ai-critic 0.2.2__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ai_critic/critic.py CHANGED
@@ -10,53 +10,92 @@ from ai_critic.evaluators.summary import HumanSummary
10
10
  class AICritic:
11
11
  """
12
12
  Automated reviewer for scikit-learn models.
13
- Produces a multi-layered risk assessment with visualizations.
13
+
14
+ Produces a multi-layered risk assessment including:
15
+ - Data integrity analysis
16
+ - Model configuration sanity checks
17
+ - Performance evaluation (CV + learning curves)
18
+ - Robustness & leakage heuristics
19
+ - Human-readable executive and technical summaries
14
20
  """
15
21
 
16
- def __init__(self, model, X, y):
22
+ def __init__(self, model, X, y, random_state=None):
23
+ """
24
+ Parameters
25
+ ----------
26
+ model : sklearn-compatible estimator
27
+ X : np.ndarray
28
+ Feature matrix
29
+ y : np.ndarray
30
+ Target vector
31
+ random_state : int or None
32
+ Global seed for reproducibility (optional)
33
+ """
17
34
  self.model = model
18
35
  self.X = X
19
36
  self.y = y
37
+ self.random_state = random_state
20
38
 
21
39
  def evaluate(self, view="all", plot=False):
22
40
  """
23
41
  Evaluate the model.
24
42
 
25
- Parameters:
26
- -----------
43
+ Parameters
44
+ ----------
27
45
  view : str or list
28
- - "all" : return full payload
29
- - "executive" : only executive summary
30
- - "technical" : only technical summary
31
- - "details" : only low-level module outputs
32
- - list : subset of views
46
+ - "all" : full payload (default)
47
+ - "executive" : executive summary only
48
+ - "technical" : technical summary only
49
+ - "details" : low-level evaluator outputs
50
+ - list : subset of views (e.g. ["executive", "details"])
33
51
  plot : bool
34
52
  - True : generate plots (learning curve, heatmap, robustness)
35
53
  - False : no plots
54
+
55
+ Returns
56
+ -------
57
+ dict
58
+ Evaluation payload according to selected view
36
59
  """
37
60
 
38
61
  # =========================
39
- # Low-level technical details
62
+ # Low-level evaluator outputs
40
63
  # =========================
41
64
  details = {}
42
65
 
43
- # Data analysis + heatmap
44
- data_report = data.evaluate(self.X, self.y, plot=plot)
66
+ # -------------------------
67
+ # Data analysis
68
+ # -------------------------
69
+ data_report = data.evaluate(
70
+ self.X,
71
+ self.y,
72
+ plot=plot
73
+ )
45
74
  details["data"] = data_report
46
75
 
47
- # Model configuration
76
+ # -------------------------
77
+ # Model configuration sanity
78
+ # -------------------------
48
79
  details["config"] = config.evaluate(
49
80
  self.model,
50
81
  n_samples=data_report["n_samples"],
51
82
  n_features=data_report["n_features"]
52
83
  )
53
84
 
54
- # Performance + learning curve
85
+ # -------------------------
86
+ # Performance evaluation
87
+ # (CV strategy inferred automatically)
88
+ # -------------------------
55
89
  details["performance"] = performance.evaluate(
56
- self.model, self.X, self.y, plot=plot
90
+ self.model,
91
+ self.X,
92
+ self.y,
93
+ plot=plot
57
94
  )
58
95
 
59
- # Robustness + CV clean vs noisy
96
+ # -------------------------
97
+ # Robustness & leakage analysis
98
+ # -------------------------
60
99
  details["robustness"] = robustness.evaluate(
61
100
  self.model,
62
101
  self.X,
@@ -66,17 +105,19 @@ class AICritic:
66
105
  )
67
106
 
68
107
  # =========================
69
- # Human interpretation
108
+ # Human-centered summaries
70
109
  # =========================
71
- human = HumanSummary().generate(details)
110
+ human_summary = HumanSummary().generate(details)
72
111
 
73
112
  # =========================
74
- # Full payload
113
+ # Full payload (PUBLIC API)
75
114
  # =========================
76
115
  payload = {
77
- "executive": human["executive_summary"],
78
- "technical": human["technical_summary"],
79
- "details": details
116
+ "executive": human_summary["executive_summary"],
117
+ "technical": human_summary["technical_summary"],
118
+ "details": details,
119
+ # Convenience shortcut (prevents KeyError in user code)
120
+ "performance": details["performance"]
80
121
  }
81
122
 
