agno 1.7.12__py3-none-any.whl → 1.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agno/agent/agent.py +3 -3
- agno/app/agui/utils.py +1 -1
- agno/app/fastapi/async_router.py +13 -10
- agno/knowledge/agent.py +8 -4
- agno/knowledge/gcs/pdf.py +2 -2
- agno/media.py +26 -5
- agno/models/dashscope/dashscope.py +14 -5
- agno/models/google/gemini.py +39 -12
- agno/models/openai/chat.py +14 -4
- agno/models/openai/responses.py +56 -11
- agno/team/team.py +17 -1
- agno/tools/confluence.py +63 -10
- agno/tools/duckduckgo.py +8 -16
- agno/tools/e2b.py +1 -1
- agno/tools/github.py +26 -14
- agno/tools/gmail.py +1 -1
- agno/tools/memori.py +387 -0
- agno/tools/neo4j.py +132 -0
- agno/tools/scrapegraph.py +65 -0
- agno/utils/location.py +2 -2
- agno/vectordb/pgvector/pgvector.py +23 -39
- agno/vectordb/qdrant/qdrant.py +22 -0
- agno/workflow/v2/step.py +4 -0
- agno/workflow/v2/types.py +11 -1
- agno/workflow/v2/workflow.py +54 -1
- {agno-1.7.12.dist-info → agno-1.8.1.dist-info}/METADATA +10 -4
- {agno-1.7.12.dist-info → agno-1.8.1.dist-info}/RECORD +31 -29
- {agno-1.7.12.dist-info → agno-1.8.1.dist-info}/WHEEL +0 -0
- {agno-1.7.12.dist-info → agno-1.8.1.dist-info}/entry_points.txt +0 -0
- {agno-1.7.12.dist-info → agno-1.8.1.dist-info}/licenses/LICENSE +0 -0
- {agno-1.7.12.dist-info → agno-1.8.1.dist-info}/top_level.txt +0 -0
agno/tools/duckduckgo.py
CHANGED
|
@@ -5,9 +5,9 @@ from agno.tools import Toolkit
|
|
|
5
5
|
from agno.utils.log import log_debug
|
|
6
6
|
|
|
7
7
|
try:
|
|
8
|
-
from
|
|
8
|
+
from ddgs import DDGS
|
|
9
9
|
except ImportError:
|
|
10
|
-
raise ImportError("`duckduckgo-search` not installed. Please install using `pip install
|
|
10
|
+
raise ImportError("`duckduckgo-search` not installed. Please install using `pip install ddgs`")
|
|
11
11
|
|
|
12
12
|
|
|
13
13
|
class DuckDuckGoTools(Toolkit):
|
|
@@ -18,9 +18,7 @@ class DuckDuckGoTools(Toolkit):
|
|
|
18
18
|
news (bool): Enable DuckDuckGo news function.
|
|
19
19
|
modifier (Optional[str]): A modifier to be used in the search request.
|
|
20
20
|
fixed_max_results (Optional[int]): A fixed number of maximum results.
|
|
21
|
-
headers (Optional[Any]): Headers to be used in the search request.
|
|
22
21
|
proxy (Optional[str]): Proxy to be used in the search request.
|
|
23
|
-
proxies (Optional[Any]): A list of proxies to be used in the search request.
|
|
24
22
|
timeout (Optional[int]): The maximum number of seconds to wait for a response.
|
|
25
23
|
|
|
26
24
|
"""
|
|
@@ -31,16 +29,12 @@ class DuckDuckGoTools(Toolkit):
|
|
|
31
29
|
news: bool = True,
|
|
32
30
|
modifier: Optional[str] = None,
|
|
33
31
|
fixed_max_results: Optional[int] = None,
|
|
34
|
-
headers: Optional[Any] = None,
|
|
35
32
|
proxy: Optional[str] = None,
|
|
36
|
-
proxies: Optional[Any] = None,
|
|
37
33
|
timeout: Optional[int] = 10,
|
|
38
34
|
verify_ssl: bool = True,
|
|
39
35
|
**kwargs,
|
|
40
36
|
):
|
|
41
|
-
self.headers: Optional[Any] = headers
|
|
42
37
|
self.proxy: Optional[str] = proxy
|
|
43
|
-
self.proxies: Optional[Any] = proxies
|
|
44
38
|
self.timeout: Optional[int] = timeout
|
|
45
39
|
self.fixed_max_results: Optional[int] = fixed_max_results
|
|
46
40
|
self.modifier: Optional[str] = modifier
|
|
@@ -68,11 +62,10 @@ class DuckDuckGoTools(Toolkit):
|
|
|
68
62
|
search_query = f"{self.modifier} {query}" if self.modifier else query
|
|
69
63
|
|
|
70
64
|
log_debug(f"Searching DDG for: {search_query}")
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
)
|
|
65
|
+
with DDGS(proxy=self.proxy, timeout=self.timeout, verify=self.verify_ssl) as ddgs:
|
|
66
|
+
results = ddgs.text(search_query, max_results=actual_max_results)
|
|
74
67
|
|
|
75
|
-
return json.dumps(
|
|
68
|
+
return json.dumps(results, indent=2)
|
|
76
69
|
|
|
77
70
|
def duckduckgo_news(self, query: str, max_results: int = 5) -> str:
|
|
78
71
|
"""Use this function to get the latest news from DuckDuckGo.
