agentrun-mem0ai 0.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agentrun_mem0/__init__.py +6 -0
- agentrun_mem0/client/__init__.py +0 -0
- agentrun_mem0/client/main.py +1747 -0
- agentrun_mem0/client/project.py +931 -0
- agentrun_mem0/client/utils.py +115 -0
- agentrun_mem0/configs/__init__.py +0 -0
- agentrun_mem0/configs/base.py +90 -0
- agentrun_mem0/configs/embeddings/__init__.py +0 -0
- agentrun_mem0/configs/embeddings/base.py +110 -0
- agentrun_mem0/configs/enums.py +7 -0
- agentrun_mem0/configs/llms/__init__.py +0 -0
- agentrun_mem0/configs/llms/anthropic.py +56 -0
- agentrun_mem0/configs/llms/aws_bedrock.py +192 -0
- agentrun_mem0/configs/llms/azure.py +57 -0
- agentrun_mem0/configs/llms/base.py +62 -0
- agentrun_mem0/configs/llms/deepseek.py +56 -0
- agentrun_mem0/configs/llms/lmstudio.py +59 -0
- agentrun_mem0/configs/llms/ollama.py +56 -0
- agentrun_mem0/configs/llms/openai.py +79 -0
- agentrun_mem0/configs/llms/vllm.py +56 -0
- agentrun_mem0/configs/prompts.py +459 -0
- agentrun_mem0/configs/rerankers/__init__.py +0 -0
- agentrun_mem0/configs/rerankers/base.py +17 -0
- agentrun_mem0/configs/rerankers/cohere.py +15 -0
- agentrun_mem0/configs/rerankers/config.py +12 -0
- agentrun_mem0/configs/rerankers/huggingface.py +17 -0
- agentrun_mem0/configs/rerankers/llm.py +48 -0
- agentrun_mem0/configs/rerankers/sentence_transformer.py +16 -0
- agentrun_mem0/configs/rerankers/zero_entropy.py +28 -0
- agentrun_mem0/configs/vector_stores/__init__.py +0 -0
- agentrun_mem0/configs/vector_stores/alibabacloud_mysql.py +64 -0
- agentrun_mem0/configs/vector_stores/aliyun_tablestore.py +32 -0
- agentrun_mem0/configs/vector_stores/azure_ai_search.py +57 -0
- agentrun_mem0/configs/vector_stores/azure_mysql.py +84 -0
- agentrun_mem0/configs/vector_stores/baidu.py +27 -0
- agentrun_mem0/configs/vector_stores/chroma.py +58 -0
- agentrun_mem0/configs/vector_stores/databricks.py +61 -0
- agentrun_mem0/configs/vector_stores/elasticsearch.py +65 -0
- agentrun_mem0/configs/vector_stores/faiss.py +37 -0
- agentrun_mem0/configs/vector_stores/langchain.py +30 -0
- agentrun_mem0/configs/vector_stores/milvus.py +42 -0
- agentrun_mem0/configs/vector_stores/mongodb.py +25 -0
- agentrun_mem0/configs/vector_stores/neptune.py +27 -0
- agentrun_mem0/configs/vector_stores/opensearch.py +41 -0
- agentrun_mem0/configs/vector_stores/pgvector.py +52 -0
- agentrun_mem0/configs/vector_stores/pinecone.py +55 -0
- agentrun_mem0/configs/vector_stores/qdrant.py +47 -0
- agentrun_mem0/configs/vector_stores/redis.py +24 -0
- agentrun_mem0/configs/vector_stores/s3_vectors.py +28 -0
- agentrun_mem0/configs/vector_stores/supabase.py +44 -0
- agentrun_mem0/configs/vector_stores/upstash_vector.py +34 -0
- agentrun_mem0/configs/vector_stores/valkey.py +15 -0
- agentrun_mem0/configs/vector_stores/vertex_ai_vector_search.py +28 -0
- agentrun_mem0/configs/vector_stores/weaviate.py +41 -0
- agentrun_mem0/embeddings/__init__.py +0 -0
- agentrun_mem0/embeddings/aws_bedrock.py +100 -0
- agentrun_mem0/embeddings/azure_openai.py +55 -0
- agentrun_mem0/embeddings/base.py +31 -0
- agentrun_mem0/embeddings/configs.py +30 -0
- agentrun_mem0/embeddings/gemini.py +39 -0
- agentrun_mem0/embeddings/huggingface.py +44 -0
- agentrun_mem0/embeddings/langchain.py +35 -0
- agentrun_mem0/embeddings/lmstudio.py +29 -0
- agentrun_mem0/embeddings/mock.py +11 -0
- agentrun_mem0/embeddings/ollama.py +53 -0
- agentrun_mem0/embeddings/openai.py +49 -0
- agentrun_mem0/embeddings/together.py +31 -0
- agentrun_mem0/embeddings/vertexai.py +64 -0
- agentrun_mem0/exceptions.py +503 -0
- agentrun_mem0/graphs/__init__.py +0 -0
- agentrun_mem0/graphs/configs.py +105 -0
- agentrun_mem0/graphs/neptune/__init__.py +0 -0
- agentrun_mem0/graphs/neptune/base.py +497 -0
- agentrun_mem0/graphs/neptune/neptunedb.py +511 -0
- agentrun_mem0/graphs/neptune/neptunegraph.py +474 -0
- agentrun_mem0/graphs/tools.py +371 -0
- agentrun_mem0/graphs/utils.py +97 -0
- agentrun_mem0/llms/__init__.py +0 -0
- agentrun_mem0/llms/anthropic.py +87 -0
- agentrun_mem0/llms/aws_bedrock.py +665 -0
- agentrun_mem0/llms/azure_openai.py +141 -0
- agentrun_mem0/llms/azure_openai_structured.py +91 -0
- agentrun_mem0/llms/base.py +131 -0
- agentrun_mem0/llms/configs.py +34 -0
- agentrun_mem0/llms/deepseek.py +107 -0
- agentrun_mem0/llms/gemini.py +201 -0
- agentrun_mem0/llms/groq.py +88 -0
- agentrun_mem0/llms/langchain.py +94 -0
- agentrun_mem0/llms/litellm.py +87 -0
- agentrun_mem0/llms/lmstudio.py +114 -0
- agentrun_mem0/llms/ollama.py +117 -0
- agentrun_mem0/llms/openai.py +147 -0
- agentrun_mem0/llms/openai_structured.py +52 -0
- agentrun_mem0/llms/sarvam.py +89 -0
- agentrun_mem0/llms/together.py +88 -0
- agentrun_mem0/llms/vllm.py +107 -0
- agentrun_mem0/llms/xai.py +52 -0
- agentrun_mem0/memory/__init__.py +0 -0
- agentrun_mem0/memory/base.py +63 -0
- agentrun_mem0/memory/graph_memory.py +698 -0
- agentrun_mem0/memory/kuzu_memory.py +713 -0
- agentrun_mem0/memory/main.py +2229 -0
- agentrun_mem0/memory/memgraph_memory.py +689 -0
- agentrun_mem0/memory/setup.py +56 -0
- agentrun_mem0/memory/storage.py +218 -0
- agentrun_mem0/memory/telemetry.py +90 -0
- agentrun_mem0/memory/utils.py +208 -0
- agentrun_mem0/proxy/__init__.py +0 -0
- agentrun_mem0/proxy/main.py +189 -0
- agentrun_mem0/reranker/__init__.py +9 -0
- agentrun_mem0/reranker/base.py +20 -0
- agentrun_mem0/reranker/cohere_reranker.py +85 -0
- agentrun_mem0/reranker/huggingface_reranker.py +147 -0
- agentrun_mem0/reranker/llm_reranker.py +142 -0
- agentrun_mem0/reranker/sentence_transformer_reranker.py +107 -0
- agentrun_mem0/reranker/zero_entropy_reranker.py +96 -0
- agentrun_mem0/utils/factory.py +283 -0
- agentrun_mem0/utils/gcp_auth.py +167 -0
- agentrun_mem0/vector_stores/__init__.py +0 -0
- agentrun_mem0/vector_stores/alibabacloud_mysql.py +547 -0
- agentrun_mem0/vector_stores/aliyun_tablestore.py +252 -0
- agentrun_mem0/vector_stores/azure_ai_search.py +396 -0
- agentrun_mem0/vector_stores/azure_mysql.py +463 -0
- agentrun_mem0/vector_stores/baidu.py +368 -0
- agentrun_mem0/vector_stores/base.py +58 -0
- agentrun_mem0/vector_stores/chroma.py +332 -0
- agentrun_mem0/vector_stores/configs.py +67 -0
- agentrun_mem0/vector_stores/databricks.py +761 -0
- agentrun_mem0/vector_stores/elasticsearch.py +237 -0
- agentrun_mem0/vector_stores/faiss.py +479 -0
- agentrun_mem0/vector_stores/langchain.py +180 -0
- agentrun_mem0/vector_stores/milvus.py +250 -0
- agentrun_mem0/vector_stores/mongodb.py +310 -0
- agentrun_mem0/vector_stores/neptune_analytics.py +467 -0
- agentrun_mem0/vector_stores/opensearch.py +292 -0
- agentrun_mem0/vector_stores/pgvector.py +404 -0
- agentrun_mem0/vector_stores/pinecone.py +382 -0
- agentrun_mem0/vector_stores/qdrant.py +270 -0
- agentrun_mem0/vector_stores/redis.py +295 -0
- agentrun_mem0/vector_stores/s3_vectors.py +176 -0
- agentrun_mem0/vector_stores/supabase.py +237 -0
- agentrun_mem0/vector_stores/upstash_vector.py +293 -0
- agentrun_mem0/vector_stores/valkey.py +824 -0
- agentrun_mem0/vector_stores/vertex_ai_vector_search.py +635 -0
- agentrun_mem0/vector_stores/weaviate.py +343 -0
- agentrun_mem0ai-0.0.11.data/data/README.md +205 -0
- agentrun_mem0ai-0.0.11.dist-info/METADATA +277 -0
- agentrun_mem0ai-0.0.11.dist-info/RECORD +150 -0
- agentrun_mem0ai-0.0.11.dist-info/WHEEL +4 -0
- agentrun_mem0ai-0.0.11.dist-info/licenses/LICENSE +201 -0
|
@@ -0,0 +1,2229 @@
|
|
|
1
|
+
import asyncio
|
|
2
|
+
import concurrent
|
|
3
|
+
import gc
|
|
4
|
+
import hashlib
|
|
5
|
+
import json
|
|
6
|
+
import logging
|
|
7
|
+
import os
|
|
8
|
+
import uuid
|
|
9
|
+
import warnings
|
|
10
|
+
from copy import deepcopy
|
|
11
|
+
from datetime import datetime
|
|
12
|
+
from typing import Any, Dict, Optional
|
|
13
|
+
|
|
14
|
+
import pytz
|
|
15
|
+
from pydantic import ValidationError
|
|
16
|
+
|
|
17
|
+
from agentrun_mem0.configs.base import MemoryConfig, MemoryItem
|
|
18
|
+
from agentrun_mem0.configs.enums import MemoryType
|
|
19
|
+
from agentrun_mem0.configs.prompts import (
|
|
20
|
+
PROCEDURAL_MEMORY_SYSTEM_PROMPT,
|
|
21
|
+
get_update_memory_messages,
|
|
22
|
+
)
|
|
23
|
+
from agentrun_mem0.exceptions import ValidationError as Mem0ValidationError
|
|
24
|
+
from agentrun_mem0.memory.base import MemoryBase
|
|
25
|
+
from agentrun_mem0.memory.setup import mem0_dir, setup_config
|
|
26
|
+
from agentrun_mem0.memory.storage import SQLiteManager
|
|
27
|
+
from agentrun_mem0.memory.telemetry import capture_event
|
|
28
|
+
from agentrun_mem0.memory.utils import (
|
|
29
|
+
extract_json,
|
|
30
|
+
get_fact_retrieval_messages,
|
|
31
|
+
parse_messages,
|
|
32
|
+
parse_vision_messages,
|
|
33
|
+
process_telemetry_filters,
|
|
34
|
+
remove_code_blocks,
|
|
35
|
+
)
|
|
36
|
+
from agentrun_mem0.utils.factory import (
|
|
37
|
+
EmbedderFactory,
|
|
38
|
+
GraphStoreFactory,
|
|
39
|
+
LlmFactory,
|
|
40
|
+
VectorStoreFactory,
|
|
41
|
+
RerankerFactory,
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
# Suppress SWIG deprecation warnings globally
|
|
45
|
+
warnings.filterwarnings("ignore", category=DeprecationWarning, message=".*SwigPy.*")
|
|
46
|
+
warnings.filterwarnings("ignore", category=DeprecationWarning, message=".*swigvarlink.*")
|
|
47
|
+
|
|
48
|
+
# Initialize logger early for util functions
|
|
49
|
+
logger = logging.getLogger(__name__)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def _safe_deepcopy_config(config):
|
|
53
|
+
"""Safely deepcopy config, falling back to JSON serialization for non-serializable objects."""
