agnt5 0.2.8a2__cp310-abi3-manylinux_2_34_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of agnt5 might be problematic. Click here for more details.

agnt5/workflow.py ADDED
@@ -0,0 +1,596 @@
1
+ """Workflow component implementation for AGNT5 SDK."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import asyncio
6
+ import functools
7
+ import inspect
8
+ import logging
9
+ import uuid
10
+ from typing import Any, Callable, Dict, Optional, TypeVar, cast
11
+
12
+ from ._schema_utils import extract_function_metadata, extract_function_schemas
13
+ from .context import Context
14
+ from .entity import Entity, EntityState, _get_state_manager
15
+ from .function import FunctionContext
16
+ from .types import HandlerFunc, WorkflowConfig
17
+ from ._telemetry import setup_module_logger
18
+
19
+ logger = setup_module_logger(__name__)
20
+
21
+ T = TypeVar("T")
22
+
23
+ # Global workflow registry
24
+ _WORKFLOW_REGISTRY: Dict[str, WorkflowConfig] = {}
25
+
26
+ class WorkflowContext(Context):
27
+ """
28
+ Context for durable workflows.
29
+
30
+ Extends base Context with:
31
+ - State management via WorkflowEntity.state
32
+ - Step tracking and replay
33
+ - Orchestration (task, parallel, gather)
34
+ - Checkpointing (step)
35
+
36
+ WorkflowContext delegates state to the underlying WorkflowEntity,
37
+ which provides durability and state change tracking for AI workflows.
38
+ """
39
+
40
+ def __init__(
41
+ self,
42
+ workflow_entity: "WorkflowEntity", # Forward reference
43
+ run_id: str,
44
+ attempt: int = 0,
45
+ runtime_context: Optional[Any] = None,
46
+ ) -> None:
47
+ """
48
+ Initialize workflow context.
49
+
50
+ Args:
51
+ workflow_entity: WorkflowEntity instance managing workflow state
52
+ run_id: Unique workflow run identifier
53
+ attempt: Retry attempt number (0-indexed)
54
+ runtime_context: RuntimeContext for trace correlation
55
+ """
56
+ super().__init__(run_id, attempt, runtime_context)
57
+ self._workflow_entity = workflow_entity
58
+ self._step_counter: int = 0 # Track step sequence
59
+
60
+ # === State Management ===
61
+
62
+ @property
63
+ def state(self):
64
+ """
65
+ Delegate to WorkflowEntity.state for durable state management.
66
+
67
+ Returns:
68
+ WorkflowState instance from the workflow entity
69
+
70
+ Example:
71
+ ctx.state.set("status", "processing")
72
+ status = ctx.state.get("status")
73
+ """
74
+ return self._workflow_entity.state
75
+
76
+ # === Orchestration ===
77
+
78
+ async def task(
79
+ self,
80
+ handler: Union[str, Callable],
81
+ *args: Any,
82
+ **kwargs: Any,
83
+ ) -> Any:
84
+ """
85
+ Execute a function and wait for result.
86
+
87
+ Supports two calling patterns:
88
+
89
+ 1. **Type-safe with function reference (recommended)**:
90
+ ```python
91
+ result = await ctx.task(process_data, arg1, arg2, kwarg=value)
92
+ ```
93
+ Full IDE support, type checking, and refactoring safety.
94
+
95
+ 2. **Legacy string-based (backward compatible)**:
96
+ ```python
97
+ result = await ctx.task("function_name", input=data)
98
+ ```
99
+ String lookup without type safety.
100
+
101
+ Args:
102
+ handler: Either a @function reference (recommended) or string name (legacy)
103
+ *args: Positional arguments to pass to the function
104
+ **kwargs: Keyword arguments to pass to the function
105
+
106
+ Returns:
107
+ Function result
108
+
109
+ Example (type-safe):
110
+ ```python
111
+ @function
112
+ async def process_data(ctx: FunctionContext, data: list, multiplier: int = 2):
113
+ return [x * multiplier for x in data]
114
+
115
+ @workflow
116
+ async def my_workflow(ctx: WorkflowContext):
117
+ # Type-safe call with positional and keyword args
118
+ result = await ctx.task(process_data, [1, 2, 3], multiplier=3)
119
+ return result
120
+ ```
121
+
122
+ Example (legacy):
123
+ ```python
124
+ result = await ctx.task("process_data", input={"data": [1, 2, 3]})
125
+ ```
126
+ """
127
+ from .function import FunctionRegistry
128
+
129
+ # Extract handler name from function reference or use string
130
+ if callable(handler):
131
+ handler_name = handler.__name__
132
+ if not hasattr(handler, '_agnt5_config'):
133
+ raise ValueError(
134
+ f"Function '{handler_name}' is not a registered @function. "
135
+ f"Did you forget to add the @function decorator?"
