestClassifier(max_depth=5, random_state=42)
48
-
49
- # 2. Initialize the Critic
50
- critic = AICritic(model, X, y)
51
-
52
- # 3. Run the audit (executive mode)
53
- report = critic.evaluate(view="executive")
54
-
55
- print(f"Verdict: {report['verdict']}")
56
- print(f"Risk Level: {report['risk_level']}")
57
- print(f"Main Reason: {report['main_reason']}")
58
- ```
59
-
60
- **Expected Output (example):**
61
-
62
- ```text
63
- Verdict: ⚠️ Risky
64
- Risk Level: medium
65
- Main Reason: Structural or robustness-related risks detected.
66
- ```
67
-
68
- This output is intentionally **conservative**.
69
- If **ai-critic** recommends deployment, it means meaningful risks were *not* detected.
70
-
71
- ---
72
-
73
- ## 💡 Understanding the Critique (The Intermediary)
74
-
75
- For data scientists who want to understand **why** the model received a given verdict and **how to improve it**.
76
-
77
- ---
78
-
79
- ### The Four Pillars of the Audit
80
-
81
- **ai-critic** evaluates models across four independent risk dimensions:
82
-
83
- | Pillar | Main Risk Detected | Internal Module |
84
- | ---------------------- | -------------------------------------- | ------------------------ |
85
- | 📊 **Data Integrity** | Target Leakage & Correlation Artifacts | `evaluators.data` |
86
- | 🧠 **Model Structure** | Over-complexity & Misconfiguration | `evaluators.config` |
87
- | 📈 **Performance** | Suspicious CV or Learning Curves | `evaluators.performance` |
88
- | 🧪 **Robustness** | Sensitivity to Noise | `evaluators.robustness` |
89
-
90
- Each pillar contributes signals used later in the **deployment gate**.
91
-
92
- ---
93
-
94
-
95
- ### Full Technical & Visual Analysis
96
-
97
- To access **all internal diagnostics**, including plots and recommendations, use `view="all"`.
98
-
99
- ```python
100
- full_report = critic.evaluate(view="all", plot=True)
101
-
102
- technical_summary = full_report["technical"]
103
-
104
- print("\n--- Key Risks Detected ---")
105
- for i, risk in enumerate(technical_summary["key_risks"], start=1):
106
- print(f"{i}. {risk}")
107
-
108
- print("\n--- Recommendations ---")
109
- for rec in technical_summary["recommendations"]:
110
- print(f"- {rec}")
111
- ```
112
-
113
- Generated plots may include:
114
-
115
- * Feature correlation heatmaps
116
- * Learning curves
117
- * Robustness degradation charts
118
-
119
- ---
120
-
121
- ### Robustness Test (Noise Injection)
122
-
123
- A model that collapses under small perturbations is **not production-safe**.
124
-
125
- ```python
126
- robustness = full_report["details"]["robustness"]
127
-
128
- print("\n--- Robustness Analysis ---")
129
- print(f"Original CV Score: {robustness['cv_score_original']:.4f}")
130
- print(f"Noisy CV Score: {robustness['cv_score_noisy']:.4f}")
131
- print(f"Performance Drop: {robustness['performance_drop']:.4f}")
132
- print(f"Verdict: {robustness['verdict']}")
133
- ```
134
-
135
- **Possible Verdicts:**
136
-
137
- * `stable` → acceptable degradation
138
- * `fragile` → high sensitivity to noise
139
- * `misleading` → performance likely inflated by leakage
140
-
141
- ---
142
-
143
- ## ⚙️ Integration and Governance (The Advanced)
144
-
145
- This section targets **MLOps engineers**, **architects**, and teams operating automated pipelines.
146
-
147
- ---
148
-
149
- ### Multi-Framework Support
150
-
151
- **ai-critic 1.0+** supports models from multiple frameworks with the **same API**:
152
-
153
- ```python
154
- # PyTorch Example
155
- import torch
156
- import torch.nn as nn
157
- from ai_critic import AICritic
158
-
159
- X = torch.randn(1000, 20)
160
- y = torch.randint(0, 2, (1000,))
161
-
162
- model = nn.Sequential(
163
- nn.Linear(20, 32),
164
- nn.ReLU(),
165
- nn.Linear(32, 2)
166
- )
167
-
168
- critic = AICritic(model, X, y, framework="torch", adapter_kwargs={"epochs":5, "batch_size":64})
169
- report = critic.evaluate(view="executive")
170
- print(report)
171
-
172
- # TensorFlow Example
173
- import tensorflow as tf
174
-
175
- model = tf.keras.Sequential([
176
- tf.keras.layers.Dense(32, activation="relu", input_shape=(20,)),
177
- tf.keras.layers.Dense(2)
178
- ])
179
- critic = AICritic(model, X.numpy(), y.numpy(), framework="tensorflow", adapter_kwargs={"epochs":5})
180
- report = critic.evaluate(view="executive")
181
- print(report)
182
- ```
183
-
184
- > No need to rewrite evaluation code — **one Critic API works for sklearn, PyTorch, or TensorFlow**.
185
-
186
- ---
187
-
188
- ### The Deployment Gate (`deploy_decision`)
189
-
190
- The `deploy_decision()` method aggregates *all detected risks* and produces a final gate decision.