82
123
  # =========================
@@ -1,4 +1,11 @@
1
- from .robustness import evaluate as robustness
2
- from .config import evaluate as config
3
- from .data import evaluate as data
4
- from .performance import evaluate as performance
1
+ from . import data
2
+ from . import performance
3
+ from . import robustness
4
+ from . import config
5
+
6
+ __all__ = [
7
+ "data",
8
+ "performance",
9
+ "robustness",
10
+ "config",
11
+ ]
@@ -2,9 +2,21 @@ from sklearn.model_selection import cross_val_score, learning_curve
2
2
  import matplotlib.pyplot as plt
3
3
  import numpy as np
4
4
 
5
+ from .validation import make_cv
6
+
7
+
5
8
  def evaluate(model, X, y, plot=False):
6
- # CV básico
7
- scores = cross_val_score(model, X, y, cv=3)
9
+ """
10
+ Avalia a performance do modelo usando validação cruzada
11
+ automaticamente adequada (StratifiedKFold ou KFold).
12
+ """
13
+
14
+ # =========================
15
+ # Cross-validation adaptativa
16
+ # =========================
17
+ cv = make_cv(y)
18
+
19
+ scores = cross_val_score(model, X, y, cv=cv)
8
20
  mean = float(scores.mean())
9
21
  std = float(scores.std())
10
22
  suspicious = mean > 0.995
@@ -13,9 +25,11 @@ def evaluate(model, X, y, plot=False):
13
25
  "cv_mean_score": mean,
14
26
  "cv_std": std,
15
27
  "suspiciously_perfect": suspicious,
28
+ "validation_strategy": type(cv).__name__,
16
29
  "message": (
17
30
  "Perfect CV score detected — possible data leakage."
18
- if suspicious else "CV performance within expected range."
31
+ if suspicious
32
+ else "CV performance within expected range."
19
33
  )
20
34
  }
21
35
 
@@ -24,15 +38,30 @@ def evaluate(model, X, y, plot=False):
24
38
  # =========================
25
39
  if plot:
26
40
  train_sizes, train_scores, test_scores = learning_curve(
27
- model, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 5)
41
+ model,
42
+ X,
43
+ y,
44
+ cv=cv, # <- MESMA estratégia de validação
45
+ train_sizes=np.linspace(0.1, 1.0, 5)
46
+ )
47
+
48
+ plt.figure(figsize=(6, 4))
49
+ plt.plot(
50
+ train_sizes,
51
+ np.mean(train_scores, axis=1),
52
+ label="Treino"
53
+ )
54
+ plt.plot(
55
+ train_sizes,
56
+ np.mean(test_scores, axis=1),
57
+ label="Validação"
58
+ )
59
+ plt.fill_between(
60
+ train_sizes,
61
+ np.mean(test_scores, axis=1) - np.std(test_scores, axis=1),
62
+ np.mean(test_scores, axis=1) + np.std(test_scores, axis=1),
63
+ alpha=0.2
28
64
  )
29
- plt.figure(figsize=(6,4))
30
- plt.plot(train_sizes, np.mean(train_scores, axis=1), label="Treino")
31
- plt.plot(train_sizes, np.mean(test_scores, axis=1), label="Validação")
32
- plt.fill_between(train_sizes,
33
- np.mean(test_scores, axis=1)-np.std(test_scores, axis=1),
34
- np.mean(test_scores, axis=1)+np.std(test_scores, axis=1),
35
- alpha=0.2)
36
65
  plt.xlabel("Amostra de treino")
37
66
  plt.ylabel("Score")
38
67
  plt.title("Learning Curve")
@@ -12,8 +12,13 @@ def evaluate(model, X, y, leakage_suspected=False, plot=False):
12
12
  model_clean = clone(model)
13
13
  model_noisy = clone(model)
14
14
 
15
- score_clean = cross_val_score(model_clean, X, y, cv=3, n_jobs=1).mean()
16
- score_noisy = cross_val_score(model_noisy, X_noisy, y, cv=3, n_jobs=1).mean()
15
+ from .validation import make_cv
16
+
17
+ cv = make_cv(y)
18
+
19
+ score_clean = cross_val_score(model_clean, X, y, cv=cv, n_jobs=1).mean()
20
+ score_noisy = cross_val_score(model_noisy, X_noisy, y, cv=cv, n_jobs=1).mean()
21
+
17
22
  drop = score_clean - score_noisy
18
23
 
