agno 1.7.12__py3-none-any.whl → 1.8.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agno/app/agui/utils.py +1 -1
- agno/app/fastapi/async_router.py +13 -10
- agno/knowledge/gcs/pdf.py +2 -2
- agno/media.py +24 -3
- agno/models/google/gemini.py +16 -1
- agno/tools/duckduckgo.py +8 -16
- agno/tools/github.py +26 -14
- agno/tools/memori.py +387 -0
- agno/tools/scrapegraph.py +65 -0
- agno/vectordb/pgvector/pgvector.py +23 -39
- agno/workflow/v2/step.py +4 -0
- agno/workflow/v2/types.py +11 -1
- agno/workflow/v2/workflow.py +54 -1
- {agno-1.7.12.dist-info → agno-1.8.0.dist-info}/METADATA +7 -4
- {agno-1.7.12.dist-info → agno-1.8.0.dist-info}/RECORD +19 -18
- {agno-1.7.12.dist-info → agno-1.8.0.dist-info}/WHEEL +0 -0
- {agno-1.7.12.dist-info → agno-1.8.0.dist-info}/entry_points.txt +0 -0
- {agno-1.7.12.dist-info → agno-1.8.0.dist-info}/licenses/LICENSE +0 -0
- {agno-1.7.12.dist-info → agno-1.8.0.dist-info}/top_level.txt +0 -0
agno/app/agui/utils.py
CHANGED
|
@@ -129,7 +129,7 @@ def _create_events_from_chunk(
|
|
|
129
129
|
Process a single chunk and return events to emit + updated message_started state.
|
|
130
130
|
Returns: (events_to_emit, new_message_started_state)
|
|
131
131
|
"""
|
|
132
|
-
events_to_emit = []
|
|
132
|
+
events_to_emit: List[BaseEvent] = []
|
|
133
133
|
|
|
134
134
|
# Extract content if the contextual event is a content event
|
|
135
135
|
if chunk.event == RunEvent.run_response_content:
|
agno/app/fastapi/async_router.py
CHANGED
|
@@ -13,7 +13,7 @@ from agno.media import Audio, Image, Video
|
|
|
13
13
|
from agno.media import File as FileMedia
|
|
14
14
|
from agno.run.response import RunResponseErrorEvent
|
|
15
15
|
from agno.run.team import RunResponseErrorEvent as TeamRunResponseErrorEvent
|
|
16
|
-
from agno.run.team import TeamRunResponseEvent
|
|
16
|
+
from agno.run.team import TeamRunResponse, TeamRunResponseEvent
|
|
17
17
|
from agno.run.v2.workflow import WorkflowErrorEvent
|
|
18
18
|
from agno.team.team import Team
|
|
19
19
|
from agno.utils.log import logger
|
|
@@ -425,15 +425,18 @@ def get_async_router(
|
|
|
425
425
|
)
|
|
426
426
|
return run_response.to_dict()
|
|
427
427
|
elif team:
|
|
428
|
-
team_run_response =
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
|
|
428
|
+
team_run_response = cast(
|
|
429
|
+
TeamRunResponse,
|
|
430
|
+
await team.arun(
|
|
431
|
+
message=message,
|
|
432
|
+
session_id=session_id,
|
|
433
|
+
user_id=user_id,
|
|
434
|
+
images=base64_images if base64_images else None,
|
|
435
|
+
audio=base64_audios if base64_audios else None,
|
|
436
|
+
videos=base64_videos if base64_videos else None,
|
|
437
|
+
files=document_files if document_files else None,
|
|
438
|
+
stream=False,
|
|
439
|
+
),
|
|
437
440
|
)
|
|
438
441
|
return team_run_response.to_dict()
|
|
439
442
|
elif workflow:
|
agno/knowledge/gcs/pdf.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
from typing import AsyncIterator, Iterator, List, Optional
|
|
1
|
+
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
|
2
2
|
|
|
3
3
|
from agno.document import Document
|
|
4
4
|
from agno.document.reader.gcs.pdf_reader import GCSPDFReader
|
|
@@ -93,7 +93,7 @@ class GCSPDFKnowledgeBase(GCSKnowledgeBase):