|
|
@@ -87,8 +80,7 @@ class DuckDuckGoTools(Toolkit):
|
|
|
87
80
|
actual_max_results = self.fixed_max_results or max_results
|
|
88
81
|
|
|
89
82
|
log_debug(f"Searching DDG news for: {query}")
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
)
|
|
83
|
+
with DDGS(proxy=self.proxy, timeout=self.timeout, verify=self.verify_ssl) as ddgs:
|
|
84
|
+
results = ddgs.news(query, max_results=actual_max_results)
|
|
93
85
|
|
|
94
|
-
return json.dumps(
|
|
86
|
+
return json.dumps(results, indent=2)
|
agno/tools/e2b.py
CHANGED
|
@@ -58,7 +58,7 @@ class E2BTools(Toolkit):
|
|
|
58
58
|
|
|
59
59
|
# According to official docs, the parameter is 'timeout' (in seconds), not 'timeout_ms'
|
|
60
60
|
try:
|
|
61
|
-
self.sandbox = Sandbox(api_key=self.api_key, timeout=timeout, **self.sandbox_options)
|
|
61
|
+
self.sandbox = Sandbox.create(api_key=self.api_key, timeout=timeout, **self.sandbox_options)
|
|
62
62
|
except Exception as e:
|
|
63
63
|
logger.error(f"Warning: Could not create sandbox: {e}")
|
|
64
64
|
raise e
|
agno/tools/github.py
CHANGED
|
@@ -1698,20 +1698,32 @@ class GithubTools(Toolkit):
|
|
|
1698
1698
|
log_debug(f"Final search query: {search_query}")
|
|
1699
1699
|
code_results = self.g.search_code(search_query)
|
|
1700
1700
|
|
|
1701
|
-
|
|
1702
|
-
|
|
1703
|
-
#
|
|
1704
|
-
|
|
1705
|
-
|
|
1706
|
-
|
|
1707
|
-
|
|
1708
|
-
|
|
1709
|
-
|
|
1710
|
-
|
|
1711
|
-
|
|
1712
|
-
|
|
1713
|
-
|
|
1714
|
-
|
|
1701
|
+
results: list[dict] = []
|
|
1702
|
+
limit = 60
|
|
1703
|
+
max_pages = 2 # GitHub returns 30 items per page, so 2 pages covers our limit
|
|
1704
|
+
page_index = 0
|
|
1705
|
+
|
|
1706
|
+
while len(results) < limit and page_index < max_pages:
|
|
1707
|
+
# Fetch one page of results from GitHub API
|
|
1708
|
+
page_items = code_results.get_page(page_index)
|
|
1709
|
+
|
|
1710
|
+
# Stop if no more results available
|
|
1711
|
+
if not page_items:
|
|
1712
|
+
break
|
|
1713
|
+
|
|
1714
|
+
# Process each code result in the current page
|
|
1715
|
+
for code in page_items:
|
|
1716
|
+
code_info = {
|
|
1717
|
+
"repository": code.repository.full_name,
|
|
1718
|
+
"path": code.path,
|
|
1719
|
+
"name": code.name,
|
|
1720
|
+
"sha": code.sha,
|
|
1721
|
+
"html_url": code.html_url,
|
|
1722
|
+
"git_url": code.git_url,
|
|
1723
|
+
"score": code.score,
|
|
1724
|
+
}
|
|
1725
|
+
results.append(code_info)
|
|
1726
|
+
page_index += 1
|
|
1715
1727
|
|
|
1716
1728
|
# Return search results
|
|
1717
1729
|
return json.dumps(
|
agno/tools/gmail.py
CHANGED
|
@@ -133,7 +133,7 @@ class GmailTools(Toolkit):
|
|
|
133
133
|
send_email (bool): Enable sending emails. Defaults to True.