136
+ )
137
+ else:
138
+ handler_name = handler
139
+
140
+ # Generate unique step name for durability
141
+ step_name = f"{handler_name}_{self._step_counter}"
142
+ self._step_counter += 1
143
+
144
+ # Check if step already completed (for replay)
145
+ if self._workflow_entity.has_completed_step(step_name):
146
+ result = self._workflow_entity.get_completed_step(step_name)
147
+ self._logger.info(f"🔄 Replaying cached step: {step_name}")
148
+ return result
149
+
150
+ # Execute function
151
+ self._logger.info(f"▶️ Executing new step: {step_name}")
152
+ func_config = FunctionRegistry.get(handler_name)
153
+ if func_config is None:
154
+ raise ValueError(f"Function '{handler_name}' not found in registry")
155
+
156
+ # Create FunctionContext for the function execution
157
+ func_ctx = FunctionContext(
158
+ run_id=f"{self.run_id}:task:{handler_name}",
159
+ runtime_context=self._runtime_context,
160
+ )
161
+
162
+ # Execute function with arguments
163
+ # Support legacy pattern: ctx.task("func_name", input=data) or ctx.task(func_ref, input=data)
164
+ if len(args) == 0 and "input" in kwargs:
165
+ # Legacy pattern - single input parameter
166
+ input_data = kwargs.pop("input") # Remove from kwargs
167
+ result = await func_config.handler(func_ctx, input_data, **kwargs)
168
+ else:
169
+ # Type-safe pattern - pass all args/kwargs
170
+ result = await func_config.handler(func_ctx, *args, **kwargs)
171
+
172
+ # Record step completion in WorkflowEntity
173
+ self._workflow_entity.record_step_completion(step_name, handler_name, args or kwargs, result)
174
+
175
+ return result
176
+
177
+ async def parallel(self, *tasks: Awaitable[T]) -> List[T]:
178
+ """
179
+ Run multiple tasks in parallel.
180
+
181
+ Args:
182
+ *tasks: Async tasks to run in parallel
183
+
184
+ Returns:
185
+ List of results in the same order as tasks
186
+
187
+ Example:
188
+ result1, result2 = await ctx.parallel(
189
+ fetch_data(source1),
190
+ fetch_data(source2)
191
+ )
192
+ """
193
+ import asyncio
194
+ return list(await asyncio.gather(*tasks))
195
+
196
+ async def gather(self, **tasks: Awaitable[T]) -> Dict[str, T]:
197
+ """
198
+ Run tasks in parallel with named results.
199
+
200
+ Args:
201
+ **tasks: Named async tasks to run in parallel
202
+
203
+ Returns:
204
+ Dictionary mapping names to results
205
+
206
+ Example:
207
+ results = await ctx.gather(
208
+ db=query_database(),
209
+ api=fetch_api()
210
+ )
211
+ """
212
+ import asyncio
213
+ keys = list(tasks.keys())
214
+ values = list(tasks.values())
215
+ results = await asyncio.gather(*values)
216
+ return dict(zip(keys, results))
217
+
218
+ async def step(
219
+ self,
220
+ name: str,
221
+ func_or_awaitable: Union[Callable[[], Awaitable[T]], Awaitable[T]]
222
+ ) -> T:
223
+ """
224
+ Checkpoint expensive operations for durability.
225
+
226
+ If workflow crashes, won't re-execute this step on retry.
227
+
228
+ Args:
229
+ name: Unique name for this checkpoint
230
+ func_or_awaitable: Either an async function or awaitable
231
+
232
+ Returns:
233
+ The result of the function/awaitable
234
+
235
+ Example:
236
+ result = await ctx.step("load", load_data())
237
+ """
238
+ import inspect
239
+
240
+ # Check if step already completed (for replay)
241
+ if self._workflow_entity.has_completed_step(name):
242
+ result = self._workflow_entity.get_completed_step(name)
243
+ self._logger.info(f"🔄 Replaying checkpoint: {name}")
244
+ return result
245
+
246
+ # Execute and checkpoint
247
+ if inspect.iscoroutine(func_or_awaitable) or inspect.isawaitable(func_or_awaitable):
248
+ result = await func_or_awaitable
249
+ else:
250
+ result = await func_or_awaitable()
251
+
252
+ # Record step completion
253
+ self._workflow_entity.record_step_completion(name, "checkpoint", None, result)
254
+
255
+ return result
256
+
257
+
258
+ # ============================================================================
259
+ # WorkflowEntity: Entity specialized for workflow execution state
260
+ # ============================================================================
261
+
262
+ class WorkflowEntity(Entity):
263
+ """
264
+ Entity specialized for workflow execution state.