|
|
|
93
93
|
document_iterator = self.async_document_lists
|
|
94
94
|
async for document_list in document_iterator: # type: ignore
|
|
95
95
|
documents_to_load = document_list
|
|
96
|
-
|
|
96
|
+
|
|
97
97
|
# Track metadata for filtering capabilities and collect metadata for filters
|
|
98
98
|
filters_metadata: Optional[Dict[str, Any]] = None
|
|
99
99
|
for doc in document_list:
|
agno/media.py
CHANGED
|
@@ -38,13 +38,34 @@ class ImageArtifact(Media):
|
|
|
38
38
|
mime_type: Optional[str] = None
|
|
39
39
|
alt_text: Optional[str] = None
|
|
40
40
|
|
|
41
|
+
def _normalise_content(self) -> Optional[Union[str, bytes]]:
|
|
42
|
+
if self.content is None:
|
|
43
|
+
return None
|
|
44
|
+
content_normalised: Union[str, bytes] = self.content
|
|
45
|
+
if content_normalised and isinstance(content_normalised, bytes):
|
|
46
|
+
from base64 import b64encode
|
|
47
|
+
|
|
48
|
+
try:
|
|
49
|
+
# First try to decode as UTF-8
|
|
50
|
+
content_normalised = content_normalised.decode("utf-8") # type: ignore
|
|
51
|
+
except UnicodeDecodeError:
|
|
52
|
+
# Fallback to base64 encoding for binary content
|
|
53
|
+
content_normalised = b64encode(bytes(content_normalised)).decode("utf-8") # type: ignore
|
|
54
|
+
except Exception:
|
|
55
|
+
# Last resort: try to convert to base64
|
|
56
|
+
try:
|
|
57
|
+
content_normalised = b64encode(bytes(content_normalised)).decode("utf-8") # type: ignore
|
|
58
|
+
except Exception:
|
|
59
|
+
pass
|
|
60
|
+
return content_normalised
|
|
61
|
+
|
|
41
62
|
def to_dict(self) -> Dict[str, Any]:
|
|
63
|
+
content_normalised = self._normalise_content()
|
|
64
|
+
|
|
42
65
|
response_dict = {
|
|
43
66
|
"id": self.id,
|
|
44
67
|
"url": self.url,
|
|
45
|
-
"content":
|
|
46
|
-
if self.content and isinstance(self.content, bytes)
|
|
47
|
-
else self.content,
|
|
68
|
+
"content": content_normalised,
|
|
48
69
|
"mime_type": self.mime_type,
|
|
49
70
|
"alt_text": self.alt_text,
|
|
50
71
|
}
|
agno/models/google/gemini.py
CHANGED
|
@@ -30,9 +30,11 @@ try:
|
|
|
30
30
|
GoogleSearch,
|
|
31
31
|
GoogleSearchRetrieval,
|
|
32
32
|
Part,
|
|
33
|
+
Retrieval,
|
|
33
34
|
ThinkingConfig,
|
|
34
35
|
Tool,
|
|
35
36
|
UrlContext,
|
|
37
|
+
VertexAISearch,
|
|
36
38
|
)
|
|
37
39
|
from google.genai.types import (
|
|
38
40
|
File as GeminiFile,
|
|
@@ -70,6 +72,8 @@ class Gemini(Model):
|
|
|
70
72
|
grounding: bool = False
|
|
71
73
|
grounding_dynamic_threshold: Optional[float] = None
|
|
72
74
|
url_context: bool = False
|
|
75
|
+
vertexai_search: bool = False
|
|
76
|
+
vertexai_search_datastore: Optional[str] = None
|
|
73
77
|
|
|
74
78
|
temperature: Optional[float] = None
|
|
75
79
|
top_p: Optional[float] = None
|
|
@@ -204,7 +208,9 @@ class Gemini(Model):
|
|
|
204
208
|
builtin_tools = []
|
|
205
209
|
|
|
206
210
|
if self.grounding:
|
|
207
|
-
log_info(
|
|
211
|
+
log_info(
|
|
212
|
+
"Grounding enabled. This is a legacy tool. For Gemini 2.0+ Please use enable `search` flag instead."
|
|
213
|
+
)
|
|
208
214
|
builtin_tools.append(
|
|
209
215
|
Tool(
|
|
210
216
|
google_search=GoogleSearchRetrieval(
|
|
@@ -223,6 +229,15 @@ class Gemini(Model):
|
|
|
223
229
|
log_info("URL context enabled.")