|
|
134
134
|
search_emails (bool): Enable searching emails. Defaults to True.
|
|
135
135
|
send_email_reply (bool): Enable sending email replies. Defaults to True.
|
|
136
|
-
creds (Optional[Credentials]): Pre-
|
|
136
|
+
creds (Optional[Credentials]): Pre-fetched OAuth credentials. Use this to skip a new auth flow. Defaults to None.
|
|
137
137
|
credentials_path (Optional[str]): Path to credentials file. Defaults to None.
|
|
138
138
|
token_path (Optional[str]): Path to token file. Defaults to None.
|
|
139
139
|
scopes (Optional[List[str]]): Custom OAuth scopes. If None, uses DEFAULT_SCOPES.
|
agno/tools/memori.py
ADDED
|
@@ -0,0 +1,387 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from typing import Any, Dict, Optional
|
|
3
|
+
|
|
4
|
+
from agno.agent import Agent
|
|
5
|
+
from agno.tools.toolkit import Toolkit
|
|
6
|
+
from agno.utils.log import log_debug, log_error, log_info, log_warning
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
from memori import Memori, create_memory_tool
|
|
10
|
+
except ImportError:
|
|
11
|
+
raise ImportError("`memorisdk` package not found. Please install it with `pip install memorisdk`")
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class MemoriTools(Toolkit):
|
|
15
|
+
"""
|
|
16
|
+
Memori ToolKit for Agno Agents and Teams, providing persistent memory capabilities.
|
|
17
|
+
|
|
18
|
+
This toolkit integrates Memori's memory system with Agno, allowing Agents and Teams to:
|
|
19
|
+
- Store and retrieve conversation history
|
|
20
|
+
- Search through past interactions
|
|
21
|
+
- Maintain user preferences and context
|
|
22
|
+
- Build long-term memory across sessions
|
|
23
|
+
|
|
24
|
+
Requirements:
|
|
25
|
+
- pip install memorisdk
|
|
26
|
+
- Database connection string (SQLite, PostgreSQL, etc.)
|
|
27
|
+
|
|
28
|
+
Example:
|
|
29
|
+
```python
|
|
30
|
+
from agno.tools.memori import MemoriTools
|
|
31
|
+
|
|
32
|
+
# Initialize with SQLite (default)
|
|
33
|
+
memori_tools = MemoriTools(
|
|
34
|
+
database_connect="sqlite:///agent_memory.db",
|
|
35
|
+
namespace="my_agent",
|
|
36
|
+
auto_ingest=True # Automatically ingest conversations
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
# Add to agent
|
|
40
|
+
agent = Agent(
|
|
41
|
+
model=OpenAIChat(),
|
|
42
|
+
tools=[memori_tools],
|
|
43
|
+
description="An AI assistant with persistent memory"
|
|
44
|
+
)
|
|
45
|
+
```
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
database_connect: Optional[str] = None,
|
|
51
|
+
namespace: Optional[str] = None,
|
|
52
|
+
conscious_ingest: bool = True,
|
|
53
|
+
auto_ingest: bool = True,
|
|
54
|
+
verbose: bool = False,
|
|
55
|
+
config: Optional[Dict[str, Any]] = None,
|
|
56
|
+
auto_enable: bool = True,
|
|
57
|
+
**kwargs,
|
|
58
|
+
):
|
|
59
|
+
"""
|
|
60
|
+
Initialize Memori toolkit.