19
24
  # =========================
@@ -0,0 +1,41 @@
1
+ # validation.py
2
+ import numpy as np
3
+ from sklearn.model_selection import KFold, StratifiedKFold
4
+
5
+ def infer_problem_type(y):
6
+ """
7
+ Infer whether the task is classification or regression.
8
+ """
9
+ y = np.asarray(y)
10
+
11
+ unique_values = np.unique(y)
12
+ n_unique = len(unique_values)
13
+
14
+ # Heurística conservadora
15
+ if (
16
+ np.issubdtype(y.dtype, np.integer)
17
+ or n_unique <= 20
18
+ ):
19
+ return "classification"
20
+
21
+ return "regression"
22
+
23
+
24
+ def make_cv(y, n_splits=3, random_state=42):
25
+ """
26
+ Automatically selects the correct CV strategy.
27
+ """
28
+ problem_type = infer_problem_type(y)
29
+
30
+ if problem_type == "classification":
31
+ return StratifiedKFold(
32
+ n_splits=n_splits,
33
+ shuffle=True,
34
+ random_state=random_state
35
+ )
36
+
37
+ return KFold(
38
+ n_splits=n_splits,
39
+ shuffle=True,
40
+ random_state=random_state
41
+ )
@@ -0,0 +1,76 @@
1
+ Metadata-Version: 2.4
2
+ Name: ai-critic
3
+ Version: 0.2.3
4
+ Summary: Fast AI evaluator for scikit-learn models
5
+ Author-email: Luiz Seabra <filipedemarco@yahoo.com>
6
+ Requires-Python: >=3.9
7
+ Description-Content-Type: text/markdown
8
+ Requires-Dist: numpy
9
+ Requires-Dist: scikit-learn
10
+
11
+ Performance under noise
12
+
13
+ > Visualizations are optional and do not affect the decision logic.
14
+
15
+ ---
16
+
17
+ ## ⚙️ Main API
18
+
19
+ ### `AICritic(model, X, y)`
20
+
21
+ * `model`: scikit-learn compatible estimator
22
+ * `X`: feature matrix
23
+ * `y`: target vector
24
+
25
+ ### `evaluate(view="all", plot=False)`
26
+
27
+ * `view`: `"executive"`, `"technical"`, `"details"`, `"all"` or custom list
28
+ * `plot`: generates graphs when `True`
29
+
30
+ ---
31
+
32
+ ## 🧠 What ai-critic Detects
33
+
34
+ | Category | Risks |
35
+
36
+ | ------------ | ---------------------------------------- |
37
+
38
+ | 🔍 Data | Target Leakage, NaNs, Imbalance |
39
+
40
+ | 🧱 Structure | Excessive Complexity, Overfitting |
41
+
42
+ | 📈 Validation | Perfect or Statistically Suspicious CV |
43
+
44
+ | 🧪 Robustness | Stable, Fragile, or Misleading |
45
+
46
+ ---
47
+
48
+ ## 🛡️ Best Practices
49
+
50
+ * **CI/CD:** Use executive output as a *quality gate*
51
+ * **Iteration:** Use technical output during tuning
52
+ * **Governance:** Log detailed output
53
+ * **Skepticism:** Never blindly trust a perfect CV
54
+
55
+ ---
56
+
57
+ ## 🧭 Use Cases
58
+
59
+ * Pre-deployment Audit
60
+ * ML Governance
61
+ * CI/CD Pipelines
62
+ * Risk Communication for Non-Technical Users
63
+
64
+ ---
65
+
66
+ ## 📄 License
67
+
68
+ Distributed under the **MIT License**.
69
+
70
+ ---
71
+
72
+ ## 🧠 Final Note
73
+
74
+ **ai-critic** is not a *benchmarking* tool. It's a **decision-making tool**.
75
+
76
+ If a model fails here, it doesn't mean it's bad—it means it **shouldn't be trusted yet**.
@@ -0,0 +1,13 @@
1
+ ai_critic/__init__.py,sha256=H6DlPMmbcFUamhsNULPLk9vHx81XCiXuKKf63EJ8eM0,53
2
+ ai_critic/critic.py,sha256=0fsMpvvV4JSp59vsj4ie9xUSJcTpzM1P8MBRtYKHzxc,3785
3
+ ai_critic/evaluators/__init__.py,sha256=ri6InmL8_LIcO-JZpU_gEFKLO4URdqo3z6rh7fV6M8Y,169
4
+ ai_critic/evaluators/config.py,sha256=gBXaS8Qxl14f40JnvMWgA0Z0SGEtbCuCHpTOPem0H90,1163
5
+ ai_critic/evaluators/data.py,sha256=YAK5NkwCeJOny_UueZ5ALwvEcRDIbEck404eV2oqWnc,1871
6
+ ai_critic/evaluators/performance.py,sha256=1CQx5DueK0XkelYyJnAGRJ3AjQtjsKeW8_1JQZqKVOI,1973