|
|
224
230
|
builtin_tools.append(Tool(url_context=UrlContext()))
|
|
225
231
|
|
|
232
|
+
if self.vertexai_search:
|
|
233
|
+
log_info("Vertex AI Search enabled.")
|
|
234
|
+
if not self.vertexai_search_datastore:
|
|
235
|
+
log_error("vertexai_search_datastore must be provided when vertexai_search is enabled.")
|
|
236
|
+
raise ValueError("vertexai_search_datastore must be provided when vertexai_search is enabled.")
|
|
237
|
+
builtin_tools.append(
|
|
238
|
+
Tool(retrieval=Retrieval(vertex_ai_search=VertexAISearch(datastore=self.vertexai_search_datastore)))
|
|
239
|
+
)
|
|
240
|
+
|
|
226
241
|
# Set tools in config
|
|
227
242
|
if builtin_tools:
|
|
228
243
|
if tools:
|
agno/tools/duckduckgo.py
CHANGED
|
@@ -5,9 +5,9 @@ from agno.tools import Toolkit
|
|
|
5
5
|
from agno.utils.log import log_debug
|
|
6
6
|
|
|
7
7
|
try:
|
|
8
|
-
from
|
|
8
|
+
from ddgs import DDGS
|
|
9
9
|
except ImportError:
|
|
10
|
-
raise ImportError("`duckduckgo-search` not installed. Please install using `pip install
|
|
10
|
+
raise ImportError("`duckduckgo-search` not installed. Please install using `pip install ddgs`")
|
|
11
11
|
|
|
12
12
|
|
|
13
13
|
class DuckDuckGoTools(Toolkit):
|
|
@@ -18,9 +18,7 @@ class DuckDuckGoTools(Toolkit):
|
|
|
18
18
|
news (bool): Enable DuckDuckGo news function.
|
|
19
19
|
modifier (Optional[str]): A modifier to be used in the search request.
|
|
20
20
|
fixed_max_results (Optional[int]): A fixed number of maximum results.
|
|
21
|
-
headers (Optional[Any]): Headers to be used in the search request.
|
|
22
21
|
proxy (Optional[str]): Proxy to be used in the search request.
|
|
23
|
-
proxies (Optional[Any]): A list of proxies to be used in the search request.
|
|
24
22
|
timeout (Optional[int]): The maximum number of seconds to wait for a response.
|
|
25
23
|
|
|
26
24
|
"""
|
|
@@ -31,16 +29,12 @@ class DuckDuckGoTools(Toolkit):
|
|
|
31
29
|
news: bool = True,
|
|
32
30
|
modifier: Optional[str] = None,
|
|
33
31
|
fixed_max_results: Optional[int] = None,
|
|
34
|
-
headers: Optional[Any] = None,
|
|
35
32
|
proxy: Optional[str] = None,
|
|
36
|
-
proxies: Optional[Any] = None,
|
|
37
33
|
timeout: Optional[int] = 10,
|
|
38
34
|
verify_ssl: bool = True,
|
|
39
35
|
**kwargs,
|
|
40
36
|
):
|
|
41
|
-
self.headers: Optional[Any] = headers
|
|
42
37
|
self.proxy: Optional[str] = proxy
|
|
43
|
-
self.proxies: Optional[Any] = proxies
|
|
44
38
|
self.timeout: Optional[int] = timeout
|
|
45
39
|
self.fixed_max_results: Optional[int] = fixed_max_results
|
|
46
40
|
self.modifier: Optional[str] = modifier
|
|
@@ -68,11 +62,10 @@ class DuckDuckGoTools(Toolkit):
|
|
|
68
62
|
search_query = f"{self.modifier} {query}" if self.modifier else query
|
|
69
63
|
|
|
70
64
|
log_debug(f"Searching DDG for: {search_query}")
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
)
|
|
65
|
+
with DDGS(proxy=self.proxy, timeout=self.timeout, verify=self.verify_ssl) as ddgs:
|
|
66
|
+
results = ddgs.text(search_query, max_results=actual_max_results)
|
|
74
67
|
|
|
75
|
-
return json.dumps(
|
|
68
|
+
return json.dumps(results, indent=2)
|
|
76
69
|
|
|
77
70
|
def duckduckgo_news(self, query: str, max_results: int = 5) -> str:
|
|
78
71
|
"""Use this function to get the latest news from DuckDuckGo.