|
|
61
|
+
|
|
62
|
+
Args:
|
|
63
|
+
database_connect: Database connection string (e.g., "sqlite:///memory.db")
|
|
64
|
+
namespace: Namespace for organizing memories (e.g., "agent_v1", "user_session")
|
|
65
|
+
conscious_ingest: Whether to use conscious memory ingestion
|
|
66
|
+
auto_ingest: Whether to automatically ingest conversations into memory
|
|
67
|
+
verbose: Enable verbose logging from Memori
|
|
68
|
+
config: Additional Memori configuration
|
|
69
|
+
auto_enable: Automatically enable the memory system on initialization
|
|
70
|
+
**kwargs: Additional arguments passed to Toolkit base class
|
|
71
|
+
"""
|
|
72
|
+
super().__init__(
|
|
73
|
+
name="memori_tools",
|
|
74
|
+
tools=[
|
|
75
|
+
self.search_memory,
|
|
76
|
+
self.record_conversation,
|
|
77
|
+
self.get_memory_stats,
|
|
78
|
+
],
|
|
79
|
+
**kwargs,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
# Set default database connection if not provided
|
|
83
|
+
if not database_connect:
|
|
84
|
+
sqlite_db = "sqlite:///agno_memori_memory.db"
|
|
85
|
+
log_info(f"No database connection provided, using default SQLite database at {sqlite_db}")
|
|
86
|
+
database_connect = sqlite_db
|
|
87
|
+
|
|
88
|
+
self.database_connect = database_connect
|
|
89
|
+
self.namespace = namespace or "agno_default"
|
|
90
|
+
self.conscious_ingest = conscious_ingest
|
|
91
|
+
self.auto_ingest = auto_ingest
|
|
92
|
+
self.verbose = verbose
|
|
93
|
+
self.config = config or {}
|
|
94
|
+
|
|
95
|
+
try:
|
|
96
|
+
# Initialize Memori memory system
|
|
97
|
+
log_debug(f"Initializing Memori with database: {self.database_connect}")
|
|
98
|
+
self.memory_system = Memori(
|
|
99
|
+
database_connect=self.database_connect,
|
|
100
|
+
conscious_ingest=self.conscious_ingest,
|
|
101
|
+
auto_ingest=self.auto_ingest,
|
|
102
|
+
verbose=self.verbose,
|
|
103
|
+
namespace=self.namespace,
|
|
104
|
+
**self.config,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
# Enable the memory system if auto_enable is True
|
|
108
|
+
if auto_enable:
|
|
109
|
+
self.memory_system.enable()
|
|
110
|
+
log_debug("Memori memory system enabled")
|
|
111
|
+
|
|
112
|
+
# Create the memory tool for internal use
|
|
113
|
+
self._memory_tool = create_memory_tool(self.memory_system)
|
|
114
|
+
|
|
115
|
+
except Exception as e:
|
|
116
|
+
log_error(f"Failed to initialize Memori: {e}")
|
|
117
|
+
raise ConnectionError("Failed to initialize Memori memory system") from e
|
|
118
|
+
|
|
119
|
+
def search_memory(
|
|
120
|
+
self,
|
|
121
|
+
agent: Agent,
|
|
122
|
+
query: str,
|
|
123
|
+
limit: Optional[int] = None,
|
|
124
|
+
) -> str:
|
|
125
|
+
"""
|
|
126
|
+
Search the Agent's memory for past conversations and information.
|
|
127
|
+
|
|
128
|
+
This performs semantic search across all stored memories to find
|
|
129
|
+
relevant information based on the provided query.
|
|
130
|
+
|
|
131
|
+
Args:
|
|
132
|
+
query: What to search for in memory (e.g., "past conversations about AI", "user preferences")
|
|
133
|
+
limit: Maximum number of results to return (optional)
|
|
134
|
+
|
|
135
|
+
Returns:
|
|
136
|
+
str: JSON-encoded search results or error message
|
|
137
|
+
|
|
138
|
+
Example:
|
|
139
|
+
search_memory("user's favorite programming languages")
|
|
140
|
+
search_memory("previous discussions about machine learning")
|
|
141
|
+
"""
|
|
142
|
+
try:
|
|
143
|
+
if not query.strip():
|
|
144
|
+
return json.dumps({"error": "Please provide a search query"})
|
|
145
|
+
|
|
146
|
+
log_debug(f"Searching memory for: {query}")
|
|
147
|
+
|
|
148
|
+
# Execute search using Memori's memory tool
|
|
149
|
+
result = self._memory_tool.execute(query=query.strip())
|
|
150
|
+
|
|
151
|
+
if result:
|
|
152
|
+
# If limit is specified, truncate results
|
|
153
|
+
if limit and isinstance(result, list):
|
|
154
|
+
result = result[:limit]
|
|
155
|
+
|
|
156
|
+
return json.dumps(
|
|
157
|
+
{
|
|
158
|
+
"success": True,
|
|
159
|
+
"query": query,
|
|
160
|
+
"results": result,
|
|
161
|
+
"count": len(result) if isinstance(result, list) else 1,
|
|
162
|
+
}
|
|
163
|
+
)
|
|
164
|
+
else:
|
|
165
|
+
return json.dumps(
|
|
166
|
+
{
|
|
167
|
+
"success": True,
|
|
168
|
+
"query": query,
|
|
169
|
+
"results": [],
|
|
170
|
+
"count": 0,
|
|
171
|
+
"message": "No relevant memories found",
|
|
172
|
+
}
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
except Exception as e:
|
|
176
|
+
log_error(f"Error searching memory: {e}")
|
|
177
|
+
return json.dumps({"success": False, "error": f"Memory search error: {str(e)}"})
|
|
178
|
+
|
|
179
|
+
def record_conversation(self, agent: Agent, content: str) -> str:
|
|
180
|
+
"""
|
|
181
|
+
Add important information or facts to memory.