|
|
54
|
+
try:
|
|
55
|
+
return deepcopy(config)
|
|
56
|
+
except Exception as e:
|
|
57
|
+
logger.debug(f"Deepcopy failed, using JSON serialization: {e}")
|
|
58
|
+
|
|
59
|
+
config_class = type(config)
|
|
60
|
+
|
|
61
|
+
if hasattr(config, "model_dump"):
|
|
62
|
+
try:
|
|
63
|
+
clone_dict = config.model_dump(mode="json")
|
|
64
|
+
except Exception:
|
|
65
|
+
clone_dict = {k: v for k, v in config.__dict__.items()}
|
|
66
|
+
elif hasattr(config, "__dataclass_fields__"):
|
|
67
|
+
from dataclasses import asdict
|
|
68
|
+
clone_dict = asdict(config)
|
|
69
|
+
else:
|
|
70
|
+
clone_dict = {k: v for k, v in config.__dict__.items()}
|
|
71
|
+
|
|
72
|
+
sensitive_tokens = ("auth", "credential", "password", "token", "secret", "key", "connection_class")
|
|
73
|
+
for field_name in list(clone_dict.keys()):
|
|
74
|
+
if any(token in field_name.lower() for token in sensitive_tokens):
|
|
75
|
+
clone_dict[field_name] = None
|
|
76
|
+
|
|
77
|
+
try:
|
|
78
|
+
return config_class(**clone_dict)
|
|
79
|
+
except Exception as reconstruction_error:
|
|
80
|
+
logger.warning(
|
|
81
|
+
f"Failed to reconstruct config: {reconstruction_error}. "
|
|
82
|
+
f"Telemetry may be affected."
|
|
83
|
+
)
|
|
84
|
+
raise
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def _build_filters_and_metadata(
|
|
88
|
+
*, # Enforce keyword-only arguments
|
|
89
|
+
user_id: Optional[str] = None,
|
|
90
|
+
agent_id: Optional[str] = None,
|
|
91
|
+
run_id: Optional[str] = None,
|
|
92
|
+
actor_id: Optional[str] = None, # For query-time filtering
|
|
93
|
+
input_metadata: Optional[Dict[str, Any]] = None,
|
|
94
|
+
input_filters: Optional[Dict[str, Any]] = None,
|
|
95
|
+
) -> tuple[Dict[str, Any], Dict[str, Any]]:
|
|
96
|
+
"""
|
|
97
|
+
Constructs metadata for storage and filters for querying based on session and actor identifiers.
|
|
98
|
+
|
|
99
|
+
This helper supports multiple session identifiers (`user_id`, `agent_id`, and/or `run_id`)
|
|
100
|
+
for flexible session scoping and optionally narrows queries to a specific `actor_id`. It returns two dicts:
|
|
101
|
+
|
|
102
|
+
1. `base_metadata_template`: Used as a template for metadata when storing new memories.
|
|
103
|
+
It includes all provided session identifier(s) and any `input_metadata`.
|
|
104
|
+
2. `effective_query_filters`: Used for querying existing memories. It includes all
|
|
105
|
+
provided session identifier(s), any `input_filters`, and a resolved actor
|
|
106
|
+
identifier for targeted filtering if specified by any actor-related inputs.
|
|
107
|
+
|
|
108
|
+
Actor filtering precedence: explicit `actor_id` arg → `filters["actor_id"]`
|
|
109
|
+
This resolved actor ID is used for querying but is not added to `base_metadata_template`,
|
|
110
|
+
as the actor for storage is typically derived from message content at a later stage.
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
user_id (Optional[str]): User identifier, for session scoping.
|
|
114
|
+
agent_id (Optional[str]): Agent identifier, for session scoping.
|
|
115
|
+
run_id (Optional[str]): Run identifier, for session scoping.
|
|
116
|
+
actor_id (Optional[str]): Explicit actor identifier, used as a potential source for
|
|
117
|
+
actor-specific filtering. See actor resolution precedence in the main description.
|
|
118
|
+
input_metadata (Optional[Dict[str, Any]]): Base dictionary to be augmented with
|
|
119
|
+
session identifiers for the storage metadata template. Defaults to an empty dict.
|
|
120
|
+
input_filters (Optional[Dict[str, Any]]): Base dictionary to be augmented with
|
|
121
|
+
session and actor identifiers for query filters. Defaults to an empty dict.
|
|
122
|
+
|
|
123
|
+
Returns:
|
|
124
|
+
tuple[Dict[str, Any], Dict[str, Any]]: A tuple containing:
|
|
125
|
+
- base_metadata_template (Dict[str, Any]): Metadata template for storing memories,
|
|
126
|
+
scoped to the provided session(s).
|
|
127
|
+
- effective_query_filters (Dict[str, Any]): Filters for querying memories,
|
|
128
|
+
scoped to the provided session(s) and potentially a resolved actor.
|
|
129
|
+
"""
|
|
130
|
+
|
|
131
|
+
base_metadata_template = deepcopy(input_metadata) if input_metadata else {}
|
|
132
|
+
effective_query_filters = deepcopy(input_filters) if input_filters else {}
|
|
133
|
+
|
|
134
|
+
# ---------- add all provided session ids ----------
|
|
135
|
+
session_ids_provided = []
|
|
136
|
+
|
|
137
|
+
if user_id:
|
|
138
|
+
base_metadata_template["user_id"] = user_id
|
|
139
|
+
effective_query_filters["user_id"] = user_id
|
|
140
|
+
session_ids_provided.append("user_id")
|
|
141
|
+
|
|
142
|
+
if agent_id:
|
|
143
|
+
base_metadata_template["agent_id"] = agent_id
|
|
144
|
+
effective_query_filters["agent_id"] = agent_id
|
|
145
|
+
session_ids_provided.append("agent_id")
|
|
146
|
+
|
|
147
|
+
if run_id:
|
|
148
|
+
base_metadata_template["run_id"] = run_id
|
|
149
|
+
effective_query_filters["run_id"] = run_id
|
|
150
|
+
session_ids_provided.append("run_id")
|
|
151
|
+
|
|
152
|
+
if not session_ids_provided:
|
|
153
|
+
raise Mem0ValidationError(
|
|
154
|
+
message="At least one of 'user_id', 'agent_id', or 'run_id' must be provided.",
|
|
155
|
+
error_code="VALIDATION_001",
|
|
156
|
+
details={"provided_ids": {"user_id": user_id, "agent_id": agent_id, "run_id": run_id}},
|
|
157
|
+
suggestion="Please provide at least one identifier to scope the memory operation."