|
|
@@ -87,8 +80,7 @@ class DuckDuckGoTools(Toolkit):
|
|
|
87
80
|
actual_max_results = self.fixed_max_results or max_results
|
|
88
81
|
|
|
89
82
|
log_debug(f"Searching DDG news for: {query}")
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
)
|
|
83
|
+
with DDGS(proxy=self.proxy, timeout=self.timeout, verify=self.verify_ssl) as ddgs:
|
|
84
|
+
results = ddgs.news(query, max_results=actual_max_results)
|
|
93
85
|
|
|
94
|
-
return json.dumps(
|
|
86
|
+
return json.dumps(results, indent=2)
|
agno/tools/github.py
CHANGED
|
@@ -1698,20 +1698,32 @@ class GithubTools(Toolkit):
|
|
|
1698
1698
|
log_debug(f"Final search query: {search_query}")
|
|
1699
1699
|
code_results = self.g.search_code(search_query)
|
|
1700
1700
|
|
|
1701
|
-
|
|
1702
|
-
|
|
1703
|
-
#
|
|
1704
|
-
|
|
1705
|
-
|
|
1706
|
-
|
|
1707
|
-
|
|
1708
|
-
|
|
1709
|
-
|
|
1710
|
-
|
|
1711
|
-
|
|
1712
|
-
|
|
1713
|
-
|
|
1714
|
-
|
|
1701
|
+
results: list[dict] = []
|
|
1702
|
+
limit = 60
|
|
1703
|
+
max_pages = 2 # GitHub returns 30 items per page, so 2 pages covers our limit
|
|
1704
|
+
page_index = 0
|
|
1705
|
+
|
|
1706
|
+
while len(results) < limit and page_index < max_pages:
|
|
1707
|
+
# Fetch one page of results from GitHub API
|
|
1708
|
+
page_items = code_results.get_page(page_index)
|
|
1709
|
+
|
|
1710
|
+
# Stop if no more results available
|
|
1711
|
+
if not page_items:
|
|
1712
|
+
break
|
|
1713
|
+
|
|
1714
|
+
# Process each code result in the current page
|
|
1715
|
+
for code in page_items:
|
|
1716
|
+
code_info = {
|
|
1717
|
+
"repository": code.repository.full_name,
|
|
1718
|
+
"path": code.path,
|
|
1719
|
+
"name": code.name,
|
|
1720
|
+
"sha": code.sha,
|
|
1721
|
+
"html_url": code.html_url,
|
|
1722
|
+
"git_url": code.git_url,
|
|
1723
|
+
"score": code.score,
|
|
1724
|
+
}
|
|
1725
|
+
results.append(code_info)
|
|
1726
|
+
page_index += 1
|
|
1715
1727
|
|
|
1716
1728
|
# Return search results
|
|
1717
1729
|
return json.dumps(
|
agno/tools/memori.py
ADDED
|
@@ -0,0 +1,387 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from typing import Any, Dict, Optional
|
|
3
|
+
|
|
4
|
+
from agno.agent import Agent
|
|
5
|
+
from agno.tools.toolkit import Toolkit
|
|
6
|
+
from agno.utils.log import log_debug, log_error, log_info, log_warning
|
|
7
|
+
|
|
8
|
+
try:
|
|
9
|
+
from memori import Memori, create_memory_tool
|
|
10
|
+
except ImportError:
|
|
11
|
+
raise ImportError("`memorisdk` package not found. Please install it with `pip install memorisdk`")
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class MemoriTools(Toolkit):
|
|
15
|
+
"""
|
|
16
|
+
Memori ToolKit for Agno Agents and Teams, providing persistent memory capabilities.
|
|
17
|
+
|
|
18
|
+
This toolkit integrates Memori's memory system with Agno, allowing Agents and Teams to:
|
|
19
|
+
- Store and retrieve conversation history
|
|
20
|
+
- Search through past interactions
|
|
21
|
+
- Maintain user preferences and context
|
|
22
|
+
- Build long-term memory across sessions
|
|
23
|
+
|
|
24
|
+
Requirements:
|
|
25
|
+
- pip install memorisdk
|
|
26
|
+
- Database connection string (SQLite, PostgreSQL, etc.)