|
|
182
|
+
|
|
183
|
+
Use this tool to store important information, user preferences, facts, or context that should be remembered
|
|
184
|
+
for future conversations.
|
|
185
|
+
|
|
186
|
+
Args:
|
|
187
|
+
content: The information/facts to store in memory
|
|
188
|
+
|
|
189
|
+
Returns:
|
|
190
|
+
str: Success message or error details
|
|
191
|
+
|
|
192
|
+
Example:
|
|
193
|
+
record_conversation("User prefers Python over JavaScript")
|
|
194
|
+
record_conversation("User is working on an e-commerce project using Django")
|
|
195
|
+
record_conversation("User's name is John and they live in NYC")
|
|
196
|
+
"""
|
|
197
|
+
try:
|
|
198
|
+
if not content.strip():
|
|
199
|
+
return json.dumps({"success": False, "error": "Content cannot be empty"})
|
|
200
|
+
|
|
201
|
+
log_debug(f"Adding conversation: {content}")
|
|
202
|
+
|
|
203
|
+
# Extract the actual AI response from the agent's conversation history
|
|
204
|
+
ai_output = "I've noted this information and will remember it."
|
|
205
|
+
|
|
206
|
+
self.memory_system.record_conversation(user_input=content, ai_output=str(ai_output))
|
|
207
|
+
return json.dumps(
|
|
208
|
+
{
|
|
209
|
+
"success": True,
|
|
210
|
+
"message": "Memory added successfully via conversation recording",
|
|
211
|
+
"content_length": len(content),
|
|
212
|
+
}
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
except Exception as e:
|
|
216
|
+
log_error(f"Error adding memory: {e}")
|
|
217
|
+
return json.dumps({"success": False, "error": f"Failed to add memory: {str(e)}"})
|
|
218
|
+
|
|
219
|
+
def get_memory_stats(
|
|
220
|
+
self,
|
|
221
|
+
agent: Agent,
|
|
222
|
+
) -> str:
|
|
223
|
+
"""
|
|
224
|
+
Get statistics about the memory system.
|
|
225
|
+
|
|
226
|
+
Returns information about the current state of the memory system,
|
|
227
|
+
including total memories, memory distribution by retention type
|
|
228
|
+
(short-term vs long-term), and system configuration.
|
|
229
|
+
|
|
230
|
+
Returns:
|
|
231
|
+
str: JSON-encoded memory statistics
|
|
232
|
+
|
|
233
|
+
Example:
|
|
234
|
+
Returns statistics like:
|
|
235
|
+
{
|
|
236
|
+
"success": true,
|
|
237
|
+
"total_memories": 42,
|
|
238
|
+
"memories_by_retention": {
|
|
239
|
+
"short_term": 5,
|
|
240
|
+
"long_term": 37
|
|
241
|
+
},
|
|
242
|
+
"namespace": "my_agent",
|
|
243
|
+
"conscious_ingest": true,
|
|
244
|
+
"auto_ingest": true,
|
|
245
|
+
"memory_system_enabled": true
|
|
246
|
+
}
|
|
247
|
+
"""
|
|
248
|
+
try:
|
|
249
|
+
log_debug("Retrieving memory statistics")
|
|
250
|
+
|
|
251
|
+
# Base stats about the system configuration
|
|
252
|
+
stats = {
|
|
253
|
+
"success": True,
|
|
254
|
+
"namespace": self.namespace,
|
|
255
|
+
"database_connect": self.database_connect,
|
|
256
|
+
"conscious_ingest": self.conscious_ingest,
|
|
257
|
+
"auto_ingest": self.auto_ingest,
|
|
258
|
+
"verbose": self.verbose,
|
|
259
|
+
"memory_system_enabled": hasattr(self.memory_system, "_enabled") and self.memory_system._enabled,
|
|
260
|
+
}
|
|
261
|
+
|
|
262
|
+
# Get Memori's built-in memory statistics
|
|
263
|
+
try:
|
|
264
|
+
if hasattr(self.memory_system, "get_memory_stats"):
|
|
265
|
+
# Use the get_memory_stats method as shown in the example
|
|
266
|
+
memori_stats = self.memory_system.get_memory_stats()
|
|
267
|
+
|
|
268
|
+