191
-
192
- ```python
193
- decision = critic.deploy_decision()
194
-
195
- if decision["deploy"]:
196
- print("✅ Deployment Approved")
197
- else:
198
- print("❌ Deployment Blocked")
199
-
200
- print(f"Risk Level: {decision['risk_level']}")
201
- print(f"Confidence Score: {decision['confidence']:.2f}")
202
-
203
- print("\nBlocking Issues:")
204
- for issue in decision["blocking_issues"]:
205
- print(f"- {issue}")
206
- ```
207
-
208
- **Conceptual model:**
209
-
210
- * **Hard Blockers** → deployment denied
211
- * **Soft Blockers** → deployment discouraged
212
- * **Confidence Score (0–1)** → heuristic trust level
213
-
214
- ---
215
-
216
- ### Modes & Views (API Design)
217
-
218
- The `evaluate()` method supports **multiple modes** via the `view` parameter:
219
-
220
- | View | Description |
221
- | ------------- | ---------------------------------- |
222
- | `"executive"` | High-level verdict (non-technical) |
223
- | `"technical"` | Risks & recommendations |
224
- | `"details"` | Raw evaluator outputs |
225
- | `"all"` | Complete payload |
226
-
227
- Example:
228
-
229
- ```python
230
- critic.evaluate(view="technical")
231
- critic.evaluate(view=["executive", "performance"])
232
- ```
233
-
234
- ---
235
-
236
- ### Session Tracking & Model Comparison
237
-
238
- You can persist evaluations and compare model versions over time.
239
-
240
- ```python
241
- critic_v1 = AICritic(model, X, y, session="v1")
242
- critic_v1.evaluate()
243
-
244
- critic_v2 = AICritic(model, X, y, session="v2")
245
- critic_v2.evaluate()
246
-
247
- comparison = critic_v2.compare_with("v1")
248
- print(comparison["score_diff"])
249
- ```
250
-
251
- This enables:
252
-
253
- * Regression tracking
254
- * Risk drift detection
255
- * Governance & audit trails
256
-
257
- ---
258
-
259
- ### Best Practices & Use Cases
260
-
261
- | Scenario | Recommended Usage |
262
- | ----------------------- | -------------------------------------- |
263
- | **CI/CD** | Block merges using `deploy_decision()` |
264
- | **Model Tuning** | Use technical view for guidance |
265
- | **Governance** | Persist session outputs |
266
- | **Stakeholder Reports** | Share executive summaries |
267
-
268
- ---
269
-
270
- ## 🔒 API Stability
271
-
272
- Starting from version **1.0.0**, the public API of **ai-critic** follows semantic versioning.
273
- Breaking changes will only occur in major releases.
274
-
275
- ---
276
-
277
- ## 📄 License
278
-
279
- Distributed under the **MIT License**.
280
-
281
- ---
282
-
283
- ## 🧠 Final Note
284
-
285
- > **ai-critic is not a benchmarking tool.**
286
- > It is a *decision-making system*.
287
-
288
- A failed audit does **not** mean the model is bad — it means the model **is not ready to be trusted**.
289
-
290
- The purpose of **ai-critic** is to introduce *structured skepticism* into machine learning workflows — exactly where it belongs.
@@ -1,18 +0,0 @@
1
- ai_critic/__init__.py,sha256=H6DlPMmbcFUamhsNULPLk9vHx81XCiXuKKf63EJ8eM0,53
2
- ai_critic/critic.py,sha256=I9MeVHVCN-lWffPm3DJCgbFVVW8VTIs_qhXd-aP3X5Q,8277
3
- ai_critic/evaluators/__init__.py,sha256=ri6InmL8_LIcO-JZpU_gEFKLO4URdqo3z6rh7fV6M8Y,169
4
- ai_critic/evaluators/adapters.py,sha256=8Xw9Ccg1iGVNwVQDGVIqhWj5-Sg6evqCZhg21u8EP20,3068
5
- ai_critic/evaluators/config.py,sha256=gBXaS8Qxl14f40JnvMWgA0Z0SGEtbCuCHpTOPem0H90,1163
6
- ai_critic/evaluators/data.py,sha256=YAK5NkwCeJOny_UueZ5ALwvEcRDIbEck404eV2oqWnc,1871
7
- ai_critic/evaluators/explainability.py,sha256=UWbcb5uVI78d1ljfdrWd2DrjlwEz1y9CeVtkukefEfA,1759
8
- ai_critic/evaluators/performance.py,sha256=1CQx5DueK0XkelYyJnAGRJ3AjQtjsKeW8_1JQZqKVOI,1973
9
- ai_critic/evaluators/robustness.py,sha256=mfVQ67Z6t6aRvtIq-XQEQYbwvyf8UefM1myeOGVrnAE,1869
10
- ai_critic/evaluators/scoring.py,sha256=9rgkCXKKm9G1Lfwn5i9HcsJTN5OUjxMycOUzhWkp_2g,1576
11
- ai_critic/evaluators/summary.py,sha256=H9rU9tXAXqyQ34L6bOOOHrdIapSq71gcjjc8jfyJMq4,5003
12
- ai_critic/evaluators/validation.py,sha256=rnzRwD78Cugey33gl9geE8JoBURsKEEnqrIOhBZv0LY,904
13
- ai_critic/sessions/__init__.py,sha256=Yp7mphSPJwt8a4cJgcQNErqwqHVuP_xAJODrs0y0Abw,72
14
- ai_critic/sessions/store.py,sha256=65m9WXFVFWv4pPzvXV4l8zLHoHWMfCGe6eHh4X-8agY,947
15
- ai_critic-1.2.0.dist-info/METADATA,sha256=s0XYw_E7ZoVBhF74lyhQsFk_bcyJWY3eo8Yk5E97tZ4,8115
16
- ai_critic-1.2.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
17
- ai_critic-1.2.0.dist-info/top_level.txt,sha256=TRyZkm1vyLLcFDg_80yeg5cHvPis_oW1Ti170417jkw,10
18
- ai_critic-1.2.0.dist-info/RECORD,,