265
+
266
+ Extends Entity with workflow-specific capabilities:
267
+ - Step tracking for replay and crash recovery
268
+ - State change tracking for debugging and audit (AI workflows)
269
+ - Completed step cache for efficient replay
270
+
271
+ Workflows are temporary entities - they exist for the duration of
272
+ execution and their state is used for coordination between steps.
273
+ """
274
+
275
+ def __init__(self, run_id: str):
276
+ """
277
+ Initialize workflow entity.
278
+
279
+ Args:
280
+ run_id: Unique workflow run identifier
281
+ """
282
+ # Initialize as entity with workflow key pattern
283
+ super().__init__(key=f"workflow:{run_id}")
284
+
285
+ # Step tracking for replay and recovery
286
+ self._step_events: list[Dict[str, Any]] = []
287
+ self._completed_steps: Dict[str, Any] = {}
288
+
289
+ # State change tracking for debugging/audit (AI workflows)
290
+ self._state_changes: list[Dict[str, Any]] = []
291
+
292
+ logger.debug(f"Created WorkflowEntity: {run_id}")
293
+
294
+ @property
295
+ def run_id(self) -> str:
296
+ """Extract run_id from workflow key."""
297
+ return self._key.split(":", 1)[1]
298
+
299
+ def record_step_completion(
300
+ self,
301
+ step_name: str,
302
+ handler_name: str,
303
+ input_data: Any,
304
+ result: Any
305
+ ) -> None:
306
+ """
307
+ Record completed step for replay and recovery.
308
+
309
+ Args:
310
+ step_name: Unique step identifier
311
+ handler_name: Function handler name
312
+ input_data: Input data passed to function
313
+ result: Function result
314
+ """
315
+ self._step_events.append({
316
+ "step_name": step_name,
317
+ "handler_name": handler_name,
318
+ "input": input_data,
319
+ "result": result
320
+ })
321
+ self._completed_steps[step_name] = result
322
+ logger.debug(f"Recorded step completion: {step_name}")
323
+
324
+ def get_completed_step(self, step_name: str) -> Optional[Any]:
325
+ """
326
+ Get result of completed step (for replay).
327
+
328
+ Args:
329
+ step_name: Step identifier
330
+
331
+ Returns:
332
+ Step result if completed, None otherwise
333
+ """
334
+ return self._completed_steps.get(step_name)
335
+
336
+ def has_completed_step(self, step_name: str) -> bool:
337
+ """Check if step has been completed."""
338
+ return step_name in self._completed_steps
339
+
340
+ @property
341
+ def state(self) -> "WorkflowState":
342
+ """
343
+ Get workflow state with change tracking.
344
+
345
+ Returns WorkflowState which tracks all state mutations
346
+ for debugging and replay of AI workflows.
347
+ """
348
+ if self._state is None:
349
+ # Get state dict from state manager
350
+ state_manager = _get_state_manager()
351
+ state_dict = state_manager.get_or_create_state(self._state_key)
352
+ self._state = WorkflowState(state_dict, self)
353
+ return self._state
354
+
355
+
356
+ class WorkflowState(EntityState):
357
+ """
358
+ State interface for WorkflowEntity with change tracking.
359
+
360
+ Extends EntityState to track all state mutations for:
361
+ - AI workflow debugging
362
+ - Audit trail
363
+ - Replay capabilities
364
+ """
365
+
366
+ def __init__(self, state_dict: Dict[str, Any], workflow_entity: WorkflowEntity):
367
+ """
368
+ Initialize workflow state.
369
+
370
+ Args:
371
+ state_dict: Dictionary to use for state storage
372
+ workflow_entity: Parent workflow entity for tracking
373
+ """
374
+ super().__init__(state_dict)
375
+ self._workflow_entity = workflow_entity
376
+
377
+ def set(self, key: str, value: Any) -> None:
378
+ """Set value and track change."""