7
+ ai_critic/evaluators/robustness.py,sha256=mfVQ67Z6t6aRvtIq-XQEQYbwvyf8UefM1myeOGVrnAE,1869
8
+ ai_critic/evaluators/summary.py,sha256=O9ZCrph93VV6pFcMIx2a7DizPIccRUqbGcUZ6oDmOLs,3791
9
+ ai_critic/evaluators/validation.py,sha256=rnzRwD78Cugey33gl9geE8JoBURsKEEnqrIOhBZv0LY,904
10
+ ai_critic-0.2.3.dist-info/METADATA,sha256=znefvwZLLg1yHQSrlVyO0M_97T3gJrt0N_mN0xDKUiM,1615
11
+ ai_critic-0.2.3.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
12
+ ai_critic-0.2.3.dist-info/top_level.txt,sha256=TRyZkm1vyLLcFDg_80yeg5cHvPis_oW1Ti170417jkw,10
13
+ ai_critic-0.2.3.dist-info/RECORD,,
@@ -1,225 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: ai-critic
3
- Version: 0.2.2
4
- Summary: Fast AI evaluator for scikit-learn models
5
- Author-email: Luiz Seabra <filipedemarco@yahoo.com>
6
- Requires-Python: >=3.9
7
- Description-Content-Type: text/markdown
8
- Requires-Dist: numpy
9
- Requires-Dist: scikit-learn
10
-
11
- # ai-critic: Automated Risk Auditor for Machine Learning Models
12
-
13
- [![PyPI version](https://img.shields.io/pypi/v/ai-critic.svg)](https://pypi.org/project/ai-critic/)
14
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
15
- [![Python Versions](https://img.shields.io/pypi/pyversions/ai-critic.svg)](https://pypi.org/project/ai-critic/)
16
-
17
- O **ai-critic** é um auditor de risco automatizado baseado em heurísticas para modelos de Machine Learning. Ele avalia modelos treinados antes da implantação e traduz riscos técnicos complexos em decisões claras e centradas no ser humano.
18
-
19
- Diferente das ferramentas tradicionais que focam apenas em métricas de desempenho, o **ai-critic** adota uma postura cética por design, respondendo à pergunta fundamental: **“Este modelo pode ser implantado com segurança?”**
20
-
21
- ---
22
-
23
- ## 🚀 O que é o ai-critic?
24
-
25
- O `ai-critic` avalia modelos treinados antes da implantação, analisando quatro áreas principais de risco:
26
-
27
- * **Integridade dos Dados:** (*data leakage*, desequilíbrio, NaNs).
28
- * **Estrutura do Modelo:** (risco de *overfitting*, complexidade, configurações suspeitas).
29
- * **Comportamento de Validação:** (pontuações suspeitamente perfeitas de cross-validation).
30
- * **Robustez:** (sensibilidade a ruído e estabilidade do modelo).
31
-
32
- Os resultados são organizados em três camadas semânticas para diferentes *stakeholders*:
33
- * **Executiva:** Decisões para stakeholders e gerentes.
34
- * **Técnica:** Diagnósticos para engenheiros de ML.
35
- * **Detalhada:** Saída completa de métricas e análises técnicas, incluindo gráficos opcionais.
36
-
37
- ---
38
-
39
- ## 🎯 Por que o ai-critic Existe: Filosofia Central
40
-
41
- A maioria das ferramentas de ML tradicionais assume que métricas são a verdade absoluta, confia cegamente na validação cruzada e entrega números brutos sem interpretação.
42
-
43
- O **ai-critic** é cético por design. Ele trata:
44
- * **Pontuações perfeitas** como sinais de alerta, não necessariamente sucesso.
45
- * **Métricas de robustez** como dependentes do contexto.
46
- * **Implantação** como uma decisão de gestão de risco, não apenas uma meta técnica.
47
-
48
- A filosofia central é: **Métricas não falham modelos — o contexto falha.** O `ai-critic` aplica heurísticas de raciocínio humano:
49
- * “Isso é bom demais para ser verdade?”
50
- * “Isso pode estar vazando o alvo (*target*)?”
51