# Add the Memori-specific stats to our response
|
|
269
|
+
if isinstance(memori_stats, dict):
|
|
270
|
+
# Include total memories
|
|
271
|
+
if "total_memories" in memori_stats:
|
|
272
|
+
stats["total_memories"] = memori_stats["total_memories"]
|
|
273
|
+
|
|
274
|
+
# Include memory distribution by retention type
|
|
275
|
+
if "memories_by_retention" in memori_stats:
|
|
276
|
+
stats["memories_by_retention"] = memori_stats["memories_by_retention"]
|
|
277
|
+
|
|
278
|
+
# Also add individual counts for convenience
|
|
279
|
+
retention_info = memori_stats["memories_by_retention"]
|
|
280
|
+
stats["short_term_memories"] = retention_info.get("short_term", 0)
|
|
281
|
+
stats["long_term_memories"] = retention_info.get("long_term", 0)
|
|
282
|
+
|
|
283
|
+
# Include any other available stats
|
|
284
|
+
for key, value in memori_stats.items():
|
|
285
|
+
if key not in stats:
|
|
286
|
+
stats[key] = value
|
|
287
|
+
|
|
288
|
+
log_debug(
|
|
289
|
+
f"Retrieved memory stats: total={stats.get('total_memories', 0)}, "
|
|
290
|
+
f"short_term={stats.get('short_term_memories', 0)}, "
|
|
291
|
+
f"long_term={stats.get('long_term_memories', 0)}"
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
else:
|
|
295
|
+
log_debug("get_memory_stats method not available, providing basic stats only")
|
|
296
|
+
stats["total_memories"] = 0
|
|
297
|
+
stats["memories_by_retention"] = {"short_term": 0, "long_term": 0}
|
|
298
|
+
stats["short_term_memories"] = 0
|
|
299
|
+
stats["long_term_memories"] = 0
|
|
300
|
+
|
|
301
|
+
except Exception as e:
|
|
302
|
+
log_debug(f"Could not retrieve detailed memory stats: {e}")
|
|
303
|
+
# Provide basic stats if detailed stats fail
|
|
304
|
+
stats["total_memories"] = 0
|
|
305
|
+
stats["memories_by_retention"] = {"short_term": 0, "long_term": 0}
|
|
306
|
+
stats["short_term_memories"] = 0
|
|
307
|
+
stats["long_term_memories"] = 0
|
|
308
|
+
stats["stats_warning"] = "Detailed memory statistics not available"
|
|
309
|
+
|
|
310
|
+
return json.dumps(stats)
|
|
311
|
+
|
|
312
|
+
except Exception as e:
|
|
313
|
+
log_error(f"Error getting memory stats: {e}")
|
|
314
|
+
return json.dumps({"success": False, "error": f"Failed to get memory statistics: {str(e)}"})
|
|
315
|
+
|
|
316
|
+
def enable_memory_system(self) -> bool:
|
|
317
|
+
"""Enable the Memori memory system."""
|
|
318
|
+
try:
|
|
319
|
+
self.memory_system.enable()
|
|
320
|
+
log_debug("Memori memory system enabled")
|
|
321
|
+
return True
|
|
322
|
+
except Exception as e:
|
|
323
|
+
log_error(f"Failed to enable memory system: {e}")
|
|
324
|
+
return False
|
|
325
|
+
|
|
326
|
+
def disable_memory_system(self) -> bool:
|
|
327
|
+
"""Disable the Memori memory system."""
|
|
328
|
+
try:
|
|
329
|
+
if hasattr(self.memory_system, "disable"):
|
|
330
|
+
self.memory_system.disable()
|
|
331
|
+
log_debug("Memori memory system disabled")
|
|
332
|
+
return True
|
|
333
|
+
else:
|
|
334
|
+
log_warning("Memory system disable method not available")
|
|
335
|
+
return False
|
|
336
|
+
except Exception as e:
|
|
337
|
+
log_error(f"Failed to disable memory system: {e}")
|
|
338
|
+
return False
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
def create_memori_search_tool(memori_toolkit: MemoriTools):
|
|
342
|
+
"""
|
|
343
|
+
Create a standalone memory search function for use with Agno agents.
