agnt5 0.2.8a10__cp310-abi3-manylinux_2_34_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of agnt5 might be problematic. Click here for more details.
- agnt5/__init__.py +91 -0
- agnt5/_compat.py +16 -0
- agnt5/_core.abi3.so +0 -0
- agnt5/_retry_utils.py +169 -0
- agnt5/_schema_utils.py +312 -0
- agnt5/_telemetry.py +182 -0
- agnt5/agent.py +1685 -0
- agnt5/client.py +741 -0
- agnt5/context.py +178 -0
- agnt5/entity.py +795 -0
- agnt5/exceptions.py +102 -0
- agnt5/function.py +321 -0
- agnt5/lm.py +813 -0
- agnt5/tool.py +648 -0
- agnt5/tracing.py +196 -0
- agnt5/types.py +110 -0
- agnt5/version.py +19 -0
- agnt5/worker.py +1619 -0
- agnt5/workflow.py +1048 -0
- agnt5-0.2.8a10.dist-info/METADATA +25 -0
- agnt5-0.2.8a10.dist-info/RECORD +22 -0
- agnt5-0.2.8a10.dist-info/WHEEL +4 -0
agnt5/workflow.py
ADDED
|
@@ -0,0 +1,1048 @@
|
|
|
1
|
+
"""Workflow component implementation for AGNT5 SDK."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import asyncio
|
|
6
|
+
import functools
|
|
7
|
+
import inspect
|
|
8
|
+
import logging
|
|
9
|
+
import uuid
|
|
10
|
+
from typing import Any, Awaitable, Callable, Dict, List, Optional, TypeVar, Union, cast
|
|
11
|
+
|
|
12
|
+
from ._schema_utils import extract_function_metadata, extract_function_schemas
|
|
13
|
+
from .context import Context, set_current_context
|
|
14
|
+
from .entity import Entity, EntityState, _get_state_adapter
|
|
15
|
+
from .function import FunctionContext
|
|
16
|
+
from .types import HandlerFunc, WorkflowConfig
|
|
17
|
+
from ._telemetry import setup_module_logger
|
|
18
|
+
|
|
19
|
+
logger = setup_module_logger(__name__)
|
|
20
|
+
|
|
21
|
+
T = TypeVar("T")
|
|
22
|
+
|
|
23
|
+
# Global workflow registry
|
|
24
|
+
_WORKFLOW_REGISTRY: Dict[str, WorkflowConfig] = {}
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class WorkflowContext(Context):
|
|
28
|
+
"""
|
|
29
|
+
Context for durable workflows.
|
|
30
|
+
|
|
31
|
+
Extends base Context with:
|
|
32
|
+
- State management via WorkflowEntity.state
|
|
33
|
+
- Step tracking and replay
|
|
34
|
+
- Orchestration (task, parallel, gather)
|
|
35
|
+
- Checkpointing (step)
|
|
36
|
+
- Memory scoping (session_id, user_id for multi-level memory)
|
|
37
|
+
|
|
38
|
+
WorkflowContext delegates state to the underlying WorkflowEntity,
|
|
39
|
+
which provides durability and state change tracking for AI workflows.
|
|
40
|
+
|
|
41
|
+
Memory Scoping:
|
|
42
|
+
- run_id: Unique workflow run identifier
|
|
43
|
+
- session_id: For multi-turn conversations (optional)
|
|
44
|
+
- user_id: For user-scoped long-term memory (optional)
|
|
45
|
+
These identifiers enable agents to automatically select the appropriate
|
|
46
|
+
memory scope (run/session/user) via context propagation.
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
def __init__(
|
|
50
|
+
self,
|
|
51
|
+
workflow_entity: "WorkflowEntity", # Forward reference
|
|
52
|
+
run_id: str,
|
|
53
|
+
session_id: Optional[str] = None,
|
|
54
|
+
user_id: Optional[str] = None,
|
|
55
|
+
attempt: int = 0,
|
|
56
|
+
runtime_context: Optional[Any] = None,
|
|
57
|
+
checkpoint_callback: Optional[Callable[[dict], None]] = None,
|
|
58
|
+
) -> None:
|
|
59
|
+
"""
|
|
60
|
+
Initialize workflow context.
|
|
61
|
+
|
|
62
|
+
Args:
|
|
63
|
+
workflow_entity: WorkflowEntity instance managing workflow state
|
|
64
|
+
run_id: Unique workflow run identifier
|
|
65
|
+
session_id: Session identifier for multi-turn conversations (default: run_id)
|
|
66
|
+
user_id: User identifier for user-scoped memory (optional)
|
|
67
|
+
attempt: Retry attempt number (0-indexed)
|
|
68
|
+
runtime_context: RuntimeContext for trace correlation
|
|
69
|
+
checkpoint_callback: Optional callback for sending real-time checkpoints
|
|
70
|
+
"""
|
|
71
|
+
super().__init__(run_id, attempt, runtime_context)
|
|
72
|
+
self._workflow_entity = workflow_entity
|
|
73
|
+
self._step_counter: int = 0 # Track step sequence
|
|
74
|
+
self._sequence_number: int = 0 # Global sequence for checkpoints
|
|
75
|
+
self._checkpoint_callback = checkpoint_callback
|
|
76
|
+
|
|
77
|
+
# Memory scoping identifiers
|
|
78
|
+
self.session_id = session_id or run_id # Default: session = run (ephemeral)
|
|
79
|
+
self.user_id = user_id # Optional: user-scoped memory
|
|
80
|
+
|
|
81
|
+
# === State Management ===
|
|
82
|
+
|
|
83
|
+
def _send_checkpoint(self, checkpoint_type: str, checkpoint_data: dict) -> None:
|
|
84
|
+
"""
|
|
85
|
+
Send a checkpoint via the checkpoint callback.
|
|
86
|
+
|
|
87
|
+
Args:
|
|
88
|
+
checkpoint_type: Type of checkpoint (e.g., "workflow.state.changed")
|
|
89
|
+
checkpoint_data: Checkpoint payload
|
|
90
|
+
"""
|
|
91
|
+
if self._checkpoint_callback:
|
|
92
|
+
self._sequence_number += 1
|
|
93
|
+
checkpoint = {
|
|
94
|
+
"checkpoint_type": checkpoint_type,
|
|
95
|
+
"checkpoint_data": checkpoint_data,
|
|
96
|
+
"sequence_number": self._sequence_number,
|
|
97
|
+
}
|
|
98
|
+
self._checkpoint_callback(checkpoint)
|
|
99
|
+
|
|
100
|
+
@property
|
|
101
|
+
def state(self):
|
|
102
|
+
"""
|
|
103
|
+
Delegate to WorkflowEntity.state for durable state management.