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
# ---------- optional actor filter ----------
|
|
161
|
+
resolved_actor_id = actor_id or effective_query_filters.get("actor_id")
|
|
162
|
+
if resolved_actor_id:
|
|
163
|
+
effective_query_filters["actor_id"] = resolved_actor_id
|
|
164
|
+
|
|
165
|
+
return base_metadata_template, effective_query_filters
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
setup_config()
|
|
169
|
+
logger = logging.getLogger(__name__)
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
class Memory(MemoryBase):
|
|
173
|
+
def __init__(self, config: MemoryConfig = MemoryConfig()):
|
|
174
|
+
self.config = config
|
|
175
|
+
|
|
176
|
+
self.custom_fact_extraction_prompt = self.config.custom_fact_extraction_prompt
|
|
177
|
+
self.custom_update_memory_prompt = self.config.custom_update_memory_prompt
|
|
178
|
+
self.embedding_model = EmbedderFactory.create(
|
|
179
|
+
self.config.embedder.provider,
|
|
180
|
+
self.config.embedder.config,
|
|
181
|
+
self.config.vector_store.config,
|
|
182
|
+
)
|
|
183
|
+
self.vector_store = VectorStoreFactory.create(
|
|
184
|
+
self.config.vector_store.provider, self.config.vector_store.config
|
|
185
|
+
)
|
|
186
|
+
self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
|
|
187
|
+
self.db = SQLiteManager(self.config.history_db_path)
|
|
188
|
+
self.collection_name = self.config.vector_store.config.collection_name
|
|
189
|
+
self.api_version = self.config.version
|
|
190
|
+
|
|
191
|
+
# Initialize reranker if configured
|
|
192
|
+
self.reranker = None
|
|
193
|
+
if config.reranker:
|
|
194
|
+
self.reranker = RerankerFactory.create(
|
|
195
|
+
config.reranker.provider,
|
|
196
|
+
config.reranker.config
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
self.enable_graph = False
|
|
200
|
+
|
|
201
|
+
if self.config.graph_store.config:
|
|
202
|
+
provider = self.config.graph_store.provider
|
|
203
|
+
self.graph = GraphStoreFactory.create(provider, self.config)
|
|
204
|
+
self.enable_graph = True
|
|
205
|
+
else:
|
|
206
|
+
self.graph = None
|
|
207
|
+
# Create telemetry config manually to avoid deepcopy issues with thread locks
|
|
208
|
+
telemetry_config_dict = {}
|
|
209
|
+
if hasattr(self.config.vector_store.config, 'model_dump'):
|
|
210
|
+
# For pydantic models
|
|
211
|
+
telemetry_config_dict = self.config.vector_store.config.model_dump()
|
|
212
|
+
else:
|
|
213
|
+
# For other objects, manually copy common attributes
|
|
214
|
+
for attr in ['host', 'port', 'path', 'api_key', 'index_name', 'dimension', 'metric']:
|
|
215
|
+
if hasattr(self.config.vector_store.config, attr):
|
|
216
|
+
telemetry_config_dict[attr] = getattr(self.config.vector_store.config, attr)
|
|
217
|
+
|
|
218
|
+
# Override collection name for telemetry
|
|
219
|
+
telemetry_config_dict['collection_name'] = "mem0migrations"
|
|
220
|
+
|
|
221
|
+
# Set path for file-based vector stores
|
|
222
|
+
telemetry_config = _safe_deepcopy_config(self.config.vector_store.config)
|
|
223
|
+
if self.config.vector_store.provider in ["faiss", "qdrant"]:
|
|
224
|
+
provider_path = f"migrations_{self.config.vector_store.provider}"
|
|
225
|
+
telemetry_config_dict['path'] = os.path.join(mem0_dir, provider_path)
|
|
226
|
+
os.makedirs(telemetry_config_dict['path'], exist_ok=True)
|
|
227
|
+
|
|
228
|
+
# Create the config object using the same class as the original
|
|
229
|
+
telemetry_config = self.config.vector_store.config.__class__(**telemetry_config_dict)
|
|
230
|
+
self._telemetry_vector_store = VectorStoreFactory.create(
|
|
231
|
+
self.config.vector_store.provider, telemetry_config
|
|
232
|
+
)
|
|
233
|
+
capture_event("mem0.init", self, {"sync_type": "sync"})
|
|
234
|
+
|
|
235
|
+
@classmethod
|
|
236
|
+
def from_config(cls, config_dict: Dict[str, Any]):
|
|
237
|
+
try:
|
|
238
|
+
config = cls._process_config(config_dict)
|
|
239
|
+
config = MemoryConfig(**config_dict)
|
|
240
|
+
except ValidationError as e:
|
|
241
|
+
logger.error(f"Configuration validation error: {e}")
|
|
242
|
+
raise
|
|
243
|
+
return cls(config)
|
|
244
|
+
|
|
245
|
+
@staticmethod
|
|
246
|
+
def _process_config(config_dict: Dict[str, Any]) -> Dict[str, Any]:
|
|
247
|
+
if "graph_store" in config_dict:
|
|
248
|
+
if "vector_store" not in config_dict and "embedder" in config_dict:
|
|
249
|
+
config_dict["vector_store"] = {}
|
|
250
|
+
config_dict["vector_store"]["config"] = {}
|
|
251
|
+
config_dict["vector_store"]["config"]["embedding_model_dims"] = config_dict["embedder"]["config"][
|
|
252
|
+
"embedding_dims"
|
|
253
|
+
]
|
|
254
|
+
try:
|
|
255
|
+
return config_dict
|
|
256
|
+
except ValidationError as e:
|
|
257
|
+
logger.error(f"Configuration validation error: {e}")
|
|
258
|
+
raise
|
|
259
|
+
|
|
260
|
+
def _should_use_agent_memory_extraction(self, messages, metadata):
|
|
261
|
+
"""Determine whether to use agent memory extraction based on the logic:
|
|
262
|
+
- If agent_id is present and messages contain assistant role -> True
|
|
263
|
+
- Otherwise -> False
|
|
264
|
+
|
|
265
|
+
Args:
|
|
266
|
+
messages: List of message dictionaries
|
|
267
|
+
metadata: Metadata containing user_id, agent_id, etc.
|
|
268
|
+
|
|
269
|
+
Returns:
|
|
270
|
+
bool: True if should use agent memory extraction, False for user memory extraction
|
|
271
|
+
"""
|
|
272
|
+
# Check if agent_id is present in metadata
|
|
273
|
+
has_agent_id = metadata.get("agent_id") is not None
|
|
274
|
+
|
|
275
|
+
# Check if there are assistant role messages
|
|
276
|
+
has_assistant_messages = any(msg.get("role") == "assistant" for msg in messages)
|
|
277
|
+
|
|
278
|
+
# Use agent memory extraction if agent_id is present and there are assistant messages
|
|
279
|
+
return has_agent_id and has_assistant_messages
|
|
280
|
+
|
|
281
|
+
def add(
|
|
282
|
+
self,
|
|
283
|
+
messages,
|
|
284
|
+
*,
|
|
285
|
+
user_id: Optional[str] = None,
|
|
286
|
+
agent_id: Optional[str] = None,
|
|
287
|
+
run_id: Optional[str] = None,
|
|
288
|
+
metadata: Optional[Dict[str, Any]] = None,
|
|
289
|
+
infer: bool = True,
|
|
290
|
+
memory_type: Optional[str] = None,
|
|
291
|
+
prompt: Optional[str] = None,
|
|
292
|
+
):
|
|
293
|
+
"""
|
|
294
|
+
Create a new memory.
|
|
295
|
+
|
|
296
|
+
Adds new memories scoped to a single session id (e.g. `user_id`, `agent_id`, or `run_id`). One of those ids is required.
|
|
297
|
+
|
|
298
|
+
Args:
|
|
299
|
+
messages (str or List[Dict[str, str]]): The message content or list of messages
|
|
300
|
+
(e.g., `[{"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi"}]`)
|
|
301
|
+
to be processed and stored.
|
|
302
|
+
user_id (str, optional): ID of the user creating the memory. Defaults to None.
|
|
303
|
+
agent_id (str, optional): ID of the agent creating the memory. Defaults to None.
|
|
304
|
+
run_id (str, optional): ID of the run creating the memory. Defaults to None.
|
|
305
|
+
metadata (dict, optional): Metadata to store with the memory. Defaults to None.
|
|
306
|
+
infer (bool, optional): If True (default), an LLM is used to extract key facts from
|
|
307
|
+
'messages' and decide whether to add, update, or delete related memories.
|
|
308
|
+
If False, 'messages' are added as raw memories directly.
|
|
309
|
+
memory_type (str, optional): Specifies the type of memory. Currently, only
|
|
310
|
+
`MemoryType.PROCEDURAL.value` ("procedural_memory") is explicitly handled for
|
|
311
|
+
creating procedural memories (typically requires 'agent_id'). Otherwise, memories
|
|
312
|
+
are treated as general conversational/factual memories.memory_type (str, optional): Type of memory to create. Defaults to None. By default, it creates the short term memories and long term (semantic and episodic) memories. Pass "procedural_memory" to create procedural memories.
|
|
313
|
+
prompt (str, optional): Prompt to use for the memory creation. Defaults to None.
|
|
314
|
+
|
|
315
|
+
|
|
316
|
+
Returns:
|
|
317
|
+
dict: A dictionary containing the result of the memory addition operation, typically
|
|
318
|
+
including a list of memory items affected (added, updated) under a "results" key,
|
|
319
|
+
and potentially "relations" if graph store is enabled.
|
|
320
|
+
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", "event": "ADD"}]}`
|
|
321
|
+
|
|
322
|
+
Raises:
|
|
323
|
+
Mem0ValidationError: If input validation fails (invalid memory_type, messages format, etc.).
|
|
324
|
+
VectorStoreError: If vector store operations fail.
|
|
325
|
+
GraphStoreError: If graph store operations fail.
|
|
326
|
+
EmbeddingError: If embedding generation fails.
|
|
327
|
+
LLMError: If LLM operations fail.
|
|
328
|
+
DatabaseError: If database operations fail.
|
|
329
|
+
"""
|
|
330
|
+
|
|
331
|
+
processed_metadata, effective_filters = _build_filters_and_metadata(
|
|
332
|
+
user_id=user_id,
|
|
333
|
+
agent_id=agent_id,
|
|
334
|
+
run_id=run_id,
|
|
335
|
+
input_metadata=metadata,
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
if memory_type is not None and memory_type != MemoryType.PROCEDURAL.value:
|
|
339
|
+
raise Mem0ValidationError(
|
|
340
|
+
message=f"Invalid 'memory_type'. Please pass {MemoryType.PROCEDURAL.value} to create procedural memories.",
|
|
341
|
+
error_code="VALIDATION_002",
|
|
342
|
+
details={"provided_type": memory_type, "valid_type": MemoryType.PROCEDURAL.value},
|
|
343
|
+
suggestion=f"Use '{MemoryType.PROCEDURAL.value}' to create procedural memories."
|
|
344
|
+
)
|
|
345
|
+
|
|
346
|
+
if isinstance(messages, str):
|
|
347
|
+
messages = [{"role": "user", "content": messages}]
|
|
348
|
+
|
|
349
|
+
elif isinstance(messages, dict):
|
|
350
|
+
messages = [messages]
|
|
351
|
+
|
|
352
|
+
elif not isinstance(messages, list):
|
|
353
|
+
raise Mem0ValidationError(
|
|
354
|
+
message="messages must be str, dict, or list[dict]",
|
|
355
|
+
error_code="VALIDATION_003",
|
|
356
|
+
details={"provided_type": type(messages).__name__, "valid_types": ["str", "dict", "list[dict]"]},
|
|
357
|
+
suggestion="Convert your input to a string, dictionary, or list of dictionaries."