- * “A robustez importa se a linha de base estiver errada?”
52
-
53
- ---
54
-
55
- ## 🛠️ Instalação
56
-
57
- Instale o `ai-critic` via pip:
58
-
59
- ```bash
60
- pip install ai-critic
61
- ```
62
-
63
- **Requisitos:**
64
- * Python ≥ 3.8
65
- * `scikit-learn`
66
- * `matplotlib`, `seaborn`, `numpy`, `pandas` (para visualizações opcionais)
67
-
68
- ---
69
-
70
- ## 💡 Início Rápido
71
-
72
- Audite seu modelo treinado em apenas algumas linhas:
73
-
74
- ```python
75
- from sklearn.datasets import load_breast_cancer
76
- from sklearn.ensemble import RandomForestClassifier
77
- from ai_critic import AICritic
78
-
79
- # 1. Carregar dados e treinar um modelo (exemplo)
80
- X, y = load_breast_cancer(return_X_y=True)
81
- model = RandomForestClassifier(max_depth=20, random_state=42)
82
- model.fit(X, y)
83
-
84
- # 2. Inicializar e avaliar com ai-critic
85
- critic = AICritic(model, X, y)
86
-
87
- # Realização de avaliação completa (padrão view="all")
88
- report = critic.evaluate(plot=True)
89
- print(report)
90
- ```
91
-
92
- ---
93
-
94
- ## 🧩 Saída Multi-Camadas
95
-
96
- O `ai-critic` estrutura os resultados em camadas de decisão claras através do parâmetro `view`.
97
-
98
- ### 🔹 Visualização Executiva (`view="executive"`)
99
- Projetado para stakeholders e gestores. Sem jargão técnico.
100
-
101
- ```python
102
- critic.evaluate(view="executive")
103
- ```
104
-
105
- **Exemplo de Saída:**
106
- ```json
107
- {
108
- "verdict": "❌ Não Confiável",
109
- "risk_level": "high",
110
- "deploy_recommended": false,
111
- "main_reason": "Forte evidência de vazamento de dados inflando o desempenho do modelo."
112
- }
113
- ```
114
-
115
- ### 🔹 Visualização Técnica (`view="technical"`)
116
- Projetado para engenheiros de ML. Focado em diagnósticos e ações corretivas.
117
-
118
- ```python
119
- critic.evaluate(view="technical")
120
- ```
121
-
122
- **Exemplo de Saída:**
123
- ```json
124
- {
125
- "key_risks": [
126
- "Vazamento de dados suspeito devido à correlação quase perfeita entre recurso e alvo.",
127
- "Pontuação de validação cruzada perfeita detectada (estatisticamente improvável).",
128
- "A profundidade da árvore pode ser muito alta para o tamanho do conjunto de dados."
129
- ],
130
- "model_health": {
131
- "data_leakage": true,
132
- "suspicious_cv": true,
133
- "structural_risk": true,
134
- "robustness_verdict": "misleading"
135
- },
136
- "recommendations": [
137
- "Auditar e remover recursos com vazamento.",
138
- "Reduzir a complexidade do modelo.",
139
- "Executar novamente a validação após a mitigação do vazamento."
140
- ]
141
- }
142
- ```
143
-
144
- ### 🔹 Visualização Detalhada (`view="details"`)
145
- Projetado para auditoria, depuração e conformidade. Agrega todos os outputs dos módulos internos.
146
-
147
- ```python
148
- details = critic.evaluate(view="details")
149
- print(details["data"]["class_balance"])
150
- print(details["robustness"]["performance_drop"])
151
- ```
152
-
153
- ### 🔹 Visualização Combinada (`view="all"`)
154
- Retorna todas as três camadas em um único dicionário, facilitando a integração com pipelines de CI/CD.
155
-
156
- ---
157
-
158
- ## 📊 Visualizações e Gráficos
159
-
160
- Ao definir `plot=True` no método `evaluate()`, o `ai-critic` gera automaticamente:
161
- * **Heatmap de Correlação:** Identificação visual de vazamento de dados.
162
- * **Learning Curve:** Diagnóstico de overfitting e necessidade de mais dados.
163