379
+ super().set(key, value)
380
+ # Track change for debugging/audit
381
+ import time
382
+ self._workflow_entity._state_changes.append({
383
+ "key": key,
384
+ "value": value,
385
+ "timestamp": time.time(),
386
+ "deleted": False
387
+ })
388
+
389
+ def delete(self, key: str) -> None:
390
+ """Delete key and track change."""
391
+ super().delete(key)
392
+ # Track deletion
393
+ import time
394
+ self._workflow_entity._state_changes.append({
395
+ "key": key,
396
+ "value": None,
397
+ "timestamp": time.time(),
398
+ "deleted": True
399
+ })
400
+
401
+ def clear(self) -> None:
402
+ """Clear all state and track change."""
403
+ super().clear()
404
+ # Track clear operation
405
+ import time
406
+ self._workflow_entity._state_changes.append({
407
+ "key": "__clear__",
408
+ "value": None,
409
+ "timestamp": time.time(),
410
+ "deleted": True
411
+ })
412
+
413
+
414
+ class WorkflowRegistry:
415
+ """Registry for workflow handlers."""
416
+
417
+ @staticmethod
418
+ def register(config: WorkflowConfig) -> None:
419
+ """
420
+ Register a workflow handler.
421
+
422
+ Raises:
423
+ ValueError: If a workflow with this name is already registered
424
+ """
425
+ if config.name in _WORKFLOW_REGISTRY:
426
+ existing_workflow = _WORKFLOW_REGISTRY[config.name]
427
+ logger.error(
428
+ f"Workflow name collision detected: '{config.name}'\n"
429
+ f" First defined in: {existing_workflow.handler.__module__}\n"
430
+ f" Also defined in: {config.handler.__module__}\n"
431
+ f" This is a bug - workflows must have unique names."
432
+ )
433
+ raise ValueError(
434
+ f"Workflow '{config.name}' is already registered. "
435
+ f"Use @workflow(name='unique_name') to specify a different name."
436
+ )
437
+
438
+ _WORKFLOW_REGISTRY[config.name] = config
439
+ logger.debug(f"Registered workflow '{config.name}'")
440
+
441
+ @staticmethod
442
+ def get(name: str) -> Optional[WorkflowConfig]:
443
+ """Get workflow configuration by name."""
444
+ return _WORKFLOW_REGISTRY.get(name)
445
+
446
+ @staticmethod
447
+ def all() -> Dict[str, WorkflowConfig]:
448
+ """Get all registered workflows."""
449
+ return _WORKFLOW_REGISTRY.copy()
450
+
451
+ @staticmethod
452
+ def list_names() -> list[str]:
453
+ """List all registered workflow names."""
454
+ return list(_WORKFLOW_REGISTRY.keys())
455
+
456
+ @staticmethod
457
+ def clear() -> None:
458
+ """Clear all registered workflows."""
459
+ _WORKFLOW_REGISTRY.clear()
460
+
461
+
462
+ def workflow(
463
+ _func: Optional[Callable[..., Any]] = None,
464
+ *,
465
+ name: Optional[str] = None,
466
+ chat: bool = False,
467
+ ) -> Callable[..., Any]:
468
+ """
469
+ Decorator to mark a function as an AGNT5 durable workflow.
470
+
471
+ Workflows use WorkflowEntity for state management and WorkflowContext
472
+ for orchestration. State changes are automatically tracked for replay.