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
if agent_id is not None and memory_type == MemoryType.PROCEDURAL.value:
|
|
361
|
+
results = self._create_procedural_memory(messages, metadata=processed_metadata, prompt=prompt)
|
|
362
|
+
return results
|
|
363
|
+
|
|
364
|
+
if self.config.llm.config.get("enable_vision"):
|
|
365
|
+
messages = parse_vision_messages(messages, self.llm, self.config.llm.config.get("vision_details"))
|
|
366
|
+
else:
|
|
367
|
+
messages = parse_vision_messages(messages)
|
|
368
|
+
|
|
369
|
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
370
|
+
future1 = executor.submit(self._add_to_vector_store, messages, processed_metadata, effective_filters, infer)
|
|
371
|
+
future2 = executor.submit(self._add_to_graph, messages, effective_filters)
|
|
372
|
+
|
|
373
|
+
concurrent.futures.wait([future1, future2])
|
|
374
|
+
|
|
375
|
+
vector_store_result = future1.result()
|
|
376
|
+
graph_result = future2.result()
|
|
377
|
+
|
|
378
|
+
if self.enable_graph:
|
|
379
|
+
return {
|
|
380
|
+
"results": vector_store_result,
|
|
381
|
+
"relations": graph_result,
|
|
382
|
+
}
|
|
383
|
+
|
|
384
|
+
return {"results": vector_store_result}
|
|
385
|
+
|
|
386
|
+
def _add_to_vector_store(self, messages, metadata, filters, infer):
|
|
387
|
+
if not infer:
|
|
388
|
+
returned_memories = []
|
|
389
|
+
for message_dict in messages:
|
|
390
|
+
if (
|
|
391
|
+
not isinstance(message_dict, dict)
|
|
392
|
+
or message_dict.get("role") is None
|
|
393
|
+
or message_dict.get("content") is None
|
|
394
|
+
):
|
|
395
|
+
logger.warning(f"Skipping invalid message format: {message_dict}")
|
|
396
|
+
continue
|
|
397
|
+
|
|
398
|
+
if message_dict["role"] == "system":
|
|
399
|
+
continue
|
|
400
|
+
|
|
401
|
+
per_msg_meta = deepcopy(metadata)
|
|
402
|
+
per_msg_meta["role"] = message_dict["role"]
|
|
403
|
+
|
|
404
|
+
actor_name = message_dict.get("name")
|
|
405
|
+
if actor_name:
|
|
406
|
+
per_msg_meta["actor_id"] = actor_name
|
|
407
|
+
|
|
408
|
+
msg_content = message_dict["content"]
|
|
409
|
+
msg_embeddings = self.embedding_model.embed(msg_content, "add")
|
|
410
|
+
mem_id = self._create_memory(msg_content, msg_embeddings, per_msg_meta)
|
|
411
|
+
|
|
412
|
+
returned_memories.append(
|
|
413
|
+
{
|
|
414
|
+
"id": mem_id,
|
|
415
|
+
"memory": msg_content,
|
|
416
|
+
"event": "ADD",
|
|
417
|
+
"actor_id": actor_name if actor_name else None,
|
|
418
|
+
"role": message_dict["role"],
|
|
419
|
+
}
|
|
420
|
+
)
|
|
421
|
+
return returned_memories
|
|
422
|
+
|
|
423
|
+
parsed_messages = parse_messages(messages)
|
|
424
|
+
|
|
425
|
+
if self.config.custom_fact_extraction_prompt:
|
|
426
|
+
system_prompt = self.config.custom_fact_extraction_prompt
|
|
427
|
+
user_prompt = f"Input:\n{parsed_messages}"
|
|
428
|
+
else:
|
|
429
|
+
# Determine if this should use agent memory extraction based on agent_id presence
|
|
430
|
+
# and role types in messages
|
|
431
|
+
is_agent_memory = self._should_use_agent_memory_extraction(messages, metadata)
|
|
432
|
+
system_prompt, user_prompt = get_fact_retrieval_messages(parsed_messages, is_agent_memory)
|
|
433
|
+
|
|
434
|
+
response = self.llm.generate_response(
|
|
435
|
+
messages=[
|
|
436
|
+
{"role": "system", "content": system_prompt},
|
|
437
|
+
{"role": "user", "content": user_prompt},
|
|
438
|
+
],
|
|
439
|
+
response_format={"type": "json_object"},
|
|
440
|
+
)
|
|
441
|
+
|
|
442
|
+
try:
|
|
443
|
+
response = remove_code_blocks(response)
|
|
444
|
+
if not response.strip():
|
|
445
|
+
new_retrieved_facts = []
|
|
446
|
+
else:
|
|
447
|
+
try:
|
|
448
|
+
# First try direct JSON parsing
|
|
449
|
+
new_retrieved_facts = json.loads(response)["facts"]
|
|
450
|
+
except json.JSONDecodeError:
|
|
451
|
+
# Try extracting JSON from response using built-in function
|
|
452
|
+
extracted_json = extract_json(response)
|
|
453
|
+
new_retrieved_facts = json.loads(extracted_json)["facts"]
|
|
454
|
+
except Exception as e:
|
|
455
|
+
logger.error(f"Error in new_retrieved_facts: {e}")
|
|
456
|
+
new_retrieved_facts = []
|
|
457
|
+
|
|
458
|
+
if not new_retrieved_facts:
|
|
459
|
+
logger.debug("No new facts retrieved from input. Skipping memory update LLM call.")
|
|
460
|
+
|
|
461
|
+
retrieved_old_memory = []
|
|
462
|
+
new_message_embeddings = {}
|
|
463
|
+
# Search for existing memories using the provided session identifiers
|
|
464
|
+
# Use all available session identifiers for accurate memory retrieval
|
|
465
|
+
search_filters = {}
|
|
466
|
+
if filters.get("user_id"):
|
|
467
|
+
search_filters["user_id"] = filters["user_id"]
|
|
468
|
+
if filters.get("agent_id"):
|
|
469
|
+
search_filters["agent_id"] = filters["agent_id"]
|
|
470
|
+
if filters.get("run_id"):
|
|
471
|
+
search_filters["run_id"] = filters["run_id"]
|
|
472
|
+
for new_mem in new_retrieved_facts:
|
|
473
|
+
messages_embeddings = self.embedding_model.embed(new_mem, "add")
|
|
474
|
+
new_message_embeddings[new_mem] = messages_embeddings
|
|
475
|
+
existing_memories = self.vector_store.search(
|
|
476
|
+
query=new_mem,
|
|
477
|
+
vectors=messages_embeddings,
|
|
478
|
+
limit=5,
|
|
479
|
+
filters=search_filters,
|
|
480
|
+
)
|
|
481
|
+
for mem in existing_memories:
|
|
482
|
+
retrieved_old_memory.append({"id": mem.id, "text": mem.payload.get("data", "")})
|
|
483
|
+
|
|
484
|
+
unique_data = {}
|
|
485
|
+
for item in retrieved_old_memory:
|
|
486
|
+
unique_data[item["id"]] = item
|
|
487
|
+
retrieved_old_memory = list(unique_data.values())
|
|
488
|
+
logger.info(f"Total existing memories: {len(retrieved_old_memory)}")
|
|
489
|
+
|
|
490
|
+
# mapping UUIDs with integers for handling UUID hallucinations
|
|
491
|
+
temp_uuid_mapping = {}
|
|
492
|
+
for idx, item in enumerate(retrieved_old_memory):
|
|
493
|
+
temp_uuid_mapping[str(idx)] = item["id"]
|
|
494
|
+
retrieved_old_memory[idx]["id"] = str(idx)
|
|
495
|
+
|
|
496
|
+
if new_retrieved_facts:
|
|
497
|
+
function_calling_prompt = get_update_memory_messages(
|
|
498
|
+
retrieved_old_memory, new_retrieved_facts, self.config.custom_update_memory_prompt
|
|
499
|
+
)
|
|
500
|
+
|
|
501
|
+
try:
|
|
502
|
+
response: str = self.llm.generate_response(
|
|
503
|
+
messages=[{"role": "user", "content": function_calling_prompt}],
|
|
504
|
+
response_format={"type": "json_object"},
|
|
505
|
+
)
|
|
506
|
+
except Exception as e:
|
|
507
|
+
logger.error(f"Error in new memory actions response: {e}")
|
|
508
|
+
response = ""
|
|
509
|
+
|
|
510
|
+
try:
|
|
511
|
+
if not response or not response.strip():
|
|
512
|
+
logger.warning("Empty response from LLM, no memories to extract")
|
|
513
|
+
new_memories_with_actions = {}
|
|
514
|
+
else:
|
|
515
|
+
response = remove_code_blocks(response)
|
|
516
|
+
new_memories_with_actions = json.loads(response)
|
|
517
|
+
except Exception as e:
|
|
518
|
+
logger.error(f"Invalid JSON response: {e}")
|
|
519
|
+
new_memories_with_actions = {}
|
|
520
|
+
else:
|
|
521
|
+
new_memories_with_actions = {}
|
|
522
|
+
|
|
523
|
+
returned_memories = []
|
|
524
|
+
try:
|
|
525
|
+
for resp in new_memories_with_actions.get("memory", []):
|
|
526
|
+
logger.info(resp)
|
|
527
|
+
try:
|
|
528
|
+
action_text = resp.get("text")
|
|
529
|
+
if not action_text:
|
|
530
|
+
logger.info("Skipping memory entry because of empty `text` field.")
|
|
531
|
+
continue
|
|
532
|
+
|
|
533
|
+
event_type = resp.get("event")
|
|
534
|
+
if event_type == "ADD":
|
|
535
|
+
memory_id = self._create_memory(
|
|
536
|
+
data=action_text,
|
|
537
|
+
existing_embeddings=new_message_embeddings,
|
|
538
|
+
metadata=deepcopy(metadata),
|
|
539
|
+
)
|
|
540
|
+
returned_memories.append({"id": memory_id, "memory": action_text, "event": event_type})
|
|
541
|
+
elif event_type == "UPDATE":
|
|
542
|
+
self._update_memory(
|
|
543
|
+
memory_id=temp_uuid_mapping[resp.get("id")],
|
|
544
|
+
data=action_text,
|
|
545
|
+
existing_embeddings=new_message_embeddings,
|
|
546
|
+
metadata=deepcopy(metadata),
|
|
547
|
+
)
|
|
548
|
+
returned_memories.append(
|
|
549
|
+
{
|
|
550
|
+
"id": temp_uuid_mapping[resp.get("id")],
|
|
551
|
+
"memory": action_text,
|
|
552
|
+
"event": event_type,
|
|
553
|
+
"previous_memory": resp.get("old_memory"),
|
|
554
|
+
}
|
|
555
|
+
)
|
|
556
|
+
elif event_type == "DELETE":
|
|
557
|
+
self._delete_memory(memory_id=temp_uuid_mapping[resp.get("id")])
|
|
558
|
+
returned_memories.append(
|
|
559
|
+
{
|
|
560
|
+
"id": temp_uuid_mapping[resp.get("id")],
|
|
561
|
+
"memory": action_text,
|
|
562
|
+
"event": event_type,
|
|
563
|
+
}
|
|
564
|
+
)
|
|
565
|
+
elif event_type == "NONE":
|
|
566
|
+
# Even if content doesn't need updating, update session IDs if provided
|
|
567
|
+
memory_id = temp_uuid_mapping.get(resp.get("id"))
|
|
568
|
+
if memory_id and (metadata.get("agent_id") or metadata.get("run_id")):
|
|
569
|
+
# Update only the session identifiers, keep content the same
|
|
570
|
+
existing_memory = self.vector_store.get(vector_id=memory_id)
|
|
571
|
+
updated_metadata = deepcopy(existing_memory.payload)
|
|
572
|
+
if metadata.get("agent_id"):
|
|
573
|
+
updated_metadata["agent_id"] = metadata["agent_id"]
|
|
574
|
+
if metadata.get("run_id"):
|
|
575
|
+
updated_metadata["run_id"] = metadata["run_id"]
|
|
576
|
+
updated_metadata["updated_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
|
|
577
|
+
|
|
578
|
+
self.vector_store.update(
|
|
579
|
+
vector_id=memory_id,
|
|
580
|
+
vector=None, # Keep same embeddings
|
|
581
|
+
payload=updated_metadata,
|
|
582
|
+
)
|
|
583
|
+
logger.info(f"Updated session IDs for memory {memory_id}")
|
|
584
|
+
else:
|
|
585
|
+
logger.info("NOOP for Memory.")