|
|
27
|
+
|
|
28
|
+
Example:
|
|
29
|
+
```python
|
|
30
|
+
from agno.tools.memori import MemoriTools
|
|
31
|
+
|
|
32
|
+
# Initialize with SQLite (default)
|
|
33
|
+
memori_tools = MemoriTools(
|
|
34
|
+
database_connect="sqlite:///agent_memory.db",
|
|
35
|
+
namespace="my_agent",
|
|
36
|
+
auto_ingest=True # Automatically ingest conversations
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
# Add to agent
|
|
40
|
+
agent = Agent(
|
|
41
|
+
model=OpenAIChat(),
|
|
42
|
+
tools=[memori_tools],
|
|
43
|
+
description="An AI assistant with persistent memory"
|
|
44
|
+
)
|
|
45
|
+
```
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
database_connect: Optional[str] = None,
|
|
51
|
+
namespace: Optional[str] = None,
|
|
52
|
+
conscious_ingest: bool = True,
|
|
53
|
+
auto_ingest: bool = True,
|
|
54
|
+
verbose: bool = False,
|
|
55
|
+
config: Optional[Dict[str, Any]] = None,
|
|
56
|
+
auto_enable: bool = True,
|
|
57
|
+
**kwargs,
|
|
58
|
+
):
|
|
59
|
+
"""
|
|
60
|
+
Initialize Memori toolkit.
|
|
61
|
+
|
|
62
|
+
Args:
|
|
63
|
+
database_connect: Database connection string (e.g., "sqlite:///memory.db")
|
|
64
|
+
namespace: Namespace for organizing memories (e.g., "agent_v1", "user_session")
|
|
65
|
+
conscious_ingest: Whether to use conscious memory ingestion
|
|
66
|
+
auto_ingest: Whether to automatically ingest conversations into memory
|
|
67
|
+
verbose: Enable verbose logging from Memori
|
|
68
|
+
config: Additional Memori configuration
|
|
69
|
+
auto_enable: Automatically enable the memory system on initialization
|
|
70
|
+
**kwargs: Additional arguments passed to Toolkit base class
|
|
71
|
+
"""
|
|
72
|
+
super().__init__(
|
|
73
|
+
name="memori_tools",
|
|
74
|
+
tools=[
|
|
75
|
+
self.search_memory,
|
|
76
|
+
self.record_conversation,
|
|
77
|
+
self.get_memory_stats,
|
|
78
|
+
],
|
|
79
|
+
**kwargs,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
# Set default database connection if not provided
|
|
83
|
+
if not database_connect:
|
|
84
|
+
sqlite_db = "sqlite:///agno_memori_memory.db"
|
|
85
|
+
log_info(f"No database connection provided, using default SQLite database at {sqlite_db}")
|
|
86
|
+
database_connect = sqlite_db
|
|
87
|
+
|
|
88
|
+
self.database_connect = database_connect
|
|
89
|
+
self.namespace = namespace or "agno_default"
|
|
90
|
+
self.conscious_ingest = conscious_ingest
|
|
91
|
+
self.auto_ingest = auto_ingest
|
|
92
|
+
self.verbose = verbose
|
|
93
|
+
self.config = config or {}
|
|
94
|
+
|
|
95
|
+
try:
|
|
96
|
+
# Initialize Memori memory system
|
|
97
|
+
log_debug(f"Initializing Memori with database: {self.database_connect}")
|
|
98
|
+
self.memory_system = Memori(
|
|
99
|
+
database_connect=self.database_connect,
|
|
100
|
+
conscious_ingest=self.conscious_ingest,
|
|
101
|
+
auto_ingest=self.auto_ingest,
|
|
102
|
+
verbose=self.verbose,
|
|
103
|
+
namespace=self.namespace,
|
|
104
|
+
**self.config,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
# Enable the memory system if auto_enable is True
|
|
108
|
+
if auto_enable:
|
|
109
|
+
self.memory_system.enable()
|
|
110
|
+
log_debug("Memori memory system enabled")
|
|
111
|
+
|
|
112
|
+
# Create the memory tool for internal use
|
|
113
|
+
self._memory_tool = create_memory_tool(self.memory_system)
|
|
114
|
+
|
|
115
|
+
except Exception as e:
|
|
116
|
+
log_error(f"Failed to initialize Memori: {e}")
|
|
117
|
+
raise ConnectionError("Failed to initialize Memori memory system") from e
|
|
118
|
+
|
|
119
|
+
def search_memory(
|
|
120
|
+
self,
|
|
121
|
+
agent: Agent,
|
|
122
|
+
query: str,
|
|
123
|
+
limit: Optional[int] = None,
|
|
124
|
+
) -> str:
|
|
125
|
+
"""
|
|
126
|
+
Search the Agent's memory for past conversations and information.