|
|
104
|
+
|
|
105
|
+
Returns:
|
|
106
|
+
WorkflowState instance from the workflow entity
|
|
107
|
+
|
|
108
|
+
Example:
|
|
109
|
+
ctx.state.set("status", "processing")
|
|
110
|
+
status = ctx.state.get("status")
|
|
111
|
+
"""
|
|
112
|
+
state = self._workflow_entity.state
|
|
113
|
+
# Pass checkpoint callback to state for real-time streaming
|
|
114
|
+
if hasattr(state, "_set_checkpoint_callback"):
|
|
115
|
+
state._set_checkpoint_callback(self._send_checkpoint)
|
|
116
|
+
return state
|
|
117
|
+
|
|
118
|
+
# === Orchestration ===
|
|
119
|
+
|
|
120
|
+
async def task(
|
|
121
|
+
self,
|
|
122
|
+
handler: Union[str, Callable],
|
|
123
|
+
*args: Any,
|
|
124
|
+
**kwargs: Any,
|
|
125
|
+
) -> Any:
|
|
126
|
+
"""
|
|
127
|
+
Execute a function and wait for result.
|
|
128
|
+
|
|
129
|
+
Supports two calling patterns:
|
|
130
|
+
|
|
131
|
+
1. **Type-safe with function reference (recommended)**:
|
|
132
|
+
```python
|
|
133
|
+
result = await ctx.task(process_data, arg1, arg2, kwarg=value)
|
|
134
|
+
```
|
|
135
|
+
Full IDE support, type checking, and refactoring safety.
|
|
136
|
+
|
|
137
|
+
2. **Legacy string-based (backward compatible)**:
|
|
138
|
+
```python
|
|
139
|
+
result = await ctx.task("function_name", input=data)
|
|
140
|
+
```
|
|
141
|
+
String lookup without type safety.
|
|
142
|
+
|
|
143
|
+
Args:
|
|
144
|
+
handler: Either a @function reference (recommended) or string name (legacy)
|
|
145
|
+
*args: Positional arguments to pass to the function
|
|
146
|
+
**kwargs: Keyword arguments to pass to the function
|
|
147
|
+
|
|
148
|
+
Returns:
|
|
149
|
+
Function result
|
|
150
|
+
|
|
151
|
+
Example (type-safe):
|
|
152
|
+
```python
|
|
153
|
+
@function
|
|
154
|
+
async def process_data(ctx: FunctionContext, data: list, multiplier: int = 2):
|
|
155
|
+
return [x * multiplier for x in data]
|
|
156
|
+
|
|
157
|
+
@workflow
|
|
158
|
+
async def my_workflow(ctx: WorkflowContext):
|
|
159
|
+
# Type-safe call with positional and keyword args
|
|
160
|
+
result = await ctx.task(process_data, [1, 2, 3], multiplier=3)
|
|
161
|
+
return result
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
Example (legacy):
|
|
165
|
+
```python
|
|
166
|
+
result = await ctx.task("process_data", input={"data": [1, 2, 3]})
|
|
167
|
+
```
|
|
168
|
+
"""
|
|
169
|
+
from .function import FunctionRegistry
|
|
170
|
+
|
|
171
|
+
# Extract handler name from function reference or use string
|
|
172
|
+
if callable(handler):
|
|
173
|
+
handler_name = handler.__name__
|
|
174
|
+
if not hasattr(handler, "_agnt5_config"):
|
|
175
|
+
raise ValueError(
|
|
176
|
+
f"Function '{handler_name}' is not a registered @function. "
|
|
177
|
+
f"Did you forget to add the @function decorator?"
|
|
178
|
+
)
|
|
179
|
+
else:
|
|
180
|
+
handler_name = handler
|
|
181
|
+
|
|
182
|
+
# Generate unique step name for durability
|
|
183
|
+
step_name = f"{handler_name}_{self._step_counter}"
|
|
184
|
+
self._step_counter += 1
|
|
185
|
+
|
|
186
|
+
# Check if step already completed (for replay)
|
|
187
|
+
if self._workflow_entity.has_completed_step(step_name):
|
|
188
|
+
result = self._workflow_entity.get_completed_step(step_name)
|
|
189
|
+
self._logger.info(f"🔄 Replaying cached step: {step_name}")
|
|
190
|
+
return result
|
|
191
|
+
|
|
192
|
+
# Emit workflow.step.started checkpoint
|
|
193
|
+
self._send_checkpoint(
|
|
194
|
+
"workflow.step.started",
|
|
195
|
+
{
|
|
196
|
+
"step_name": step_name,
|
|
197
|
+
"handler_name": handler_name,
|
|
198
|
+
"input": args or kwargs,
|
|
199
|
+
},
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# Execute function with OpenTelemetry span
|
|
203
|
+
self._logger.info(f"▶️ Executing new step: {step_name}")
|
|
204
|
+
func_config = FunctionRegistry.get(handler_name)
|
|
205
|
+
if func_config is None:
|
|
206
|
+
raise ValueError(f"Function '{handler_name}' not found in registry")
|
|
207
|
+
|
|
208
|
+
# Import span creation utility and JSON serialization
|
|
209
|
+
from ._core import create_span
|
|
210
|
+
import json
|
|
211
|
+
|
|
212
|
+
# Serialize input data for span attributes
|
|
213
|
+
input_repr = json.dumps({"args": args, "kwargs": kwargs}) if args or kwargs else "{}"
|
|
214
|
+
|
|
215
|
+
# Create span for task execution
|
|
216
|
+
with create_span(
|
|
217
|
+
f"workflow.task.{handler_name}",
|
|
218
|
+
"function",
|
|
219
|
+
self._runtime_context,
|
|
220
|
+
{
|
|
221
|
+
"step_name": step_name,
|
|
222
|
+
"handler_name": handler_name,
|
|
223
|
+
"run_id": self.run_id,
|
|
224
|
+
"input.data": input_repr,
|
|
225
|
+
},
|
|
226
|
+
) as span:
|
|
227
|
+
# Create FunctionContext for the function execution
|
|
228
|
+
func_ctx = FunctionContext(
|
|
229
|
+
run_id=f"{self.run_id}:task:{handler_name}",
|
|
230
|
+
runtime_context=self._runtime_context,
|
|
231
|
+
)
|
|
232
|
+
|
|
233
|
+
try:
|
|
234
|
+
# Execute function with arguments
|
|
235
|
+
# Support legacy pattern: ctx.task("func_name", input=data) or ctx.task(func_ref, input=data)
|
|
236
|
+
if len(args) == 0 and "input" in kwargs:
|
|
237
|
+
# Legacy pattern - single input parameter
|
|
238
|
+
input_data = kwargs.pop("input") # Remove from kwargs
|
|
239
|
+
result = await func_config.handler(func_ctx, input_data, **kwargs)
|
|
240
|
+
else:
|
|
241
|
+
# Type-safe pattern - pass all args/kwargs
|
|
242
|
+