|
|
586
|
+
except Exception as e:
|
|
587
|
+
logger.error(f"Error processing memory action: {resp}, Error: {e}")
|
|
588
|
+
except Exception as e:
|
|
589
|
+
logger.error(f"Error iterating new_memories_with_actions: {e}")
|
|
590
|
+
|
|
591
|
+
keys, encoded_ids = process_telemetry_filters(filters)
|
|
592
|
+
capture_event(
|
|
593
|
+
"mem0.add",
|
|
594
|
+
self,
|
|
595
|
+
{"version": self.api_version, "keys": keys, "encoded_ids": encoded_ids, "sync_type": "sync"},
|
|
596
|
+
)
|
|
597
|
+
return returned_memories
|
|
598
|
+
|
|
599
|
+
def _add_to_graph(self, messages, filters):
|
|
600
|
+
added_entities = []
|
|
601
|
+
if self.enable_graph:
|
|
602
|
+
if filters.get("user_id") is None:
|
|
603
|
+
filters["user_id"] = "user"
|
|
604
|
+
|
|
605
|
+
data = "\n".join([msg["content"] for msg in messages if "content" in msg and msg["role"] != "system"])
|
|
606
|
+
added_entities = self.graph.add(data, filters)
|
|
607
|
+
|
|
608
|
+
return added_entities
|
|
609
|
+
|
|
610
|
+
def get(self, memory_id):
|
|
611
|
+
"""
|
|
612
|
+
Retrieve a memory by ID.
|
|
613
|
+
|
|
614
|
+
Args:
|
|
615
|
+
memory_id (str): ID of the memory to retrieve.
|
|
616
|
+
|
|
617
|
+
Returns:
|
|
618
|
+
dict: Retrieved memory.
|
|
619
|
+
"""
|
|
620
|
+
capture_event("mem0.get", self, {"memory_id": memory_id, "sync_type": "sync"})
|
|
621
|
+
memory = self.vector_store.get(vector_id=memory_id)
|
|
622
|
+
if not memory:
|
|
623
|
+
return None
|
|
624
|
+
|
|
625
|
+
promoted_payload_keys = [
|
|
626
|
+
"user_id",
|
|
627
|
+
"agent_id",
|
|
628
|
+
"run_id",
|
|
629
|
+
"actor_id",
|
|
630
|
+
"role",
|
|
631
|
+
]
|
|
632
|
+
|
|
633
|
+
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
|
634
|
+
|
|
635
|
+
result_item = MemoryItem(
|
|
636
|
+
id=memory.id,
|
|
637
|
+
memory=memory.payload.get("data", ""),
|
|
638
|
+
hash=memory.payload.get("hash"),
|
|
639
|
+
created_at=memory.payload.get("created_at"),
|
|
640
|
+
updated_at=memory.payload.get("updated_at"),
|
|
641
|
+
).model_dump()
|
|
642
|
+
|
|
643
|
+
for key in promoted_payload_keys:
|
|
644
|
+
if key in memory.payload:
|
|
645
|
+
result_item[key] = memory.payload[key]
|
|
646
|
+
|
|
647
|
+
additional_metadata = {k: v for k, v in memory.payload.items() if k not in core_and_promoted_keys}
|
|
648
|
+
if additional_metadata:
|
|
649
|
+
result_item["metadata"] = additional_metadata
|
|
650
|
+
|
|
651
|
+
return result_item
|
|
652
|
+
|
|
653
|
+
def get_all(
|
|
654
|
+
self,
|
|
655
|
+
*,
|
|
656
|
+
user_id: Optional[str] = None,
|
|
657
|
+
agent_id: Optional[str] = None,
|
|
658
|
+
run_id: Optional[str] = None,
|
|
659
|
+
filters: Optional[Dict[str, Any]] = None,
|
|
660
|
+
limit: int = 100,
|
|
661
|
+
):
|
|
662
|
+
"""
|
|
663
|
+
List all memories.
|
|
664
|
+
|
|
665
|
+
Args:
|
|
666
|
+
user_id (str, optional): user id
|
|
667
|
+
agent_id (str, optional): agent id
|
|
668
|
+
run_id (str, optional): run id
|
|
669
|
+
filters (dict, optional): Additional custom key-value filters to apply to the search.
|
|
670
|
+
These are merged with the ID-based scoping filters. For example,
|
|
671
|
+
`filters={"actor_id": "some_user"}`.
|
|
672
|
+
limit (int, optional): The maximum number of memories to return. Defaults to 100.
|
|
673
|
+
|
|
674
|
+
Returns:
|
|
675
|
+
dict: A dictionary containing a list of memories under the "results" key,
|
|
676
|
+
and potentially "relations" if graph store is enabled. For API v1.0,
|
|
677
|
+
it might return a direct list (see deprecation warning).
|
|
678
|
+
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", ...}]}`
|
|
679
|
+
"""
|
|
680
|
+
|
|
681
|
+
_, effective_filters = _build_filters_and_metadata(
|
|
682
|
+
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
|
686
|
+
raise ValueError("At least one of 'user_id', 'agent_id', or 'run_id' must be specified.")
|
|
687
|
+
|
|
688
|
+
keys, encoded_ids = process_telemetry_filters(effective_filters)
|
|
689
|
+
capture_event(
|
|
690
|
+
"mem0.get_all", self, {"limit": limit, "keys": keys, "encoded_ids": encoded_ids, "sync_type": "sync"}
|
|
691
|
+
)
|
|
692
|
+
|
|
693
|
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
694
|
+
future_memories = executor.submit(self._get_all_from_vector_store, effective_filters, limit)
|
|
695
|
+
future_graph_entities = (
|
|
696
|
+
executor.submit(self.graph.get_all, effective_filters, limit) if self.enable_graph else None
|
|
697
|
+
)
|
|
698
|
+
|
|
699
|
+
concurrent.futures.wait(
|
|
700
|
+
[future_memories, future_graph_entities] if future_graph_entities else [future_memories]
|
|
701
|
+
)
|
|
702
|
+
|
|
703
|
+
all_memories_result = future_memories.result()
|
|
704
|
+
graph_entities_result = future_graph_entities.result() if future_graph_entities else None
|
|
705
|
+
|
|
706
|
+
if self.enable_graph:
|
|
707
|
+
return {"results": all_memories_result, "relations": graph_entities_result}
|
|
708
|
+
|
|
709
|
+
return {"results": all_memories_result}
|
|
710
|
+
|
|
711
|
+
def _get_all_from_vector_store(self, filters, limit):
|
|
712
|
+
memories_result = self.vector_store.list(filters=filters, limit=limit)
|
|
713
|
+
|
|
714
|
+
# Handle different vector store return formats by inspecting first element
|
|
715
|
+
if isinstance(memories_result, (tuple, list)) and len(memories_result) > 0:
|
|
716
|
+
first_element = memories_result[0]
|
|
717
|
+
|
|
718
|
+
# If first element is a container, unwrap one level
|
|
719
|
+
if isinstance(first_element, (list, tuple)):
|
|
720
|
+
actual_memories = first_element
|
|
721
|
+
else:
|
|
722
|
+
# First element is a memory object, structure is already flat
|
|
723
|
+
actual_memories = memories_result
|
|
724
|
+
else:
|
|
725
|
+
actual_memories = memories_result
|
|
726
|
+
|
|
727
|
+
promoted_payload_keys = [
|
|
728
|
+
"user_id",
|
|
729
|
+
"agent_id",
|
|
730
|
+
"run_id",
|
|
731
|
+
"actor_id",
|
|
732
|
+
"role",
|
|
733
|
+
]
|
|
734
|
+
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
|
735
|
+
|
|
736
|
+
formatted_memories = []
|
|
737
|
+
for mem in actual_memories:
|
|
738
|
+
memory_item_dict = MemoryItem(
|
|
739
|
+
id=mem.id,
|
|
740
|
+
memory=mem.payload.get("data", ""),
|
|
741
|
+
hash=mem.payload.get("hash"),
|
|
742
|
+
created_at=mem.payload.get("created_at"),
|
|
743
|
+
updated_at=mem.payload.get("updated_at"),
|
|
744
|
+
).model_dump(exclude={"score"})
|
|
745
|
+
|
|
746
|
+
for key in promoted_payload_keys:
|
|
747
|
+
if key in mem.payload:
|
|
748
|
+
memory_item_dict[key] = mem.payload[key]
|
|
749
|
+
|
|
750
|
+
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
|
751
|
+
if additional_metadata:
|
|
752
|
+
memory_item_dict["metadata"] = additional_metadata
|
|
753
|
+
|
|
754
|
+
formatted_memories.append(memory_item_dict)
|
|
755
|
+
|
|
756
|
+
return formatted_memories
|
|
757
|
+
|
|
758
|
+
def search(
|
|
759
|
+
self,
|
|
760
|
+
query: str,
|
|
761
|
+
*,
|
|
762
|
+
user_id: Optional[str] = None,
|
|
763
|
+
agent_id: Optional[str] = None,
|
|
764
|
+
run_id: Optional[str] = None,
|
|
765
|
+
limit: int = 100,
|
|
766
|
+
filters: Optional[Dict[str, Any]] = None,
|
|
767
|
+
threshold: Optional[float] = None,
|
|
768
|
+
rerank: bool = True,
|
|
769
|
+
):
|
|
770
|
+
"""
|
|
771
|
+
Searches for memories based on a query
|
|
772
|
+
Args:
|
|
773
|
+
query (str): Query to search for.
|
|
774
|
+
user_id (str, optional): ID of the user to search for. Defaults to None.
|
|
775
|
+
agent_id (str, optional): ID of the agent to search for. Defaults to None.
|
|
776
|
+
run_id (str, optional): ID of the run to search for. Defaults to None.
|
|
777
|
+
limit (int, optional): Limit the number of results. Defaults to 100.
|
|
778
|
+
filters (dict, optional): Legacy filters to apply to the search. Defaults to None.
|
|
779
|
+
threshold (float, optional): Minimum score for a memory to be included in the results. Defaults to None.
|
|
780
|
+
filters (dict, optional): Enhanced metadata filtering with operators:
|
|
781
|
+
- {"key": "value"} - exact match
|
|
782
|
+
- {"key": {"eq": "value"}} - equals
|
|
783
|
+
- {"key": {"ne": "value"}} - not equals
|
|
784
|
+
- {"key": {"in": ["val1", "val2"]}} - in list
|
|
785
|
+
- {"key": {"nin": ["val1", "val2"]}} - not in list
|
|
786
|
+
- {"key": {"gt": 10}} - greater than
|
|
787
|
+
- {"key": {"gte": 10}} - greater than or equal
|
|
788
|
+
- {"key": {"lt": 10}} - less than
|
|
789
|
+
- {"key": {"lte": 10}} - less than or equal
|
|
790
|
+
- {"key": {"contains": "text"}} - contains text
|
|
791
|
+
- {"key": {"icontains": "text"}} - case-insensitive contains
|
|
792
|
+
- {"key": "*"} - wildcard match (any value)
|
|
793
|
+
- {"AND": [filter1, filter2]} - logical AND
|
|
794
|
+
- {"OR": [filter1, filter2]} - logical OR
|
|
795
|
+
- {"NOT": [filter1]} - logical NOT
|
|
796
|
+
|
|
797
|
+
Returns:
|
|
798
|
+
dict: A dictionary containing the search results, typically under a "results" key,
|
|
799
|
+
and potentially "relations" if graph store is enabled.