|
|
344
|
+
|
|
345
|
+
This is a convenience function that creates a memory search tool similar
|
|
346
|
+
to the pattern shown in the Memori example code.
|
|
347
|
+
|
|
348
|
+
Args:
|
|
349
|
+
memori_toolkit: An initialized MemoriTools instance
|
|
350
|
+
|
|
351
|
+
Returns:
|
|
352
|
+
Callable: A memory search function that can be used as an agent tool
|
|
353
|
+
|
|
354
|
+
Example:
|
|
355
|
+
```python
|
|
356
|
+
memori_tools = MemoriTools(database_connect="sqlite:///memory.db")
|
|
357
|
+
search_tool = create_memori_search_tool(memori_tools)
|
|
358
|
+
|
|
359
|
+
agent = Agent(
|
|
360
|
+
model=OpenAIChat(),
|
|
361
|
+
tools=[search_tool],
|
|
362
|
+
description="Agent with memory search capability"
|
|
363
|
+
)
|
|
364
|
+
```
|
|
365
|
+
"""
|
|
366
|
+
|
|
367
|
+
def search_memory(query: str) -> str:
|
|
368
|
+
"""
|
|
369
|
+
Search the agent's memory for past conversations and information.
|
|
370
|
+
|
|
371
|
+
Args:
|
|
372
|
+
query: What to search for in memory
|
|
373
|
+
|
|
374
|
+
Returns:
|
|
375
|
+
str: Search results or error message
|
|
376
|
+
"""
|
|
377
|
+
try:
|
|
378
|
+
if not query.strip():
|
|
379
|
+
return "Please provide a search query"
|
|
380
|
+
|
|
381
|
+
result = memori_toolkit._memory_tool.execute(query=query.strip())
|
|
382
|
+
return str(result) if result else "No relevant memories found"
|
|
383
|
+
|
|
384
|
+
except Exception as e:
|
|
385
|
+
return f"Memory search error: {str(e)}"
|
|
386
|
+
|
|
387
|
+
return search_memory
|
agno/tools/neo4j.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from typing import Any, List, Optional
|
|
3
|
+
|
|
4
|
+
try:
|
|
5
|
+
from neo4j import GraphDatabase
|
|
6
|
+
except ImportError:
|
|
7
|
+
raise ImportError("`neo4j` not installed. Please install using `pip install neo4j`")
|
|
8
|
+
|
|
9
|
+
from agno.tools import Toolkit
|
|
10
|
+
from agno.utils.log import log_debug, logger
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class Neo4jTools(Toolkit):
|
|
14
|
+
def __init__(
|
|
15
|
+
self,
|
|
16
|
+
uri: Optional[str] = None,
|
|
17
|
+
user: Optional[str] = None,
|
|
18
|
+
password: Optional[str] = None,
|
|
19
|
+
database: Optional[str] = None,
|
|
20
|
+
list_labels: bool = True,
|
|
21
|
+
list_relationships: bool = True,
|
|
22
|
+
get_schema: bool = True,
|
|
23
|
+
run_cypher: bool = True,
|
|
24
|
+
**kwargs,
|
|
25
|
+
):
|
|
26
|
+
"""
|
|
27
|
+
Initialize the Neo4jTools toolkit.
|
|
28
|
+
Connection parameters (uri/user/password or host/port) can be provided.
|
|
29
|
+
If not provided, falls back to NEO4J_URI, NEO4J_USERNAME, NEO4J_PASSWORD env vars.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
uri (Optional[str]): The Neo4j URI.
|
|
33
|
+
user (Optional[str]): The Neo4j username.
|
|
34
|
+
password (Optional[str]): The Neo4j password.
|
|
35
|
+
host (Optional[str]): The Neo4j host.
|
|
36
|
+
port (Optional[int]): The Neo4j port.
|
|
37
|
+
database (Optional[str]): The Neo4j database.
|
|
38
|
+
list_labels (bool): Whether to list node labels.
|
|
39
|
+
list_relationships (bool): Whether to list relationship types.
|
|
40
|
+
get_schema (bool): Whether to get the schema.
|
|
41
|
+
run_cypher (bool): Whether to run Cypher queries.