result = await func_config.handler(func_ctx, *args, **kwargs)
|
|
243
|
+
|
|
244
|
+
# Add output data to span
|
|
245
|
+
try:
|
|
246
|
+
output_repr = json.dumps(result)
|
|
247
|
+
span.set_attribute("output.data", output_repr)
|
|
248
|
+
except (TypeError, ValueError):
|
|
249
|
+
# If result is not JSON serializable, use repr
|
|
250
|
+
span.set_attribute("output.data", repr(result))
|
|
251
|
+
|
|
252
|
+
# Record step completion in WorkflowEntity
|
|
253
|
+
self._workflow_entity.record_step_completion(
|
|
254
|
+
step_name, handler_name, args or kwargs, result
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
# Emit workflow.step.completed checkpoint
|
|
258
|
+
self._send_checkpoint(
|
|
259
|
+
"workflow.step.completed",
|
|
260
|
+
{
|
|
261
|
+
"step_name": step_name,
|
|
262
|
+
"handler_name": handler_name,
|
|
263
|
+
"input": args or kwargs,
|
|
264
|
+
"result": result,
|
|
265
|
+
},
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
return result
|
|
269
|
+
|
|
270
|
+
except Exception as e:
|
|
271
|
+
# Emit workflow.step.error checkpoint
|
|
272
|
+
self._send_checkpoint(
|
|
273
|
+
"workflow.step.error",
|
|
274
|
+
{
|
|
275
|
+
"step_name": step_name,
|
|
276
|
+
"handler_name": handler_name,
|
|
277
|
+
"input": args or kwargs,
|
|
278
|
+
"error": str(e),
|
|
279
|
+
"error_type": type(e).__name__,
|
|
280
|
+
},
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
# Record error in span
|
|
284
|
+
span.set_attribute("error", "true")
|
|
285
|
+
span.set_attribute("error.message", str(e))
|
|
286
|
+
span.set_attribute("error.type", type(e).__name__)
|
|
287
|
+
|
|
288
|
+
# Re-raise to propagate failure
|
|
289
|
+
raise
|
|
290
|
+
|
|
291
|
+
async def parallel(self, *tasks: Awaitable[T]) -> List[T]:
|
|
292
|
+
"""
|
|
293
|
+
Run multiple tasks in parallel.
|
|
294
|
+
|
|
295
|
+
Args:
|
|
296
|
+
*tasks: Async tasks to run in parallel
|
|
297
|
+
|
|
298
|
+
Returns:
|
|
299
|
+
List of results in the same order as tasks
|
|
300
|
+
|
|
301
|
+
Example:
|
|
302
|
+
result1, result2 = await ctx.parallel(
|
|
303
|
+
fetch_data(source1),
|
|
304
|
+
fetch_data(source2)
|
|
305
|
+
)
|
|
306
|
+
"""
|
|
307
|
+
import asyncio
|
|
308
|
+
|
|
309
|
+
return list(await asyncio.gather(*tasks))
|
|
310
|
+
|
|
311
|
+
async def gather(self, **tasks: Awaitable[T]) -> Dict[str, T]:
|
|
312
|
+
"""
|
|
313
|
+
Run tasks in parallel with named results.
|
|
314
|
+
|
|
315
|
+
Args:
|
|
316
|
+
**tasks: Named async tasks to run in parallel
|
|
317
|
+
|
|
318
|
+
Returns:
|
|
319
|
+
Dictionary mapping names to results
|
|
320
|
+
|
|
321
|
+
Example:
|
|
322
|
+
results = await ctx.gather(
|
|
323
|
+
db=query_database(),
|
|
324
|
+
api=fetch_api()
|
|
325
|
+
)
|
|
326
|
+
"""
|
|
327
|
+
import asyncio
|
|
328
|
+
|
|
329
|
+
keys = list(tasks.keys())
|
|
330
|
+
values = list(tasks.values())
|
|
331
|
+
results = await asyncio.gather(*values)
|
|
332
|
+
return dict(zip(keys, results))
|
|
333
|
+
|
|
334
|
+
async def step(
|
|
335
|
+
self, name: str, func_or_awaitable: Union[Callable[[], Awaitable[T]], Awaitable[T]]
|
|
336
|
+
) -> T:
|
|
337
|
+
"""
|
|
338
|
+
Checkpoint expensive operations for durability.
|
|
339
|
+
|
|
340
|
+
If workflow crashes, won't re-execute this step on retry.
|
|
341
|
+
|
|
342
|
+
Args:
|
|
343
|
+
name: Unique name for this checkpoint
|
|
344
|
+
func_or_awaitable: Either an async function or awaitable
|
|
345
|
+
|
|
346
|
+
Returns:
|
|
347
|
+
The result of the function/awaitable
|
|
348
|
+
|
|
349
|
+
Example:
|
|
350
|
+
result = await ctx.step("load", load_data())
|
|
351
|
+
"""
|
|
352
|
+
import inspect
|
|
353
|
+
|
|
354
|
+
# Check if step already completed (for replay)
|
|
355
|
+
if self._workflow_entity.has_completed_step(name):
|
|
356
|
+
result = self._workflow_entity.get_completed_step(name)
|
|
357
|
+
self._logger.info(f"🔄 Replaying checkpoint: {name}")
|
|
358
|
+
return result
|
|
359
|
+
|
|
360
|
+
# Execute and checkpoint
|
|
361
|
+
if inspect.iscoroutine(func_or_awaitable) or inspect.isawaitable(func_or_awaitable):
|
|
362
|
+
result = await func_or_awaitable
|
|
363
|
+
else:
|
|
364
|
+
result = await func_or_awaitable()
|
|
365
|
+
|
|
366
|
+
# Record step completion
|
|
367
|
+
self._workflow_entity.record_step_completion(name, "checkpoint", None, result)
|
|
368
|
+
|
|
369
|
+
return result
|
|
370
|
+
|
|
371
|
+
async def wait_for_user(
|
|
372
|
+
self, question: str, input_type: str = "text", options: Optional[List[Dict]] = None
|
|
373
|
+
) -> str:
|
|
374
|
+
"""
|
|
375
|
+
Pause workflow execution and wait for user input.
|
|
376
|
+
|
|
377
|
+
On replay (even after worker crash), resumes from this point
|
|
378
|
+
with the user's response. This method enables human-in-the-loop
|
|
379
|
+
workflows by pausing execution and waiting for user interaction.
|
|
380
|
+
|
|
381
|
+
Args:
|
|
382
|
+
question: Question to ask the user
|
|
383
|
+
input_type: Type of input - "text", "approval", or "choice"
|
|
384
|
+
options: For approval/choice, list of option dicts with 'id' and 'label'
|
|
385
|
+
|
|
386
|
+
Returns:
|
|
387
|
+
User's response string
|
|
388
|
+
|
|
389
|
+
Raises:
|
|
390
|
+
WaitingForUserInputException: When no cached response exists (first call)
|
|
391
|
+
|
|
392
|
+
Example (text input):
|
|
393
|
+
```python
|
|
394
|
+
city = await ctx.wait_for_user("Which city?")