|
|
800
|
+
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", "score": 0.8, ...}]}`
|
|
801
|
+
"""
|
|
802
|
+
_, effective_filters = _build_filters_and_metadata(
|
|
803
|
+
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
|
804
|
+
)
|
|
805
|
+
|
|
806
|
+
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
|
807
|
+
raise ValueError("At least one of 'user_id', 'agent_id', or 'run_id' must be specified.")
|
|
808
|
+
|
|
809
|
+
# Apply enhanced metadata filtering if advanced operators are detected
|
|
810
|
+
if filters and self._has_advanced_operators(filters):
|
|
811
|
+
processed_filters = self._process_metadata_filters(filters)
|
|
812
|
+
effective_filters.update(processed_filters)
|
|
813
|
+
elif filters:
|
|
814
|
+
# Simple filters, merge directly
|
|
815
|
+
effective_filters.update(filters)
|
|
816
|
+
|
|
817
|
+
keys, encoded_ids = process_telemetry_filters(effective_filters)
|
|
818
|
+
capture_event(
|
|
819
|
+
"mem0.search",
|
|
820
|
+
self,
|
|
821
|
+
{
|
|
822
|
+
"limit": limit,
|
|
823
|
+
"version": self.api_version,
|
|
824
|
+
"keys": keys,
|
|
825
|
+
"encoded_ids": encoded_ids,
|
|
826
|
+
"sync_type": "sync",
|
|
827
|
+
"threshold": threshold,
|
|
828
|
+
"advanced_filters": bool(filters and self._has_advanced_operators(filters)),
|
|
829
|
+
},
|
|
830
|
+
)
|
|
831
|
+
|
|
832
|
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
833
|
+
future_memories = executor.submit(self._search_vector_store, query, effective_filters, limit, threshold)
|
|
834
|
+
future_graph_entities = (
|
|
835
|
+
executor.submit(self.graph.search, query, effective_filters, limit) if self.enable_graph else None
|
|
836
|
+
)
|
|
837
|
+
|
|
838
|
+
concurrent.futures.wait(
|
|
839
|
+
[future_memories, future_graph_entities] if future_graph_entities else [future_memories]
|
|
840
|
+
)
|
|
841
|
+
|
|
842
|
+
original_memories = future_memories.result()
|
|
843
|
+
graph_entities = future_graph_entities.result() if future_graph_entities else None
|
|
844
|
+
|
|
845
|
+
# Apply reranking if enabled and reranker is available
|
|
846
|
+
if rerank and self.reranker and original_memories:
|
|
847
|
+
try:
|
|
848
|
+
reranked_memories = self.reranker.rerank(query, original_memories, limit)
|
|
849
|
+
original_memories = reranked_memories
|
|
850
|
+
except Exception as e:
|
|
851
|
+
logger.warning(f"Reranking failed, using original results: {e}")
|
|
852
|
+
|
|
853
|
+
if self.enable_graph:
|
|
854
|
+
return {"results": original_memories, "relations": graph_entities}
|
|
855
|
+
|
|
856
|
+
return {"results": original_memories}
|
|
857
|
+
|
|
858
|
+
def _process_metadata_filters(self, metadata_filters: Dict[str, Any]) -> Dict[str, Any]:
|
|
859
|
+
"""
|
|
860
|
+
Process enhanced metadata filters and convert them to vector store compatible format.
|
|
861
|
+
|
|
862
|
+
Args:
|
|
863
|
+
metadata_filters: Enhanced metadata filters with operators
|
|
864
|
+
|
|
865
|
+
Returns:
|
|
866
|
+
Dict of processed filters compatible with vector store
|
|
867
|
+
"""
|
|
868
|
+
processed_filters = {}
|
|
869
|
+
|
|
870
|
+
def process_condition(key: str, condition: Any) -> Dict[str, Any]:
|
|
871
|
+
if not isinstance(condition, dict):
|
|
872
|
+
# Simple equality: {"key": "value"}
|
|
873
|
+
if condition == "*":
|
|
874
|
+
# Wildcard: match everything for this field (implementation depends on vector store)
|
|
875
|
+
return {key: "*"}
|
|
876
|
+
return {key: condition}
|
|
877
|
+
|
|
878
|
+
result = {}
|
|
879
|
+
for operator, value in condition.items():
|
|
880
|
+
# Map platform operators to universal format that can be translated by each vector store
|
|
881
|
+
operator_map = {
|
|
882
|
+
"eq": "eq", "ne": "ne", "gt": "gt", "gte": "gte",
|
|
883
|
+
"lt": "lt", "lte": "lte", "in": "in", "nin": "nin",
|
|
884
|
+
"contains": "contains", "icontains": "icontains"
|
|
885
|
+
}
|
|
886
|
+
|
|
887
|
+
if operator in operator_map:
|
|
888
|
+
result[key] = {operator_map[operator]: value}
|
|
889
|
+
else:
|
|
890
|
+
raise ValueError(f"Unsupported metadata filter operator: {operator}")
|
|
891
|
+
return result
|
|
892
|
+
|
|
893
|
+
for key, value in metadata_filters.items():
|
|
894
|
+
if key == "AND":
|
|
895
|
+
# Logical AND: combine multiple conditions
|
|
896
|
+
if not isinstance(value, list):
|
|
897
|
+
raise ValueError("AND operator requires a list of conditions")
|
|
898
|
+
for condition in value:
|
|
899
|
+
for sub_key, sub_value in condition.items():
|
|
900
|
+
processed_filters.update(process_condition(sub_key, sub_value))
|
|
901
|
+
elif key == "OR":
|
|
902
|
+
# Logical OR: Pass through to vector store for implementation-specific handling
|
|
903
|
+
if not isinstance(value, list) or not value:
|
|
904
|
+
raise ValueError("OR operator requires a non-empty list of conditions")
|
|
905
|
+
# Store OR conditions in a way that vector stores can interpret
|
|
906
|
+
processed_filters["$or"] = []
|
|
907
|
+
for condition in value:
|
|
908
|
+
or_condition = {}
|
|
909
|
+
for sub_key, sub_value in condition.items():
|
|
910
|
+
or_condition.update(process_condition(sub_key, sub_value))
|
|
911
|
+
processed_filters["$or"].append(or_condition)
|
|
912
|
+
elif key == "NOT":
|
|
913
|
+
# Logical NOT: Pass through to vector store for implementation-specific handling
|
|
914
|
+
if not isinstance(value, list) or not value:
|
|
915
|
+
raise ValueError("NOT operator requires a non-empty list of conditions")
|
|
916
|
+
processed_filters["$not"] = []
|
|
917
|
+
for condition in value:
|
|
918
|
+
not_condition = {}
|
|
919
|
+
for sub_key, sub_value in condition.items():
|
|
920
|
+
not_condition.update(process_condition(sub_key, sub_value))
|
|
921
|
+
processed_filters["$not"].append(not_condition)
|
|
922
|
+
else:
|
|
923
|
+
processed_filters.update(process_condition(key, value))
|
|
924
|
+
|
|
925
|
+
return processed_filters
|
|
926
|
+
|
|
927
|
+
def _has_advanced_operators(self, filters: Dict[str, Any]) -> bool:
|
|
928
|
+
"""
|
|
929
|
+
Check if filters contain advanced operators that need special processing.
|
|
930
|
+
|
|
931
|
+
Args:
|
|
932
|
+
filters: Dictionary of filters to check
|
|
933
|
+
|
|
934
|
+
Returns:
|
|
935
|
+
bool: True if advanced operators are detected
|
|
936
|
+
"""
|
|
937
|
+
if not isinstance(filters, dict):
|
|
938
|
+
return False
|
|
939
|
+
|
|
940
|
+
for key, value in filters.items():
|
|
941
|
+
# Check for platform-style logical operators
|
|
942
|
+
if key in ["AND", "OR", "NOT"]:
|
|
943
|
+
return True
|
|
944
|
+
# Check for comparison operators (without $ prefix for universal compatibility)
|
|
945
|
+
if isinstance(value, dict):
|
|
946
|
+
for op in value.keys():
|
|
947
|
+
if op in ["eq", "ne", "gt", "gte", "lt", "lte", "in", "nin", "contains", "icontains"]:
|
|
948
|
+
return True
|
|
949
|
+
# Check for wildcard values
|
|
950
|
+
if value == "*":
|
|
951
|
+
return True
|
|
952
|
+
return False
|
|
953
|
+
|
|
954
|
+
def _search_vector_store(self, query, filters, limit, threshold: Optional[float] = None):
|
|
955
|
+
embeddings = self.embedding_model.embed(query, "search")
|
|
956
|
+
memories = self.vector_store.search(query=query, vectors=embeddings, limit=limit, filters=filters)
|
|
957
|
+
|
|
958
|
+
promoted_payload_keys = [
|
|
959
|
+
"user_id",
|
|
960
|
+
"agent_id",
|
|
961
|
+
"run_id",
|
|
962
|
+
"actor_id",
|
|
963
|
+
"role",
|
|
964
|
+
]
|
|
965
|
+
|
|
966
|
+
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
|
967
|
+
|
|
968
|
+
original_memories = []
|
|
969
|
+
for mem in memories:
|
|
970
|
+
memory_item_dict = MemoryItem(
|
|
971
|
+
id=mem.id,
|
|
972
|
+
memory=mem.payload.get("data", ""),
|
|
973
|
+
hash=mem.payload.get("hash"),
|
|
974
|
+
created_at=mem.payload.get("created_at"),
|
|
975
|
+
updated_at=mem.payload.get("updated_at"),
|
|
976
|
+
score=mem.score,
|
|
977
|
+
).model_dump()
|
|
978
|
+
|
|
979
|
+
for key in promoted_payload_keys:
|
|
980
|
+
if key in mem.payload:
|
|
981
|
+
memory_item_dict[key] = mem.payload[key]
|
|
982
|
+
|
|
983
|
+
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
|
984
|
+
if additional_metadata:
|
|
985
|
+
memory_item_dict["metadata"] = additional_metadata
|
|
986
|
+
|
|
987
|
+
if threshold is None or mem.score >= threshold:
|
|
988
|
+
original_memories.append(memory_item_dict)
|
|
989
|
+
|
|
990
|
+
return original_memories
|
|
991
|
+
|
|
992
|
+
def update(self, memory_id, data):
|
|
993
|
+
"""
|
|
994
|
+
Update a memory by ID.
|
|
995
|
+
|
|
996
|
+
Args:
|
|
997
|
+
memory_id (str): ID of the memory to update.
|
|
998
|
+
data (str): New content to update the memory with.
|
|
999
|
+
|
|
1000
|
+
Returns:
|
|
1001
|
+
dict: Success message indicating the memory was updated.