473
+
474
+ Args:
475
+ name: Custom workflow name (default: function's __name__)
476
+ chat: Enable chat mode for multi-turn conversation workflows (default: False)
477
+
478
+ Example (standard workflow):
479
+ @workflow
480
+ async def process_order(ctx: WorkflowContext, order_id: str) -> dict:
481
+ # Durable state - survives crashes
482
+ ctx.state.set("status", "processing")
483
+ ctx.state.set("order_id", order_id)
484
+
485
+ # Validate order
486
+ order = await ctx.task(validate_order, input={"order_id": order_id})
487
+
488
+ # Process payment (checkpointed - won't re-execute on crash)
489
+ payment = await ctx.step("payment", process_payment(order["total"]))
490
+
491
+ # Fulfill order
492
+ await ctx.task(ship_order, input={"order_id": order_id})
493
+
494
+ ctx.state.set("status", "completed")
495
+ return {"status": ctx.state.get("status")}
496
+
497
+ Example (chat workflow):
498
+ @workflow(chat=True)
499
+ async def customer_support(ctx: WorkflowContext, message: str) -> dict:
500
+ # Initialize conversation state
501
+ if not ctx.state.get("messages"):
502
+ ctx.state.set("messages", [])
503
+
504
+ # Add user message
505
+ messages = ctx.state.get("messages")
506
+ messages.append({"role": "user", "content": message})
507
+ ctx.state.set("messages", messages)
508
+
509
+ # Generate AI response
510
+ response = await ctx.task(generate_response, messages=messages)
511
+
512
+ # Add assistant response
513
+ messages.append({"role": "assistant", "content": response})
514
+ ctx.state.set("messages", messages)
515
+
516
+ return {"response": response, "turn_count": len(messages) // 2}
517
+ """
518
+
519
+ def decorator(func: Callable[..., Any]) -> Callable[..., Any]:
520
+ # Get workflow name
521
+ workflow_name = name or func.__name__
522
+
523
+ # Validate function signature
524
+ sig = inspect.signature(func)
525
+ params = list(sig.parameters.values())
526
+
527
+ if not params or params[0].name != "ctx":
528
+ raise ValueError(
529
+ f"Workflow '{workflow_name}' must have 'ctx: WorkflowContext' as first parameter"
530
+ )
531
+
532
+ # Convert sync to async if needed
533
+ if inspect.iscoroutinefunction(func):
534
+ handler_func = cast(HandlerFunc, func)
535
+ else:
536
+ # Wrap sync function in async
537
+ @functools.wraps(func)
538
+ async def async_wrapper(*args: Any, **kwargs: Any) -> Any:
539
+ return func(*args, **kwargs)
540
+
541
+ handler_func = cast(HandlerFunc, async_wrapper)
542
+
543
+ # Extract schemas from type hints
544
+ input_schema, output_schema = extract_function_schemas(func)
545
+
546
+ # Extract metadata (description, etc.)
547
+ metadata = extract_function_metadata(func)
548
+
549
+ # Add chat metadata if chat mode is enabled
550
+ if chat:
551
+ metadata["chat"] = "true"
552
+
553
+ # Register workflow
554
+ config = WorkflowConfig(
555
+ name=workflow_name,
556
+ handler=handler_func,
557
+ input_schema=input_schema,
558
+ output_schema=output_schema,
559
+ metadata=metadata,
560
+ )
561
+ WorkflowRegistry.register(config)
562
+
563
+ # Create wrapper that provides context
564
+ @functools.wraps(func)
565
+ async def wrapper(*args: Any, **kwargs: Any) -> Any:
566
+ # Create WorkflowEntity and WorkflowContext if not provided
567
+ if not args or not isinstance(args[0], WorkflowContext):
568
+ # Auto-create workflow entity and context for direct workflow calls
569
+ run_id = f"workflow-{uuid.uuid4().hex[:8]}"
570
+
571
+ # Create WorkflowEntity to manage state
572
+ workflow_entity = WorkflowEntity(run_id=run_id)
573
+
574
+ # Create WorkflowContext that wraps the entity