|
|
395
|
+
```
|
|
396
|
+
|
|
397
|
+
Example (approval):
|
|
398
|
+
```python
|
|
399
|
+
decision = await ctx.wait_for_user(
|
|
400
|
+
"Approve this action?",
|
|
401
|
+
input_type="approval",
|
|
402
|
+
options=[
|
|
403
|
+
{"id": "approve", "label": "Approve"},
|
|
404
|
+
{"id": "reject", "label": "Reject"}
|
|
405
|
+
]
|
|
406
|
+
)
|
|
407
|
+
```
|
|
408
|
+
|
|
409
|
+
Example (choice):
|
|
410
|
+
```python
|
|
411
|
+
model = await ctx.wait_for_user(
|
|
412
|
+
"Which model?",
|
|
413
|
+
input_type="choice",
|
|
414
|
+
options=[
|
|
415
|
+
{"id": "gpt4", "label": "GPT-4"},
|
|
416
|
+
{"id": "claude", "label": "Claude"}
|
|
417
|
+
]
|
|
418
|
+
)
|
|
419
|
+
```
|
|
420
|
+
"""
|
|
421
|
+
from .exceptions import WaitingForUserInputException
|
|
422
|
+
|
|
423
|
+
# Generate unique step name for this user input request
|
|
424
|
+
# Using run_id ensures uniqueness across workflow execution
|
|
425
|
+
response_key = f"user_response:{self.run_id}"
|
|
426
|
+
|
|
427
|
+
# Check if we already have the user's response (replay scenario)
|
|
428
|
+
if self._workflow_entity.has_completed_step(response_key):
|
|
429
|
+
response = self._workflow_entity.get_completed_step(response_key)
|
|
430
|
+
self._logger.info("🔄 Replaying user response from checkpoint")
|
|
431
|
+
return response
|
|
432
|
+
|
|
433
|
+
# No response yet - pause execution
|
|
434
|
+
# Collect current workflow state for checkpoint
|
|
435
|
+
checkpoint_state = {}
|
|
436
|
+
if hasattr(self._workflow_entity, "_state") and self._workflow_entity._state is not None:
|
|
437
|
+
checkpoint_state = self._workflow_entity._state.get_state_snapshot()
|
|
438
|
+
|
|
439
|
+
self._logger.info(f"⏸️ Pausing workflow for user input: {question}")
|
|
440
|
+
|
|
441
|
+
raise WaitingForUserInputException(
|
|
442
|
+
question=question,
|
|
443
|
+
input_type=input_type,
|
|
444
|
+
options=options,
|
|
445
|
+
checkpoint_state=checkpoint_state,
|
|
446
|
+
)
|
|
447
|
+
|
|
448
|
+
|
|
449
|
+
# ============================================================================
|
|
450
|
+
# Helper functions for workflow execution
|
|
451
|
+
# ============================================================================
|
|
452
|
+
|
|
453
|
+
|
|
454
|
+
def _sanitize_for_json(obj: Any) -> Any:
|
|
455
|
+
"""
|
|
456
|
+
Sanitize data for JSON serialization by removing or converting non-serializable objects.
|
|
457
|
+
|
|
458
|
+
Specifically handles:
|
|
459
|
+
- WorkflowContext objects (replaced with placeholder)
|
|
460
|
+
- Nested structures (recursively sanitized)
|
|
461
|
+
|
|
462
|
+
Args:
|
|
463
|
+
obj: Object to sanitize
|
|
464
|
+
|
|
465
|
+
Returns:
|
|
466
|
+
JSON-serializable version of the object
|
|
467
|
+
"""
|
|
468
|
+
# Handle None, primitives
|
|
469
|
+
if obj is None or isinstance(obj, (str, int, float, bool)):
|
|
470
|
+
return obj
|
|
471
|
+
|
|
472
|
+
# Handle WorkflowContext - replace with placeholder
|
|
473
|
+
if isinstance(obj, WorkflowContext):
|
|
474
|
+
return "<WorkflowContext>"
|
|
475
|
+
|
|
476
|
+
# Handle tuples/lists - recursively sanitize
|
|
477
|
+
if isinstance(obj, (tuple, list)):
|
|
478
|
+
sanitized = [_sanitize_for_json(item) for item in obj]
|
|
479
|
+
return sanitized if isinstance(obj, list) else tuple(sanitized)
|
|
480
|
+
|
|
481
|
+
# Handle dicts - recursively sanitize values
|
|
482
|
+
if isinstance(obj, dict):
|
|
483
|
+
return {k: _sanitize_for_json(v) for k, v in obj.items()}
|
|
484
|
+
|
|
485
|
+
# For other objects, try to serialize or convert to string
|
|
486
|
+
try:
|
|
487
|
+
import json
|
|
488
|
+
json.dumps(obj)
|
|
489
|
+
return obj
|
|
490
|
+
except (TypeError, ValueError):
|
|
491
|
+
# Not JSON serializable, use string representation
|
|
492
|
+
return repr(obj)
|
|
493
|
+
|
|
494
|
+
|
|
495
|
+
# ============================================================================
|
|
496
|
+
# WorkflowEntity: Entity specialized for workflow execution state
|
|
497
|
+
# ============================================================================
|
|
498
|
+
|
|
499
|
+
|
|
500
|
+
class WorkflowEntity(Entity):
|
|
501
|
+
"""
|
|
502
|
+
Entity specialized for workflow execution state.
|
|
503
|
+
|
|
504
|
+
Extends Entity with workflow-specific capabilities:
|
|
505
|
+
- Step tracking for replay and crash recovery
|
|
506
|
+
- State change tracking for debugging and audit (AI workflows)
|
|
507
|
+
- Completed step cache for efficient replay
|
|
508
|
+
- Automatic state persistence after workflow execution
|
|
509
|
+
|
|
510
|
+
Workflow state is persisted to the database after successful execution,
|
|
511
|
+
enabling crash recovery, replay, and cross-invocation state management.
|
|
512
|
+
The workflow decorator automatically calls _persist_state() to ensure
|
|
513
|
+
durability.
|
|
514
|
+
"""
|
|
515
|
+
|
|
516
|
+
def __init__(
|
|
517
|
+
self,
|
|
518
|
+
run_id: str,
|
|
519
|
+
session_id: Optional[str] = None,
|
|
520
|
+
user_id: Optional[str] = None,
|
|
521
|
+
):
|
|
522
|
+
"""
|
|
523
|
+
Initialize workflow entity with memory scope.