|
|
127
|
+
|
|
128
|
+
This performs semantic search across all stored memories to find
|
|
129
|
+
relevant information based on the provided query.
|
|
130
|
+
|
|
131
|
+
Args:
|
|
132
|
+
query: What to search for in memory (e.g., "past conversations about AI", "user preferences")
|
|
133
|
+
limit: Maximum number of results to return (optional)
|
|
134
|
+
|
|
135
|
+
Returns:
|
|
136
|
+
str: JSON-encoded search results or error message
|
|
137
|
+
|
|
138
|
+
Example:
|
|
139
|
+
search_memory("user's favorite programming languages")
|
|
140
|
+
search_memory("previous discussions about machine learning")
|
|
141
|
+
"""
|
|
142
|
+
try:
|
|
143
|
+
if not query.strip():
|
|
144
|
+
return json.dumps({"error": "Please provide a search query"})
|
|
145
|
+
|
|
146
|
+
log_debug(f"Searching memory for: {query}")
|
|
147
|
+
|
|
148
|
+
# Execute search using Memori's memory tool
|
|
149
|
+
result = self._memory_tool.execute(query=query.strip())
|
|
150
|
+
|
|
151
|
+
if result:
|
|
152
|
+
# If limit is specified, truncate results
|
|
153
|
+
if limit and isinstance(result, list):
|
|
154
|
+
result = result[:limit]
|
|
155
|
+
|
|
156
|
+
return json.dumps(
|
|
157
|
+
{
|
|
158
|
+
"success": True,
|
|
159
|
+
"query": query,
|
|
160
|
+
"results": result,
|
|
161
|
+
"count": len(result) if isinstance(result, list) else 1,
|
|
162
|
+
}
|
|
163
|
+
)
|
|
164
|
+
else:
|
|
165
|
+
return json.dumps(
|
|
166
|
+
{
|
|
167
|
+
"success": True,
|
|
168
|
+
"query": query,
|
|
169
|
+
"results": [],
|
|
170
|
+
"count": 0,
|
|
171
|
+
"message": "No relevant memories found",
|
|
172
|
+
}
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
except Exception as e:
|
|
176
|
+
log_error(f"Error searching memory: {e}")
|
|
177
|
+
return json.dumps({"success": False, "error": f"Memory search error: {str(e)}"})
|
|
178
|
+
|
|
179
|
+
def record_conversation(self, agent: Agent, content: str) -> str:
|
|
180
|
+
"""
|
|
181
|
+
Add important information or facts to memory.
|
|
182
|
+
|
|
183
|
+
Use this tool to store important information, user preferences, facts, or context that should be remembered
|
|
184
|
+
for future conversations.
|
|
185
|
+
|
|
186
|
+
Args:
|
|
187
|
+
content: The information/facts to store in memory
|
|
188
|
+
|
|
189
|
+
Returns:
|
|
190
|
+
str: Success message or error details
|
|
191
|
+
|
|
192
|
+
Example:
|
|
193
|
+
record_conversation("User prefers Python over JavaScript")
|
|
194
|
+
record_conversation("User is working on an e-commerce project using Django")
|
|
195
|
+
record_conversation("User's name is John and they live in NYC")
|
|
196
|
+
"""
|
|
197
|
+
try:
|
|
198
|
+
if not content.strip():
|
|
199
|
+
return json.dumps({"success": False, "error": "Content cannot be empty"})
|
|
200
|
+
|
|
201
|
+
log_debug(f"Adding conversation: {content}")
|
|
202
|
+
|
|
203
|
+
# Extract the actual AI response from the agent's conversation history
|
|
204
|
+
ai_output = "I've noted this information and will remember it."
|
|
205
|
+
|
|
206
|
+
self.memory_system.record_conversation(user_input=content, ai_output=str(ai_output))
|
|
207
|
+
return json.dumps(
|
|
208
|
+
{
|
|
209
|
+
"success": True,
|
|
210
|
+
"message": "Memory added successfully via conversation recording",
|
|
211
|
+
"content_length": len(content),
|
|
212
|
+
}
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
except Exception as e:
|
|
216
|
+
log_error(f"Error adding memory: {e}")
|
|
217
|
+
return json.dumps({"success": False, "error": f"Failed to add memory: {str(e)}"})
|
|
218
|
+
|
|
219
|
+
def get_memory_stats(
|
|
220
|
+
self,
|
|
221
|
+
agent: Agent,
|
|
222
|
+
) -> str:
|
|
223
|
+
"""
|
|
224
|
+
Get statistics about the memory system.