|
|
1002
|
+
|
|
1003
|
+
Example:
|
|
1004
|
+
>>> m.update(memory_id="mem_123", data="Likes to play tennis on weekends")
|
|
1005
|
+
{'message': 'Memory updated successfully!'}
|
|
1006
|
+
"""
|
|
1007
|
+
capture_event("mem0.update", self, {"memory_id": memory_id, "sync_type": "sync"})
|
|
1008
|
+
|
|
1009
|
+
existing_embeddings = {data: self.embedding_model.embed(data, "update")}
|
|
1010
|
+
|
|
1011
|
+
self._update_memory(memory_id, data, existing_embeddings)
|
|
1012
|
+
return {"message": "Memory updated successfully!"}
|
|
1013
|
+
|
|
1014
|
+
def delete(self, memory_id):
|
|
1015
|
+
"""
|
|
1016
|
+
Delete a memory by ID.
|
|
1017
|
+
|
|
1018
|
+
Args:
|
|
1019
|
+
memory_id (str): ID of the memory to delete.
|
|
1020
|
+
"""
|
|
1021
|
+
capture_event("mem0.delete", self, {"memory_id": memory_id, "sync_type": "sync"})
|
|
1022
|
+
self._delete_memory(memory_id)
|
|
1023
|
+
return {"message": "Memory deleted successfully!"}
|
|
1024
|
+
|
|
1025
|
+
def delete_all(self, user_id: Optional[str] = None, agent_id: Optional[str] = None, run_id: Optional[str] = None):
|
|
1026
|
+
"""
|
|
1027
|
+
Delete all memories.
|
|
1028
|
+
|
|
1029
|
+
Args:
|
|
1030
|
+
user_id (str, optional): ID of the user to delete memories for. Defaults to None.
|
|
1031
|
+
agent_id (str, optional): ID of the agent to delete memories for. Defaults to None.
|
|
1032
|
+
run_id (str, optional): ID of the run to delete memories for. Defaults to None.
|
|
1033
|
+
"""
|
|
1034
|
+
filters: Dict[str, Any] = {}
|
|
1035
|
+
if user_id:
|
|
1036
|
+
filters["user_id"] = user_id
|
|
1037
|
+
if agent_id:
|
|
1038
|
+
filters["agent_id"] = agent_id
|
|
1039
|
+
if run_id:
|
|
1040
|
+
filters["run_id"] = run_id
|
|
1041
|
+
|
|
1042
|
+
if not filters:
|
|
1043
|
+
raise ValueError(
|
|
1044
|
+
"At least one filter is required to delete all memories. If you want to delete all memories, use the `reset()` method."
|
|
1045
|
+
)
|
|
1046
|
+
|
|
1047
|
+
keys, encoded_ids = process_telemetry_filters(filters)
|
|
1048
|
+
capture_event("mem0.delete_all", self, {"keys": keys, "encoded_ids": encoded_ids, "sync_type": "sync"})
|
|
1049
|
+
# delete all vector memories and reset the collections
|
|
1050
|
+
memories = self.vector_store.list(filters=filters)[0]
|
|
1051
|
+
for memory in memories:
|
|
1052
|
+
self._delete_memory(memory.id)
|
|
1053
|
+
self.vector_store.reset()
|
|
1054
|
+
|
|
1055
|
+
logger.info(f"Deleted {len(memories)} memories")
|
|
1056
|
+
|
|
1057
|
+
if self.enable_graph:
|
|
1058
|
+
self.graph.delete_all(filters)
|
|
1059
|
+
|
|
1060
|
+
return {"message": "Memories deleted successfully!"}
|
|
1061
|
+
|
|
1062
|
+
def history(self, memory_id):
|
|
1063
|
+
"""
|
|
1064
|
+
Get the history of changes for a memory by ID.
|
|
1065
|
+
|
|
1066
|
+
Args:
|
|
1067
|
+
memory_id (str): ID of the memory to get history for.
|
|
1068
|
+
|
|
1069
|
+
Returns:
|
|
1070
|
+
list: List of changes for the memory.
|
|
1071
|
+
"""
|
|
1072
|
+
capture_event("mem0.history", self, {"memory_id": memory_id, "sync_type": "sync"})
|
|
1073
|
+
return self.db.get_history(memory_id)
|
|
1074
|
+
|
|
1075
|
+
def _create_memory(self, data, existing_embeddings, metadata=None):
|
|
1076
|
+
logger.debug(f"Creating memory with {data=}")
|
|
1077
|
+
if data in existing_embeddings:
|
|
1078
|
+
embeddings = existing_embeddings[data]
|
|
1079
|
+
else:
|
|
1080
|
+
embeddings = self.embedding_model.embed(data, memory_action="add")
|
|
1081
|
+
memory_id = str(uuid.uuid4())
|
|
1082
|
+
metadata = metadata or {}
|
|
1083
|
+
metadata["data"] = data
|
|
1084
|
+
metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
|
|
1085
|
+
metadata["created_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
|
|
1086
|
+
|
|
1087
|
+
self.vector_store.insert(
|
|
1088
|
+
vectors=[embeddings],
|
|
1089
|
+
ids=[memory_id],
|
|
1090
|
+
payloads=[metadata],
|
|
1091
|
+
)
|
|
1092
|
+
self.db.add_history(
|
|
1093
|
+
memory_id,
|
|
1094
|
+
None,
|
|
1095
|
+
data,
|
|
1096
|
+
"ADD",
|
|
1097
|
+
created_at=metadata.get("created_at"),
|
|
1098
|
+
actor_id=metadata.get("actor_id"),
|
|
1099
|
+
role=metadata.get("role"),
|
|
1100
|
+
)
|
|
1101
|
+
return memory_id
|
|
1102
|
+
|
|
1103
|
+
def _create_procedural_memory(self, messages, metadata=None, prompt=None):
|
|
1104
|
+
"""
|
|
1105
|
+
Create a procedural memory
|
|
1106
|
+
|
|
1107
|
+
Args:
|
|
1108
|
+
messages (list): List of messages to create a procedural memory from.
|
|
1109
|
+
metadata (dict): Metadata to create a procedural memory from.
|
|
1110
|
+
prompt (str, optional): Prompt to use for the procedural memory creation. Defaults to None.
|
|
1111
|
+
"""
|
|
1112
|
+
logger.info("Creating procedural memory")
|
|
1113
|
+
|
|
1114
|
+
parsed_messages = [
|
|
1115
|
+
{"role": "system", "content": prompt or PROCEDURAL_MEMORY_SYSTEM_PROMPT},
|
|
1116
|
+
*messages,
|
|
1117
|
+
{
|
|
1118
|
+
"role": "user",
|
|
1119
|
+
"content": "Create procedural memory of the above conversation.",
|
|
1120
|
+
},
|
|
1121
|
+
]
|
|
1122
|
+
|
|
1123
|
+
try:
|
|
1124
|
+
procedural_memory = self.llm.generate_response(messages=parsed_messages)
|
|
1125
|
+
procedural_memory = remove_code_blocks(procedural_memory)
|
|
1126
|
+
except Exception as e:
|
|
1127
|
+
logger.error(f"Error generating procedural memory summary: {e}")
|
|
1128
|
+
raise
|
|
1129
|
+
|
|
1130
|
+
if metadata is None:
|
|
1131
|
+
raise ValueError("Metadata cannot be done for procedural memory.")
|
|
1132
|
+
|
|
1133
|
+
metadata["memory_type"] = MemoryType.PROCEDURAL.value
|
|
1134
|
+
embeddings = self.embedding_model.embed(procedural_memory, memory_action="add")
|
|
1135
|
+
memory_id = self._create_memory(procedural_memory, {procedural_memory: embeddings}, metadata=metadata)
|
|
1136
|
+
capture_event("mem0._create_procedural_memory", self, {"memory_id": memory_id, "sync_type": "sync"})
|
|
1137
|
+
|
|
1138
|
+
result = {"results": [{"id": memory_id, "memory": procedural_memory, "event": "ADD"}]}
|
|
1139
|
+
|
|
1140
|
+
return result
|
|
1141
|
+
|
|
1142
|
+
def _update_memory(self, memory_id, data, existing_embeddings, metadata=None):
|
|
1143
|
+
logger.info(f"Updating memory with {data=}")
|
|
1144
|
+
|
|
1145
|
+
try:
|
|
1146
|
+
existing_memory = self.vector_store.get(vector_id=memory_id)
|
|
1147
|
+
except Exception:
|
|
1148
|
+
logger.error(f"Error getting memory with ID {memory_id} during update.")
|
|
1149
|
+
raise ValueError(f"Error getting memory with ID {memory_id}. Please provide a valid 'memory_id'")
|
|
1150
|
+
|
|
1151
|
+
prev_value = existing_memory.payload.get("data")
|
|
1152
|
+
|
|
1153
|
+
new_metadata = deepcopy(metadata) if metadata is not None else {}
|
|
1154
|
+
|
|
1155
|
+
new_metadata["data"] = data
|
|
1156
|
+
new_metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
|
|
1157
|
+
new_metadata["created_at"] = existing_memory.payload.get("created_at")
|
|
1158
|
+
new_metadata["updated_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
|
|
1159
|
+
|
|
1160
|
+
# Preserve session identifiers from existing memory only if not provided in new metadata
|
|
1161
|
+
if "user_id" not in new_metadata and "user_id" in existing_memory.payload:
|
|
1162
|
+
new_metadata["user_id"] = existing_memory.payload["user_id"]
|
|
1163
|
+
if "agent_id" not in new_metadata and "agent_id" in existing_memory.payload:
|
|
1164
|
+
new_metadata["agent_id"] = existing_memory.payload["agent_id"]
|
|
1165
|
+
if "run_id" not in new_metadata and "run_id" in existing_memory.payload:
|
|
1166
|
+
new_metadata["run_id"] = existing_memory.payload["run_id"]
|
|
1167
|
+
if "actor_id" not in new_metadata and "actor_id" in existing_memory.payload:
|
|
1168
|
+
new_metadata["actor_id"] = existing_memory.payload["actor_id"]
|
|
1169
|
+
if "role" not in new_metadata and "role" in existing_memory.payload:
|
|
1170
|
+
new_metadata["role"] = existing_memory.payload["role"]
|
|
1171
|
+
|
|
1172
|
+
if data in existing_embeddings:
|
|
1173
|
+
embeddings = existing_embeddings[data]
|
|
1174
|
+
else:
|
|
1175
|
+
embeddings = self.embedding_model.embed(data, "update")
|
|
1176
|
+
|
|
1177
|
+
self.vector_store.update(
|
|
1178
|
+
vector_id=memory_id,
|
|
1179
|
+
vector=embeddings,
|
|
1180
|
+
payload=new_metadata,
|
|
1181
|
+
)
|
|
1182
|
+
logger.info(f"Updating memory with ID {memory_id=} with {data=}")
|
|
1183
|
+
|
|
1184
|
+
self.db.add_history(
|
|
1185
|
+
memory_id,
|
|
1186
|
+
prev_value,
|
|
1187
|
+
data,
|
|
1188
|
+
"UPDATE",
|
|
1189
|
+
created_at=new_metadata["created_at"],
|
|
1190
|
+
updated_at=new_metadata["updated_at"],
|
|
1191
|
+
actor_id=new_metadata.get("actor_id"),
|
|
1192
|
+
role=new_metadata.get("role"),
|
|
1193
|
+
)
|
|
1194
|
+
return memory_id
|
|
1195
|
+
|
|
1196
|
+
def _delete_memory(self, memory_id):
|
|
1197
|
+
logger.info(f"Deleting memory with {memory_id=}")
|
|
1198
|
+
existing_memory = self.vector_store.get(vector_id=memory_id)
|
|
1199
|
+
prev_value = existing_memory.payload.get("data", "")
|
|
1200
|
+
self.vector_store.delete(vector_id=memory_id)
|
|
1201
|
+
self.db.add_history(
|
|
1202
|
+
memory_id,
|
|
1203
|
+
prev_value,
|
|
1204
|
+
None,
|
|
1205
|
+
"DELETE",
|
|
1206
|
+
actor_id=existing_memory.payload.get("actor_id"),
|
|
1207
|
+
role=existing_memory.payload.get("role"),
|
|
1208
|
+
is_deleted=1,
|
|
1209
|
+
)
|
|
1210
|
+
return memory_id
|
|
1211
|
+
|
|
1212
|
+
def reset(self):
|
|
1213
|
+
"""
|
|
1214
|
+
Reset the memory store by:
|
|
1215
|
+
Deletes the vector store collection
|
|
1216
|
+
Resets the database
|
|
1217
|
+
Recreates the vector store with a new client
|
|
1218
|
+
"""
|
|
1219
|
+
logger.warning("Resetting all memories")
|
|
1220
|
+
|
|
1221
|
+
if hasattr(self.db, "connection") and self.db.connection:
|
|
1222
|
+
self.db.connection.execute("DROP TABLE IF EXISTS history")
|
|
1223
|
+
self.db.connection.close()
|
|
1224
|
+
|
|
1225
|
+
self.db = SQLiteManager(self.config.history_db_path)
|
|
1226
|
+
|
|
1227
|
+
if hasattr(self.vector_store, "reset"):
|
|
1228
|
+
self.vector_store = VectorStoreFactory.reset(self.vector_store)
|
|
1229
|
+
else:
|
|
1230
|
+
logger.warning("Vector store does not support reset. Skipping.")