|
|
524
|
+
|
|
525
|
+
Args:
|
|
526
|
+
run_id: Unique workflow run identifier
|
|
527
|
+
session_id: Session identifier for multi-turn conversations (optional)
|
|
528
|
+
user_id: User identifier for user-scoped memory (optional)
|
|
529
|
+
|
|
530
|
+
Memory Scope Priority:
|
|
531
|
+
- user_id present → key: user:{user_id}
|
|
532
|
+
- session_id present (and != run_id) → key: session:{session_id}
|
|
533
|
+
- else → key: run:{run_id}
|
|
534
|
+
"""
|
|
535
|
+
# Determine entity key based on memory scope priority
|
|
536
|
+
if user_id:
|
|
537
|
+
entity_key = f"user:{user_id}"
|
|
538
|
+
memory_scope = "user"
|
|
539
|
+
elif session_id and session_id != run_id:
|
|
540
|
+
entity_key = f"session:{session_id}"
|
|
541
|
+
memory_scope = "session"
|
|
542
|
+
else:
|
|
543
|
+
entity_key = f"run:{run_id}"
|
|
544
|
+
memory_scope = "run"
|
|
545
|
+
|
|
546
|
+
# Initialize as entity with scoped key pattern
|
|
547
|
+
super().__init__(key=entity_key)
|
|
548
|
+
|
|
549
|
+
# Store run_id separately for tracking (even if key is session/user scoped)
|
|
550
|
+
self._run_id = run_id
|
|
551
|
+
self._memory_scope = memory_scope
|
|
552
|
+
|
|
553
|
+
# Step tracking for replay and recovery
|
|
554
|
+
self._step_events: list[Dict[str, Any]] = []
|
|
555
|
+
self._completed_steps: Dict[str, Any] = {}
|
|
556
|
+
|
|
557
|
+
# State change tracking for debugging/audit (AI workflows)
|
|
558
|
+
self._state_changes: list[Dict[str, Any]] = []
|
|
559
|
+
|
|
560
|
+
logger.debug(f"Created WorkflowEntity: run={run_id}, scope={memory_scope}, key={entity_key}")
|
|
561
|
+
|
|
562
|
+
@property
|
|
563
|
+
def run_id(self) -> str:
|
|
564
|
+
"""Get run_id for this workflow execution."""
|
|
565
|
+
return self._run_id
|
|
566
|
+
|
|
567
|
+
def record_step_completion(
|
|
568
|
+
self, step_name: str, handler_name: str, input_data: Any, result: Any
|
|
569
|
+
) -> None:
|
|
570
|
+
"""
|
|
571
|
+
Record completed step for replay and recovery.
|
|
572
|
+
|
|
573
|
+
Args:
|
|
574
|
+
step_name: Unique step identifier
|
|
575
|
+
handler_name: Function handler name
|
|
576
|
+
input_data: Input data passed to function
|
|
577
|
+
result: Function result
|
|
578
|
+
"""
|
|
579
|
+
# Sanitize input_data and result to ensure JSON serializability
|
|
580
|
+
# This removes WorkflowContext objects and other non-serializable types
|
|
581
|
+
sanitized_input = _sanitize_for_json(input_data)
|
|
582
|
+
sanitized_result = _sanitize_for_json(result)
|
|
583
|
+
|
|
584
|
+
self._step_events.append(
|
|
585
|
+
{
|
|
586
|
+
"step_name": step_name,
|
|
587
|
+
"handler_name": handler_name,
|
|
588
|
+
"input": sanitized_input,
|
|
589
|
+
"result": sanitized_result,
|
|
590
|
+
}
|
|
591
|
+
)
|
|
592
|
+
self._completed_steps[step_name] = result
|
|
593
|
+
logger.debug(f"Recorded step completion: {step_name}")
|
|
594
|
+
|
|
595
|
+
def get_completed_step(self, step_name: str) -> Optional[Any]:
|
|
596
|
+
"""
|
|
597
|
+
Get result of completed step (for replay).
|
|
598
|
+
|
|
599
|
+
Args:
|
|
600
|
+
step_name: Step identifier
|
|
601
|
+
|
|
602
|
+
Returns:
|
|
603
|
+
Step result if completed, None otherwise
|
|
604
|
+
"""
|
|
605
|
+
return self._completed_steps.get(step_name)
|
|
606
|
+
|
|
607
|
+
def has_completed_step(self, step_name: str) -> bool:
|
|
608
|
+
"""Check if step has been completed."""
|
|
609
|
+
return step_name in self._completed_steps
|
|
610
|
+
|
|
611
|
+
def inject_user_response(self, response: str) -> None:
|
|
612
|
+
"""
|
|
613
|
+
Inject user response as a completed step for workflow resume.
|
|
614
|
+
|
|
615
|
+
This method is called by the worker when resuming a paused workflow
|
|
616
|
+
with the user's response. It stores the response as if it was a
|
|
617
|
+
completed step, allowing wait_for_user() to retrieve it on replay.
|
|
618
|
+
|
|
619
|
+
Args:
|
|
620
|
+
response: User's response to inject
|
|
621
|
+
|
|
622
|
+
Example:
|
|
623
|
+
# Platform resumes workflow with user response
|
|
624
|
+
workflow_entity.inject_user_response("yes")
|
|
625
|
+
# On replay, wait_for_user() returns "yes" from cache
|
|
626
|
+
"""
|
|
627
|
+
response_key = f"user_response:{self.run_id}"
|
|
628
|
+
self._completed_steps[response_key] = response
|
|
629
|
+
logger.info(f"Injected user response for {self.run_id}: {response}")
|
|
630
|
+
|
|
631
|
+
def get_agent_data(self, agent_name: str) -> Dict[str, Any]:
|
|
632
|
+
"""
|
|
633
|
+
Get agent conversation data from workflow state.
|
|
634
|
+
|
|
635
|
+
Args:
|
|
636
|
+
agent_name: Name of the agent
|
|
637
|
+
|
|
638
|
+
Returns:
|
|
639
|
+
Dictionary containing agent conversation data (messages, metadata)
|
|
640
|
+
or empty dict if agent has no data yet
|
|
641
|
+
|
|
642
|
+
Example:
|
|
643
|
+
```python
|
|
644
|
+
agent_data = workflow_entity.get_agent_data("ResearchAgent")
|
|
645
|
+
messages = agent_data.get("messages", [])
|
|
646
|
+
```
|
|
647
|
+
"""
|
|
648
|
+
return self.state.get(f"agent.{agent_name}", {})
|
|
649
|
+
|
|
650
|
+
def get_agent_messages(self, agent_name: str) -> list[Dict[str, Any]]:
|
|
651
|
+
"""
|
|
652
|
+
Get agent messages from workflow state.
|
|
653
|
+
|
|
654
|
+
Args:
|
|
655
|
+
agent_name: Name of the agent
|
|
656
|
+
|
|
657
|
+
Returns:
|
|
658
|
+
List of message dictionaries
|
|
659
|
+
|
|
660
|
+
Example:
|
|
661
|
+
```python
|
|
662
|
+
messages = workflow_entity.get_agent_messages("ResearchAgent")
|
|
663
|
+
for msg in messages:
|
|
664
|
+
print(f"{msg['role']}: {msg['content']}")
|
|
665
|
+
```
|
|
666
|
+
"""
|
|
667
|
+
agent_data = self.get_agent_data(agent_name)
|
|
668
|
+
return agent_data.get("messages", [])
|
|
669
|
+
|
|
670
|
+
def list_agents(self) -> list[str]:
|
|
671
|
+
"""
|
|
672
|
+
List all agents with data in this workflow.