575
+ ctx = WorkflowContext(
576
+ workflow_entity=workflow_entity,
577
+ run_id=run_id,
578
+ )
579
+
580
+ # Execute workflow
581
+ return await handler_func(ctx, *args, **kwargs)
582
+ else:
583
+ # WorkflowContext provided - use it
584
+ return await handler_func(*args, **kwargs)
585
+
586
+ # Store config on wrapper for introspection
587
+ wrapper._agnt5_config = config # type: ignore
588
+ return wrapper
589
+
590
+ # Handle both @workflow and @workflow(...) syntax
591
+ if _func is None:
592
+ return decorator
593
+ else:
594
+ return decorator(_func)
595
+
596
+
@@ -0,0 +1,25 @@
1
+ Metadata-Version: 2.4
2
+ Name: agnt5
3
+ Version: 0.2.8a2
4
+ Classifier: Development Status :: 3 - Alpha
5
+ Classifier: Intended Audience :: Developers
6
+ Classifier: Programming Language :: Python :: 3
7
+ Classifier: Programming Language :: Python :: 3.11
8
+ Classifier: Programming Language :: Python :: 3.12
9
+ Classifier: Programming Language :: Python :: 3.13
10
+ Classifier: Programming Language :: Python :: 3.14
11
+ Classifier: Programming Language :: Rust
12
+ Classifier: Operating System :: POSIX :: Linux
13
+ Classifier: Operating System :: MacOS
14
+ Classifier: Operating System :: Microsoft :: Windows
15
+ Requires-Dist: maturin>=1.9.3
16
+ Requires-Dist: docstring-parser>=0.15
17
+ Requires-Dist: typing-extensions>=4.8
18
+ Requires-Dist: httpx>=0.28.1
19
+ Requires-Dist: pydantic>=2.0
20
+ Summary: AGNT5 Python SDK - Build durable, resilient agent-first applications
21
+ Author-email: AGNT5 Team <team@agnt5.com>
22
+ License: Apache-2.0
23
+ Requires-Python: >=3.11
24
+ Project-URL: Homepage, https://agnt5.com
25
+ Project-URL: Documentation, https://agnt5.com/sdk/python
@@ -0,0 +1,22 @@
1
+ agnt5-0.2.8a2.dist-info/METADATA,sha256=1Lj5nOz64iKpWdMoxTRlt_DB4QavSlWDrqqjZXzH11c,996
2
+ agnt5-0.2.8a2.dist-info/WHEEL,sha256=AdMozAxftELsa3nYun92mL1tYO-R1ewuDPju53zvoK0,107
3
+ agnt5/__init__.py,sha256=Cscbhye6pA8Jp-sKBGfP4kYXElUdF6aOSHVf-7ph4Dg,2045
4
+ agnt5/_compat.py,sha256=BGuy3v5VDOHVa5f3Z-C22iMN19lAt0mPmXwF3qSSWxI,369
5
+ agnt5/_core.abi3.so,sha256=8fEfT968EuzIbg2BlRpUuzmnKbeB5VCwhI7L9BeSOes,15141600
6
+ agnt5/_retry_utils.py,sha256=loHsWY5BR4wZy57IzcDEjQAy88DHVwVIr25Cn1d9GPA,5801
7
+ agnt5/_schema_utils.py,sha256=MR67RW757T4Oq2Jqf4kB61H_b51zwaf3CLWELnkngRo,9572
8
+ agnt5/_telemetry.py,sha256=bIY9AvBRjJBTHoBPbfR6X1OgaiUf-T0vCoi0_snsWXA,5957
9
+ agnt5/agent.py,sha256=cz9gDB6c-eRJhBihEIuvTnNBwonpH6G8lbm44j_DKgA,36704
10
+ agnt5/client.py,sha256=kXksazgxdVXWaG9OkjJA4cWruNtcS-ENhtnkrIdw-Nk,23212
11
+ agnt5/context.py,sha256=S2OzPkhn_jnqSWfT21mSYOux8vHaLKQxcAvggZDHQek,2378
12
+ agnt5/entity.py,sha256=jMnSRTv6MNlK05cJ0FWYQR89ZTz_ywtVuwv-Sjr2Jfc,24925
13
+ agnt5/exceptions.py,sha256=mZ0q-NK6OKhYxgwBJpIbgpgzk-CJaFIHDbp1EE-pS7I,925
14
+ agnt5/function.py,sha256=f1vaAlJRwuo8cxCOGEd8XPido00mOhlPS8UJJx-6hJI,11041
15
+ agnt5/lm.py,sha256=9dFjd6eQ3f3lFZe7H7rWZherYiP_58MT1F5xpwD8PCg,23195
16
+ agnt5/tool.py,sha256=uc4L-Q9QyLzQDe-MZKk2Wo3o5e-mK8tfaQwVDgQdouQ,13133
17
+ agnt5/tracing.py,sha256=Mh2-OfnQM61lM_P8gxJstafdsUA8Gxoo1lP-Joxhub8,5980
18
+ agnt5/types.py,sha256=Zb71ZMwvrt1p4SH18cAKunp2y5tao_W5_jGYaPDejQo,2840
19
+ agnt5/version.py,sha256=rOq1mObLihnnKgKqBrwZA0zwOPudEKVFcW1a48ynkqc,573
20
+ agnt5/worker.py,sha256=gIbYOdmOczNAqCgErzfLqIukbCpOutdOTZSWv_BatkU,46777
21
+ agnt5/workflow.py,sha256=sU8Gk7unxE_Gla7Fe-KlXfcBvYa2326GciuoR26CCr0,19585
22
+ agnt5-0.2.8a2.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: maturin (1.9.6)
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-abi3-manylinux_2_34_x86_64