- * **Gráfico de Robustez:** Visualização da queda de performance sob ruído.
164
-
165
- ---
166
-
167
- ## ⚙️ API Principal e Modularização
168
-
169
- ### `AICritic(model, X, y)`
170
- * `model`: Modelo `scikit-learn` treinado.
171
- * `X`: Matriz de recursos.
172
- * `y`: Vetor alvo.
173
-
174
- ### `evaluate(view="all", plot=False)`
175
- * `view`: Camada de saída (`"executive"`, `"technical"`, `"details"`, `"all"` ou lista customizada).
176
- * `plot`: `True` para gerar gráficos automáticos.
177
-
178
- ### Uso Modular (Avançado)
179
- Cada módulo retorna um dicionário padronizado consistente:
180
- ```python
181
- from ai_critic.evaluators import data, config, performance, robustness
182
-
183
- data_report = data.evaluate(X, y, plot=True)
184
- config_report = config.evaluate(model, n_samples=data_report["n_samples"], n_features=data_report["n_features"])
185
- ```
186
-
187
- ---
188
-
189
- ## 🧠 O que o ai-critic Detecta
190
-
191
- | Categoria | Riscos Detectados |
192
- | :--- | :--- |
193
- | **🔍 Dados** | Vazamento de alvo via correlação, NaNs, desequilíbrio de classes. |
194
- | **🧱 Estrutura** | Árvores excessivamente complexas, altas taxas de recurso/amostra, configurações suspeitas. |
195
- | **📈 Validação** | Pontuações de CV suspeitosamente perfeitas, variância irreal. |
196
- | **🧪 Robustez** | Sensibilidade a ruído, robustez enganosa (stable, fragile, misleading). |
197
-
198
- ---
199
-
200
- ## 🛡️ Melhores Práticas
201
-
202
- * **CI/CD:** Use a Visualização Executiva como um portão de qualidade automatizado.
203
- * **Debugging:** Use a Visualização Técnica durante a iteração do modelo.
204
- * **Compliance:** Utilize a Visualização Detalhada para rastreabilidade e auditoria.
205
- * **Ceticismo:** Nunca confie cegamente em pontuações de CV perfeitas.
206
-
207
- ---
208
-
209
- ## 🧭 Casos de Uso Típicos
210
- * Auditorias de modelo pré-implantação.
211
- * Governança e conformidade de ML.
212
- * Portões de modelo em pipelines CI/CD.
213
- * Explicação de riscos para stakeholders não técnicos.
214
-
215
- ---
216
-
217
- ## 📄 Licença
218
-
219
- Distribuído sob a **MIT License**.
220
-
221
- ---
222
-
223
- ## 🧠 Nota Final
224
-
225
- O **ai-critic** não é uma ferramenta de benchmarking. É uma **ferramenta de decisão**. Se um modelo falhar aqui, não significa que seja ruim — significa que **não deve ser confiável ainda**.
@@ -1,12 +0,0 @@
1
- ai_critic/__init__.py,sha256=H6DlPMmbcFUamhsNULPLk9vHx81XCiXuKKf63EJ8eM0,53
2
- ai_critic/critic.py,sha256=XShAtVzrvdqVSNVzzusDFSywOOmJYO-TjbodJXw9-IM,2521
3
- ai_critic/evaluators/__init__.py,sha256=Jmmz9899YD__4Uj3bA6R7vYOwlH2giPc1wuCSLv7FVw,170
4
- ai_critic/evaluators/config.py,sha256=gBXaS8Qxl14f40JnvMWgA0Z0SGEtbCuCHpTOPem0H90,1163
5
- ai_critic/evaluators/data.py,sha256=YAK5NkwCeJOny_UueZ5ALwvEcRDIbEck404eV2oqWnc,1871
6
- ai_critic/evaluators/performance.py,sha256=JpXM_7-RN_q_FvXga4TkSVBBo90Nk0AdBWbjmS-D1oI,1469
7
- ai_critic/evaluators/robustness.py,sha256=UiGTpE-h2d2U19p1Ce4XpcMv4NMb2I4MmrlTrsPTIag,1808
8
- ai_critic/evaluators/summary.py,sha256=O9ZCrph93VV6pFcMIx2a7DizPIccRUqbGcUZ6oDmOLs,3791
9
- ai_critic-0.2.2.dist-info/METADATA,sha256=ZmxIS3QFXr8Lng4aM5c8Tuh65eUKxpIuXoGF6OGHW3s,7854
10
- ai_critic-0.2.2.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
11
- ai_critic-0.2.2.dist-info/top_level.txt,sha256=TRyZkm1vyLLcFDg_80yeg5cHvPis_oW1Ti170417jkw,10
12
- ai_critic-0.2.2.dist-info/RECORD,,