|
|
673
|
+
|
|
674
|
+
Returns:
|
|
675
|
+
List of agent names that have stored conversation data
|
|
676
|
+
|
|
677
|
+
Example:
|
|
678
|
+
```python
|
|
679
|
+
agents = workflow_entity.list_agents()
|
|
680
|
+
# ['ResearchAgent', 'AnalysisAgent', 'SynthesisAgent']
|
|
681
|
+
```
|
|
682
|
+
"""
|
|
683
|
+
agents = []
|
|
684
|
+
for key in self.state._state.keys():
|
|
685
|
+
if key.startswith("agent."):
|
|
686
|
+
agents.append(key.replace("agent.", "", 1))
|
|
687
|
+
return agents
|
|
688
|
+
|
|
689
|
+
async def _persist_state(self) -> None:
|
|
690
|
+
"""
|
|
691
|
+
Internal method to persist workflow state to entity storage.
|
|
692
|
+
|
|
693
|
+
This is prefixed with _ so it won't be wrapped by the entity method wrapper.
|
|
694
|
+
Called after workflow execution completes to ensure state is durable.
|
|
695
|
+
"""
|
|
696
|
+
logger.info(f"🔍 DEBUG: _persist_state() CALLED for workflow {self.run_id}")
|
|
697
|
+
|
|
698
|
+
try:
|
|
699
|
+
from .entity import _get_state_adapter
|
|
700
|
+
|
|
701
|
+
logger.info(f"🔍 DEBUG: Getting state adapter...")
|
|
702
|
+
# Get the state adapter (must be in Worker context)
|
|
703
|
+
adapter = _get_state_adapter()
|
|
704
|
+
logger.info(f"🔍 DEBUG: Got state adapter: {type(adapter).__name__}")
|
|
705
|
+
|
|
706
|
+
logger.info(f"🔍 DEBUG: Getting state snapshot...")
|
|
707
|
+
# Get current state snapshot
|
|
708
|
+
state_dict = self.state.get_state_snapshot()
|
|
709
|
+
logger.info(f"🔍 DEBUG: State snapshot has {len(state_dict)} keys: {list(state_dict.keys())}")
|
|
710
|
+
|
|
711
|
+
logger.info(f"🔍 DEBUG: Loading current version for optimistic locking...")
|
|
712
|
+
# Load current version (for optimistic locking)
|
|
713
|
+
_, current_version = await adapter.load_with_version(self._entity_type, self._key)
|
|
714
|
+
logger.info(f"🔍 DEBUG: Current version: {current_version}")
|
|
715
|
+
|
|
716
|
+
logger.info(f"🔍 DEBUG: Saving state to database...")
|
|
717
|
+
# Save state with version check
|
|
718
|
+
new_version = await adapter.save_state(
|
|
719
|
+
self._entity_type, self._key, state_dict, current_version
|
|
720
|
+
)
|
|
721
|
+
|
|
722
|
+
logger.info(
|
|
723
|
+
f"✅ SUCCESS: Persisted WorkflowEntity state for {self.run_id} "
|
|
724
|
+
f"(version {current_version} -> {new_version}, {len(state_dict)} keys)"
|
|
725
|
+
)
|
|
726
|
+
except Exception as e:
|
|
727
|
+
logger.error(
|
|
728
|
+
f"❌ ERROR: Failed to persist workflow state for {self.run_id}: {e}",
|
|
729
|
+
exc_info=True
|
|
730
|
+
)
|
|
731
|
+
# Re-raise to let caller handle
|
|
732
|
+
raise
|
|
733
|
+
|
|
734
|
+
@property
|
|
735
|
+
def state(self) -> "WorkflowState":
|
|
736
|
+
"""
|
|
737
|
+
Get workflow state with change tracking.
|
|
738
|
+
|
|
739
|
+
Returns WorkflowState which tracks all state mutations
|
|
740
|
+
for debugging and replay of AI workflows.
|
|
741
|
+
"""
|
|
742
|
+
if self._state is None:
|
|
743
|
+
# Initialize with empty state dict - will be populated by entity system
|
|
744
|
+
self._state = WorkflowState({}, self)
|
|
745
|
+
return self._state
|
|
746
|
+
|
|
747
|
+
|
|
748
|
+
class WorkflowState(EntityState):
|
|
749
|
+
"""
|
|
750
|
+
State interface for WorkflowEntity with change tracking.
|
|
751
|
+
|
|
752
|
+
Extends EntityState to track all state mutations for:
|
|
753
|
+
- AI workflow debugging
|
|
754
|
+
- Audit trail
|
|
755
|
+
- Replay capabilities
|
|
756
|
+
"""
|
|
757
|
+
|
|
758
|
+
def __init__(self, state_dict: Dict[str, Any], workflow_entity: WorkflowEntity):
|
|
759
|
+
"""
|
|
760
|
+
Initialize workflow state.
|
|
761
|
+
|
|
762
|
+
Args:
|
|
763
|
+
state_dict: Dictionary to use for state storage
|
|
764
|
+
workflow_entity: Parent workflow entity for tracking
|
|
765
|
+
"""
|
|
766
|
+
super().__init__(state_dict)
|
|
767
|
+
self._workflow_entity = workflow_entity
|
|
768
|
+
self._checkpoint_callback: Optional[Callable[[str, dict], None]] = None
|
|
769
|
+
|
|
770
|
+
def _set_checkpoint_callback(self, callback: Callable[[str, dict], None]) -> None:
|
|
771
|
+
"""
|
|
772
|
+
Set the checkpoint callback for real-time state change streaming.
|
|
773
|
+
|
|
774
|
+
Args:
|
|
775
|
+
callback: Function to call when state changes
|
|
776
|
+
"""
|
|
777
|
+
self._checkpoint_callback = callback
|
|
778
|
+
|
|
779
|
+
def set(self, key: str, value: Any) -> None:
|
|
780
|
+
"""Set value and track change."""
|
|
781
|
+
super().set(key, value)
|
|
782
|
+
# Track change for debugging/audit
|
|
783
|
+
import time
|
|
784
|
+
|
|
785
|
+
change_record = {"key": key, "value": value, "timestamp": time.time(), "deleted": False}
|
|
786
|
+
self._workflow_entity._state_changes.append(change_record)
|
|
787
|
+
|
|
788
|
+
# Emit checkpoint for real-time state streaming
|
|
789
|
+
if self._checkpoint_callback:
|
|
790
|
+
self._checkpoint_callback(
|
|
791
|
+
"workflow.state.changed", {"key": key, "value": value, "operation": "set"}
|
|
792
|
+
)
|
|
793
|
+
|
|
794
|
+
def delete(self, key: str) -> None:
|
|
795
|
+
"""Delete key and track change."""