|
|
42
|
+
**kwargs: Additional keyword arguments.
|
|
43
|
+
"""
|
|
44
|
+
# Determine the connection URI and credentials
|
|
45
|
+
uri = uri or os.getenv("NEO4J_URI", "bolt://localhost:7687")
|
|
46
|
+
user = user or os.getenv("NEO4J_USERNAME")
|
|
47
|
+
password = password or os.getenv("NEO4J_PASSWORD")
|
|
48
|
+
|
|
49
|
+
if user is None or password is None:
|
|
50
|
+
raise ValueError("Username or password for Neo4j not provided")
|
|
51
|
+
|
|
52
|
+
# Create the Neo4j driver
|
|
53
|
+
try:
|
|
54
|
+
self.driver = GraphDatabase.driver(uri, auth=(user, password)) # type: ignore
|
|
55
|
+
self.driver.verify_connectivity()
|
|
56
|
+
log_debug("Connected to Neo4j database")
|
|
57
|
+
except Exception as e:
|
|
58
|
+
logger.error(f"Failed to connect to Neo4j: {e}")
|
|
59
|
+
raise
|
|
60
|
+
|
|
61
|
+
self.database = database or "neo4j"
|
|
62
|
+
|
|
63
|
+
# Register toolkit methods as tools
|
|
64
|
+
tools: List[Any] = []
|
|
65
|
+
if list_labels:
|
|
66
|
+
tools.append(self.list_labels)
|
|
67
|
+
if list_relationships:
|
|
68
|
+
tools.append(self.list_relationship_types)
|
|
69
|
+
if get_schema:
|
|
70
|
+
tools.append(self.get_schema)
|
|
71
|
+
if run_cypher:
|
|
72
|
+
tools.append(self.run_cypher_query)
|
|
73
|
+
super().__init__(name="neo4j_tools", tools=tools, **kwargs)
|
|
74
|
+
|
|
75
|
+
def list_labels(self) -> list:
|
|
76
|
+
"""
|
|
77
|
+
Retrieve all node labels present in the connected Neo4j database.
|
|
78
|
+
"""
|
|
79
|
+
try:
|
|
80
|
+
log_debug("Listing node labels in Neo4j database")
|
|
81
|
+
with self.driver.session(database=self.database) as session:
|
|
82
|
+
result = session.run("CALL db.labels()")
|
|
83
|
+
labels = [record["label"] for record in result]
|
|
84
|
+
return labels
|
|
85
|
+
except Exception as e:
|
|
86
|
+
logger.error(f"Error listing labels: {e}")
|
|
87
|
+
return []
|
|
88
|
+
|
|
89
|
+
def list_relationship_types(self) -> list:
|
|
90
|
+
"""
|
|
91
|
+
Retrieve all relationship types present in the connected Neo4j database.
|
|
92
|
+
"""
|
|
93
|
+
try:
|
|
94
|
+
log_debug("Listing relationship types in Neo4j database")
|
|
95
|
+
with self.driver.session(database=self.database) as session:
|
|
96
|
+
result = session.run("CALL db.relationshipTypes()")
|
|
97
|
+
types = [record["relationshipType"] for record in result]
|
|
98
|
+
return types
|
|
99
|
+
except Exception as e:
|
|
100
|
+
logger.error(f"Error listing relationship types: {e}")
|
|
101
|
+
return []
|
|
102
|
+
|
|
103
|
+
def get_schema(self) -> list:
|
|
104
|
+
"""
|
|
105
|
+
Retrieve a visualization of the database schema, including nodes and relationships.
|
|
106
|
+
"""
|
|
107
|
+
try:
|
|
108
|
+
log_debug("Retrieving Neo4j schema visualization")
|
|
109
|
+
with self.driver.session(database=self.database) as session:
|
|
110
|
+
result = session.run("CALL db.schema.visualization()")
|
|
111
|
+
schema_data = result.data()
|
|
112
|
+
return schema_data
|
|
113
|
+
except Exception as e:
|
|
114
|
+
logger.error(f"Error getting Neo4j schema: {e}")
|
|
115
|
+
return []
|
|
116
|
+
|
|
117
|
+
def run_cypher_query(self, query: str) -> list:
|
|
118
|
+
"""
|
|
119
|
+
Execute an arbitrary Cypher query against the connected Neo4j database.
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
query (str): The Cypher query string to execute.
|
|
123
|
+
"""
|
|
124
|
+
try:
|
|
125
|
+
log_debug(f"Running Cypher query: {query}")
|
|
126
|
+
with self.driver.session(database=self.database) as session:
|
|
127
|
+
result = session.run(query) # type: ignore[arg-type]
|
|
128
|
+
data = result.data()
|
|
129
|
+
return data
|
|
130
|
+
except Exception as e:
|
|
131
|
+
logger.error(f"Error running Cypher query: {e}")
|
|
132
|
+
return []
|