|
|
225
|
+
|
|
226
|
+
Returns information about the current state of the memory system,
|
|
227
|
+
including total memories, memory distribution by retention type
|
|
228
|
+
(short-term vs long-term), and system configuration.
|
|
229
|
+
|
|
230
|
+
Returns:
|
|
231
|
+
str: JSON-encoded memory statistics
|
|
232
|
+
|
|
233
|
+
Example:
|
|
234
|
+
Returns statistics like:
|
|
235
|
+
{
|
|
236
|
+
"success": true,
|
|
237
|
+
"total_memories": 42,
|
|
238
|
+
"memories_by_retention": {
|
|
239
|
+
"short_term": 5,
|
|
240
|
+
"long_term": 37
|
|
241
|
+
},
|
|
242
|
+
"namespace": "my_agent",
|
|
243
|
+
"conscious_ingest": true,
|
|
244
|
+
"auto_ingest": true,
|
|
245
|
+
"memory_system_enabled": true
|
|
246
|
+
}
|
|
247
|
+
"""
|
|
248
|
+
try:
|
|
249
|
+
log_debug("Retrieving memory statistics")
|
|
250
|
+
|
|
251
|
+
# Base stats about the system configuration
|
|
252
|
+
stats = {
|
|
253
|
+
"success": True,
|
|
254
|
+
"namespace": self.namespace,
|
|
255
|
+
"database_connect": self.database_connect,
|
|
256
|
+
"conscious_ingest": self.conscious_ingest,
|
|
257
|
+
"auto_ingest": self.auto_ingest,
|
|
258
|
+
"verbose": self.verbose,
|
|
259
|
+
"memory_system_enabled": hasattr(self.memory_system, "_enabled") and self.memory_system._enabled,
|
|
260
|
+
}
|
|
261
|
+
|
|
262
|
+
# Get Memori's built-in memory statistics
|
|
263
|
+
try:
|
|
264
|
+
if hasattr(self.memory_system, "get_memory_stats"):
|
|
265
|
+
# Use the get_memory_stats method as shown in the example
|
|
266
|
+
memori_stats = self.memory_system.get_memory_stats()
|
|
267
|
+
|
|
268
|
+
# Add the Memori-specific stats to our response
|
|
269
|
+
if isinstance(memori_stats, dict):
|
|
270
|
+
# Include total memories
|
|
271
|
+
if "total_memories" in memori_stats:
|
|
272
|
+
stats["total_memories"] = memori_stats["total_memories"]
|
|
273
|
+
|
|
274
|
+
# Include memory distribution by retention type
|
|
275
|
+
if "memories_by_retention" in memori_stats:
|
|
276
|
+
stats["memories_by_retention"] = memori_stats["memories_by_retention"]
|
|
277
|
+
|
|
278
|
+
# Also add individual counts for convenience
|
|
279
|
+
retention_info = memori_stats["memories_by_retention"]
|
|
280
|
+
stats["short_term_memories"] = retention_info.get("short_term", 0)
|
|
281
|
+
stats["long_term_memories"] = retention_info.get("long_term", 0)
|
|
282
|
+
|
|
283
|
+
# Include any other available stats
|
|
284
|
+
for key, value in memori_stats.items():
|
|
285
|
+
if key not in stats:
|
|
286
|
+
stats[key] = value
|
|
287
|
+
|
|
288
|
+
log_debug(
|
|
289
|
+
f"Retrieved memory stats: total={stats.get('total_memories', 0)}, "
|
|
290
|
+
f"short_term={stats.get('short_term_memories', 0)}, "
|
|
291
|
+
f"long_term={stats.get('long_term_memories', 0)}"
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
else:
|
|
295
|
+
log_debug("get_memory_stats method not available, providing basic stats only")
|
|
296
|
+
stats["total_memories"] = 0
|
|
297
|
+
stats["memories_by_retention"] = {"short_term": 0, "long_term": 0}
|
|
298
|
+
stats["short_term_memories"] = 0
|
|
299
|
+
stats["long_term_memories"] = 0
|
|
300
|
+
|
|
301
|
+
except Exception as e:
|
|
302
|
+
log_debug(f"Could not retrieve detailed memory stats: {e}")
|
|
303
|
+
# Provide basic stats if detailed stats fail
|
|
304
|
+
stats["total_memories"] = 0
|
|
305
|
+
stats["memories_by_retention"] = {"short_term": 0, "long_term": 0}
|
|
306
|
+
stats["short_term_memories"] = 0
|
|
307
|
+
stats["long_term_memories"] = 0
|
|
308
|
+
stats["stats_warning"] = "Detailed memory statistics not available"
|
|
309
|
+
|
|
310
|
+
return json.dumps(stats)
|
|
311
|
+
|
|
312
|
+
except Exception as e:
|
|
313
|
+
log_error(f"Error getting memory stats: {e}")
|
|
314
|
+
return json.dumps({"success": False, "error": f"Failed to get memory statistics: {str(e)}"})
|
|
315
|
+
|
|
316
|
+
def enable_memory_system(self) -> bool:
|
|
317
|
+
"""Enable the Memori memory system."""