|
|
796
|
+
super().delete(key)
|
|
797
|
+
# Track deletion
|
|
798
|
+
import time
|
|
799
|
+
|
|
800
|
+
change_record = {"key": key, "value": None, "timestamp": time.time(), "deleted": True}
|
|
801
|
+
self._workflow_entity._state_changes.append(change_record)
|
|
802
|
+
|
|
803
|
+
# Emit checkpoint for real-time state streaming
|
|
804
|
+
if self._checkpoint_callback:
|
|
805
|
+
self._checkpoint_callback("workflow.state.changed", {"key": key, "operation": "delete"})
|
|
806
|
+
|
|
807
|
+
def clear(self) -> None:
|
|
808
|
+
"""Clear all state and track change."""
|
|
809
|
+
super().clear()
|
|
810
|
+
# Track clear operation
|
|
811
|
+
import time
|
|
812
|
+
|
|
813
|
+
change_record = {
|
|
814
|
+
"key": "__clear__",
|
|
815
|
+
"value": None,
|
|
816
|
+
"timestamp": time.time(),
|
|
817
|
+
"deleted": True,
|
|
818
|
+
}
|
|
819
|
+
self._workflow_entity._state_changes.append(change_record)
|
|
820
|
+
|
|
821
|
+
# Emit checkpoint for real-time state streaming
|
|
822
|
+
if self._checkpoint_callback:
|
|
823
|
+
self._checkpoint_callback("workflow.state.changed", {"operation": "clear"})
|
|
824
|
+
|
|
825
|
+
def has_changes(self) -> bool:
|
|
826
|
+
"""Check if any state changes have been tracked."""
|
|
827
|
+
return len(self._workflow_entity._state_changes) > 0
|
|
828
|
+
|
|
829
|
+
def get_state_snapshot(self) -> Dict[str, Any]:
|
|
830
|
+
"""Get current state as a snapshot dictionary."""
|
|
831
|
+
return dict(self._state)
|
|
832
|
+
|
|
833
|
+
|
|
834
|
+
class WorkflowRegistry:
|
|
835
|
+
"""Registry for workflow handlers."""
|
|
836
|
+
|
|
837
|
+
@staticmethod
|
|
838
|
+
def register(config: WorkflowConfig) -> None:
|
|
839
|
+
"""
|
|
840
|
+
Register a workflow handler.
|
|
841
|
+
|
|
842
|
+
Raises:
|
|
843
|
+
ValueError: If a workflow with this name is already registered
|
|
844
|
+
"""
|
|
845
|
+
if config.name in _WORKFLOW_REGISTRY:
|
|
846
|
+
existing_workflow = _WORKFLOW_REGISTRY[config.name]
|
|
847
|
+
logger.error(
|
|
848
|
+
f"Workflow name collision detected: '{config.name}'\n"
|
|
849
|
+
f" First defined in: {existing_workflow.handler.__module__}\n"
|
|
850
|
+
f" Also defined in: {config.handler.__module__}\n"
|
|
851
|
+
f" This is a bug - workflows must have unique names."
|
|
852
|
+
)
|
|
853
|
+
raise ValueError(
|
|
854
|
+
f"Workflow '{config.name}' is already registered. "
|
|
855
|
+
f"Use @workflow(name='unique_name') to specify a different name."
|
|
856
|
+
)
|
|
857
|
+
|
|
858
|
+
_WORKFLOW_REGISTRY[config.name] = config
|
|
859
|
+
logger.debug(f"Registered workflow '{config.name}'")
|
|
860
|
+
|
|
861
|
+
@staticmethod
|
|
862
|
+
def get(name: str) -> Optional[WorkflowConfig]:
|
|
863
|
+
"""Get workflow configuration by name."""
|
|
864
|
+
return _WORKFLOW_REGISTRY.get(name)
|
|
865
|
+
|
|
866
|
+
@staticmethod
|
|
867
|
+
def all() -> Dict[str, WorkflowConfig]:
|
|
868
|
+
"""Get all registered workflows."""
|
|
869
|
+
return _WORKFLOW_REGISTRY.copy()
|
|
870
|
+
|
|
871
|
+
@staticmethod
|
|
872
|
+
def list_names() -> list[str]:
|
|
873
|
+
"""List all registered workflow names."""
|
|
874
|
+
return list(_WORKFLOW_REGISTRY.keys())
|
|
875
|
+
|
|
876
|
+
@staticmethod
|
|
877
|
+
def clear() -> None:
|
|
878
|
+
"""Clear all registered workflows."""
|
|
879
|
+
_WORKFLOW_REGISTRY.clear()
|
|
880
|
+
|
|
881
|
+
|
|
882
|
+
def workflow(
|
|
883
|
+
_func: Optional[Callable[..., Any]] = None,
|
|
884
|
+
*,
|
|
885
|
+
name: Optional[str] = None,
|
|
886
|
+
chat: bool = False,
|
|
887
|
+
) -> Callable[..., Any]:
|
|
888
|
+
"""
|
|
889
|
+
Decorator to mark a function as an AGNT5 durable workflow.
|
|
890
|
+
|
|
891
|
+
Workflows use WorkflowEntity for state management and WorkflowContext
|
|
892
|
+
for orchestration. State changes are automatically tracked for replay.
|
|
893
|
+
|
|
894
|
+
Args:
|
|
895
|
+
name: Custom workflow name (default: function's __name__)
|
|
896
|
+
chat: Enable chat mode for multi-turn conversation workflows (default: False)
|
|
897
|
+
|
|
898
|
+
Example (standard workflow):
|
|
899
|
+
@workflow
|
|
900
|
+
async def process_order(ctx: WorkflowContext, order_id: str) -> dict:
|
|
901
|
+
# Durable state - survives crashes
|
|
902
|
+
ctx.state.set("status", "processing")
|
|
903
|
+
ctx.state.set("order_id", order_id)
|
|
904
|
+
|
|
905
|
+
# Validate order
|
|
906
|
+
order = await ctx.task(validate_order, input={"order_id": order_id})
|
|
907
|
+
|
|
908
|
+
# Process payment (checkpointed - won't re-execute on crash)
|
|
909
|
+
payment = await ctx.step("payment", process_payment(order["total"]))
|
|
910
|
+
|
|
911
|
+
# Fulfill order
|
|
912
|
+
await ctx.task(ship_order, input={"order_id": order_id})
|
|
913
|
+
|
|
914
|
+
ctx.state.set("status", "completed")
|
|
915
|
+
return {"status": ctx.state.get("status")}
|
|
916
|
+
|
|
917
|
+
Example (chat workflow):
|
|
918
|
+
@workflow(chat=True)
|
|
919
|
+
async def customer_support(ctx: WorkflowContext, message: str) -> dict:
|
|
920
|
+
# Initialize conversation state
|
|
921
|
+
if not ctx.state.get("messages"):
|
|
922
|
+
ctx.state.set("messages", [])
|
|
923
|
+
|
|
924
|
+
# Add user message
|
|
925
|
+
messages = ctx.state.get("messages")
|
|
926
|
+
messages.append({"role": "user", "content": message})
|
|
927
|
+
ctx.state.set("messages", messages)
|
|
928
|
+
|
|
929
|
+
# Generate AI response
|
|
930
|
+
response = await ctx.task(generate_response, messages=messages)
|
|
931
|
+
|
|
932
|
+
# Add assistant response
|
|
933
|
+
messages.append({"role": "assistant", "content": response})
|
|
934
|
+
ctx.state.set("messages", messages)
|
|
935
|
+
|
|
936
|
+
return {"response": response, "turn_count": len(messages) // 2}
|
|
937
|
+
"""
|
|
938
|
+
|
|
939
|
+
def decorator(func: Callable[..., Any]) -> Callable[..., Any]:
|
|
940
|
+
# Get workflow name
|
|
941
|
+
workflow_name = name or func.__name__
|
|
942
|
+
|
|
943
|
+
# Validate function signature
|
|
944
|
+
sig = inspect.signature(func)
|
|
945
|
+
params = list(sig.parameters.values())
|
|
946
|
+
|
|
947
|
+
if not params or params[0].name != "ctx":
|
|
948
|
+
raise ValueError(
|
|
949
|
+
f"Workflow '{workflow_name}' must have 'ctx: WorkflowContext' as first parameter"
|
|
950
|
+
)
|
|
951
|
+
|
|
952
|
+
# Convert sync to async if needed
|
|
953
|
+
if inspect.iscoroutinefunction(func):
|
|
954
|
+
handler_func = cast(HandlerFunc, func)
|
|
955
|
+
else:
|
|
956
|
+
# Wrap sync function in async
|
|
957
|
+
@functools.wraps(func)
|
|
958
|
+
async def async_wrapper(*args: Any, **kwargs: Any) -> Any:
|
|
959
|
+
return func(*args, **kwargs)
|
|
960
|
+
|
|
961
|
+
handler_func = cast(HandlerFunc, async_wrapper)
|
|
962
|
+
|
|
963
|
+
# Extract schemas from type hints
|
|
964
|
+
input_schema, output_schema = extract_function_schemas(func)
|
|
965
|
+
|
|
966
|
+
# Extract metadata (description, etc.)
|
|
967
|
+
metadata = extract_function_metadata(func)
|
|
968
|
+
|
|
969
|
+
# Add chat metadata if chat mode is enabled
|
|
970
|
+
if chat:
|
|
971
|
+
metadata["chat"] = "true"
|
|
972
|
+
|
|
973
|
+
# Register workflow
|
|
974
|
+
config = WorkflowConfig(
|
|
975
|
+
name=workflow_name,
|
|
976
|
+
handler=handler_func,
|
|
977
|
+
input_schema=input_schema,
|
|
978
|
+
output_schema=output_schema,
|
|
979
|
+
metadata=metadata,
|
|
980
|
+
)
|
|
981
|
+
WorkflowRegistry.register(config)
|
|
982
|
+
|
|
983
|
+
# Create wrapper that provides context
|
|
984
|
+
@functools.wraps(func)
|
|
985
|
+
async def wrapper(*args: Any, **kwargs: Any) -> Any:
|
|
986
|
+
# Create WorkflowEntity and WorkflowContext if not provided
|
|
987
|
+
if not args or not isinstance(args[0], WorkflowContext):
|
|
988
|
+
# Auto-create workflow entity and context for direct workflow calls
|
|
989
|
+
run_id = f"workflow-{uuid.uuid4().hex[:8]}"
|
|
990
|
+
|
|
991
|
+
# Create WorkflowEntity to manage state
|
|
992
|
+
workflow_entity = WorkflowEntity(run_id=run_id)
|
|
993
|
+
|
|
994
|
+
# Create WorkflowContext that wraps the entity
|
|
995
|
+
ctx = WorkflowContext(
|
|
996
|
+
workflow_entity=workflow_entity,
|
|
997
|
+
run_id=run_id,
|
|
998
|
+
)
|
|
999
|
+
|
|
1000
|
+
# Set context in task-local storage for automatic propagation
|
|
1001
|
+
token = set_current_context(ctx)
|
|
1002
|
+
try:
|
|
1003
|
+
# Execute workflow
|
|
1004
|
+
result = await handler_func(ctx, *args, **kwargs)
|
|
1005
|
+
|
|
1006
|
+
# Persist workflow state after successful execution
|
|
1007
|
+
try:
|
|
1008
|
+
await workflow_entity._persist_state()
|
|
1009
|
+
except Exception as e:
|
|
1010
|
+
logger.error(f"Failed to persist workflow state (non-fatal): {e}", exc_info=True)
|
|
1011
|
+
# Don't fail the workflow - persistence failure shouldn't break execution
|
|
1012
|
+
|
|
1013
|
+
return result
|
|
1014
|
+
finally:
|
|
1015
|
+
# Always reset context to prevent leakage
|
|
1016
|
+
from .context import _current_context
|
|
1017
|
+
|
|
1018
|
+
_current_context.reset(token)
|
|
1019
|
+
else:
|
|
1020
|
+
# WorkflowContext provided - use it and set in contextvar
|
|
1021
|
+
ctx = args[0]
|
|
1022
|
+
token = set_current_context(ctx)
|
|
1023
|
+
try:
|
|
1024
|
+
result = await handler_func(*args, **kwargs)
|
|
1025
|
+
|
|
1026
|
+
# Persist workflow state after successful execution
|
|
1027
|
+
try:
|
|
1028
|
+
await ctx._workflow_entity._persist_state()
|
|
1029
|
+
except Exception as e:
|
|
1030
|
+
logger.error(f"Failed to persist workflow state (non-fatal): {e}", exc_info=True)
|
|
1031
|
+
# Don't fail the workflow - persistence failure shouldn't break execution
|
|
1032
|
+
|
|
1033
|
+
return result
|
|
1034
|
+
finally:
|
|
1035
|
+
# Always reset context to prevent leakage
|
|
1036
|
+
from .context import _current_context
|
|
1037
|
+
|
|
1038
|
+
_current_context.reset(token)
|
|
1039
|
+
|
|
1040
|
+
# Store config on wrapper for introspection
|
|
1041
|
+
wrapper._agnt5_config = config # type: ignore
|
|
1042
|
+
return wrapper
|
|
1043
|
+
|
|
1044
|
+
# Handle both @workflow and @workflow(...) syntax
|
|
1045
|
+
if _func is None:
|
|
1046
|
+
return decorator
|
|
1047
|
+
else:
|
|
1048
|
+
return decorator(_func)
|