|
|
318
|
+
try:
|
|
319
|
+
self.memory_system.enable()
|
|
320
|
+
log_debug("Memori memory system enabled")
|
|
321
|
+
return True
|
|
322
|
+
except Exception as e:
|
|
323
|
+
log_error(f"Failed to enable memory system: {e}")
|
|
324
|
+
return False
|
|
325
|
+
|
|
326
|
+
def disable_memory_system(self) -> bool:
|
|
327
|
+
"""Disable the Memori memory system."""
|
|
328
|
+
try:
|
|
329
|
+
if hasattr(self.memory_system, "disable"):
|
|
330
|
+
self.memory_system.disable()
|
|
331
|
+
log_debug("Memori memory system disabled")
|
|
332
|
+
return True
|
|
333
|
+
else:
|
|
334
|
+
log_warning("Memory system disable method not available")
|
|
335
|
+
return False
|
|
336
|
+
except Exception as e:
|
|
337
|
+
log_error(f"Failed to disable memory system: {e}")
|
|
338
|
+
return False
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
def create_memori_search_tool(memori_toolkit: MemoriTools):
|
|
342
|
+
"""
|
|
343
|
+
Create a standalone memory search function for use with Agno agents.
|
|
344
|
+
|
|
345
|
+
This is a convenience function that creates a memory search tool similar
|
|
346
|
+
to the pattern shown in the Memori example code.
|
|
347
|
+
|
|
348
|
+
Args:
|
|
349
|
+
memori_toolkit: An initialized MemoriTools instance
|
|
350
|
+
|
|
351
|
+
Returns:
|
|
352
|
+
Callable: A memory search function that can be used as an agent tool
|
|
353
|
+
|
|
354
|
+
Example:
|
|
355
|
+
```python
|
|
356
|
+
memori_tools = MemoriTools(database_connect="sqlite:///memory.db")
|
|
357
|
+
search_tool = create_memori_search_tool(memori_tools)
|
|
358
|
+
|
|
359
|
+
agent = Agent(
|
|
360
|
+
model=OpenAIChat(),
|
|
361
|
+
tools=[search_tool],
|
|
362
|
+
description="Agent with memory search capability"
|
|
363
|
+
)
|
|
364
|
+
```
|
|
365
|
+
"""
|
|
366
|
+
|
|
367
|
+
def search_memory(query: str) -> str:
|
|
368
|
+
"""
|
|
369
|
+
Search the agent's memory for past conversations and information.
|
|
370
|
+
|
|
371
|
+
Args:
|
|
372
|
+
query: What to search for in memory
|
|
373
|
+
|
|
374
|
+
Returns:
|
|
375
|
+
str: Search results or error message
|
|
376
|
+
"""
|
|
377
|
+
try:
|
|
378
|
+
if not query.strip():
|
|
379
|
+
return "Please provide a search query"
|
|
380
|
+
|
|
381
|
+
result = memori_toolkit._memory_tool.execute(query=query.strip())
|
|
382
|
+
return str(result) if result else "No relevant memories found"
|
|
383
|
+
|
|
384
|
+
except Exception as e:
|
|
385
|
+
return f"Memory search error: {str(e)}"
|
|
386
|
+
|
|
387
|
+
return search_memory
|