|
|
1231
|
+
self.vector_store.delete_col()
|
|
1232
|
+
self.vector_store = VectorStoreFactory.create(
|
|
1233
|
+
self.config.vector_store.provider, self.config.vector_store.config
|
|
1234
|
+
)
|
|
1235
|
+
capture_event("mem0.reset", self, {"sync_type": "sync"})
|
|
1236
|
+
|
|
1237
|
+
def chat(self, query):
|
|
1238
|
+
raise NotImplementedError("Chat function not implemented yet.")
|
|
1239
|
+
|
|
1240
|
+
|
|
1241
|
+
class AsyncMemory(MemoryBase):
|
|
1242
|
+
def __init__(self, config: MemoryConfig = MemoryConfig()):
|
|
1243
|
+
self.config = config
|
|
1244
|
+
|
|
1245
|
+
self.embedding_model = EmbedderFactory.create(
|
|
1246
|
+
self.config.embedder.provider,
|
|
1247
|
+
self.config.embedder.config,
|
|
1248
|
+
self.config.vector_store.config,
|
|
1249
|
+
)
|
|
1250
|
+
self.vector_store = VectorStoreFactory.create(
|
|
1251
|
+
self.config.vector_store.provider, self.config.vector_store.config
|
|
1252
|
+
)
|
|
1253
|
+
self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
|
|
1254
|
+
self.db = SQLiteManager(self.config.history_db_path)
|
|
1255
|
+
self.collection_name = self.config.vector_store.config.collection_name
|
|
1256
|
+
self.api_version = self.config.version
|
|
1257
|
+
|
|
1258
|
+
# Initialize reranker if configured
|
|
1259
|
+
self.reranker = None
|
|
1260
|
+
if config.reranker:
|
|
1261
|
+
self.reranker = RerankerFactory.create(
|
|
1262
|
+
config.reranker.provider,
|
|
1263
|
+
config.reranker.config
|
|
1264
|
+
)
|
|
1265
|
+
|
|
1266
|
+
self.enable_graph = False
|
|
1267
|
+
|
|
1268
|
+
if self.config.graph_store.config:
|
|
1269
|
+
provider = self.config.graph_store.provider
|
|
1270
|
+
self.graph = GraphStoreFactory.create(provider, self.config)
|
|
1271
|
+
self.enable_graph = True
|
|
1272
|
+
else:
|
|
1273
|
+
self.graph = None
|
|
1274
|
+
|
|
1275
|
+
telemetry_config = _safe_deepcopy_config(self.config.vector_store.config)
|
|
1276
|
+
telemetry_config.collection_name = "mem0migrations"
|
|
1277
|
+
if self.config.vector_store.provider in ["faiss", "qdrant"]:
|
|
1278
|
+
provider_path = f"migrations_{self.config.vector_store.provider}"
|
|
1279
|
+
telemetry_config.path = os.path.join(mem0_dir, provider_path)
|
|
1280
|
+
os.makedirs(telemetry_config.path, exist_ok=True)
|
|
1281
|
+
self._telemetry_vector_store = VectorStoreFactory.create(self.config.vector_store.provider, telemetry_config)
|
|
1282
|
+
|
|
1283
|
+
capture_event("mem0.init", self, {"sync_type": "async"})
|
|
1284
|
+
|
|
1285
|
+
@classmethod
|
|
1286
|
+
async def from_config(cls, config_dict: Dict[str, Any]):
|
|
1287
|
+
try:
|
|
1288
|
+
config = cls._process_config(config_dict)
|
|
1289
|
+
config = MemoryConfig(**config_dict)
|
|
1290
|
+
except ValidationError as e:
|
|
1291
|
+
logger.error(f"Configuration validation error: {e}")
|
|
1292
|
+
raise
|
|
1293
|
+
return cls(config)
|
|
1294
|
+
|
|
1295
|
+
@staticmethod
|
|
1296
|
+
def _process_config(config_dict: Dict[str, Any]) -> Dict[str, Any]:
|
|
1297
|
+
if "graph_store" in config_dict:
|
|
1298
|
+
if "vector_store" not in config_dict and "embedder" in config_dict:
|
|
1299
|
+
config_dict["vector_store"] = {}
|
|
1300
|
+
config_dict["vector_store"]["config"] = {}
|
|
1301
|
+
config_dict["vector_store"]["config"]["embedding_model_dims"] = config_dict["embedder"]["config"][
|
|
1302
|
+
"embedding_dims"
|
|
1303
|
+
]
|
|
1304
|
+
try:
|
|
1305
|
+
return config_dict
|
|
1306
|
+
except ValidationError as e:
|
|
1307
|
+
logger.error(f"Configuration validation error: {e}")
|
|
1308
|
+
raise
|
|
1309
|
+
|
|
1310
|
+
def _should_use_agent_memory_extraction(self, messages, metadata):
|
|
1311
|
+
"""Determine whether to use agent memory extraction based on the logic:
|
|
1312
|
+
- If agent_id is present and messages contain assistant role -> True
|
|
1313
|
+
- Otherwise -> False
|
|
1314
|
+
|
|
1315
|
+
Args:
|
|
1316
|
+
messages: List of message dictionaries
|
|
1317
|
+
metadata: Metadata containing user_id, agent_id, etc.
|
|
1318
|
+
|
|
1319
|
+
Returns:
|
|
1320
|
+
bool: True if should use agent memory extraction, False for user memory extraction
|
|
1321
|
+
"""
|
|
1322
|
+
# Check if agent_id is present in metadata
|
|
1323
|
+
has_agent_id = metadata.get("agent_id") is not None
|
|
1324
|
+
|
|
1325
|
+
# Check if there are assistant role messages
|
|
1326
|
+
has_assistant_messages = any(msg.get("role") == "assistant" for msg in messages)
|
|
1327
|
+
|
|
1328
|
+
# Use agent memory extraction if agent_id is present and there are assistant messages
|
|
1329
|
+
return has_agent_id and has_assistant_messages
|
|
1330
|
+
|
|
1331
|
+
async def add(
|
|
1332
|
+
self,
|
|
1333
|
+
messages,
|
|
1334
|
+
*,
|
|
1335
|
+
user_id: Optional[str] = None,
|
|
1336
|
+
agent_id: Optional[str] = None,
|
|
1337
|
+
run_id: Optional[str] = None,
|
|
1338
|
+
metadata: Optional[Dict[str, Any]] = None,
|
|
1339
|
+
infer: bool = True,
|
|
1340
|
+
memory_type: Optional[str] = None,
|
|
1341
|
+
prompt: Optional[str] = None,
|
|
1342
|
+
llm=None,
|
|
1343
|
+
):
|
|
1344
|
+
"""
|
|
1345
|
+
Create a new memory asynchronously.
|
|
1346
|
+
|
|
1347
|
+
Args:
|
|
1348
|
+
messages (str or List[Dict[str, str]]): Messages to store in the memory.
|
|
1349
|
+
user_id (str, optional): ID of the user creating the memory.
|
|
1350
|
+
agent_id (str, optional): ID of the agent creating the memory. Defaults to None.
|
|
1351
|
+
run_id (str, optional): ID of the run creating the memory. Defaults to None.
|
|
1352
|
+
metadata (dict, optional): Metadata to store with the memory. Defaults to None.
|
|
1353
|
+
infer (bool, optional): Whether to infer the memories. Defaults to True.
|
|
1354
|
+
memory_type (str, optional): Type of memory to create. Defaults to None.
|
|
1355
|
+
Pass "procedural_memory" to create procedural memories.
|
|
1356
|
+
prompt (str, optional): Prompt to use for the memory creation. Defaults to None.
|
|
1357
|
+
llm (BaseChatModel, optional): LLM class to use for generating procedural memories. Defaults to None. Useful when user is using LangChain ChatModel.
|
|
1358
|
+
Returns:
|
|
1359
|
+
dict: A dictionary containing the result of the memory addition operation.
|
|
1360
|
+
"""
|
|
1361
|
+
processed_metadata, effective_filters = _build_filters_and_metadata(
|
|
1362
|
+
user_id=user_id, agent_id=agent_id, run_id=run_id, input_metadata=metadata
|
|
1363
|
+
)
|
|
1364
|
+
|
|
1365
|
+
if memory_type is not None and memory_type != MemoryType.PROCEDURAL.value:
|
|
1366
|
+
raise ValueError(
|
|
1367
|
+
f"Invalid 'memory_type'. Please pass {MemoryType.PROCEDURAL.value} to create procedural memories."
|
|
1368
|
+
)
|
|
1369
|
+
|
|
1370
|
+
if isinstance(messages, str):
|
|
1371
|
+
messages = [{"role": "user", "content": messages}]
|
|
1372
|
+
|
|
1373
|
+
elif isinstance(messages, dict):
|
|
1374
|
+
messages = [messages]
|
|
1375
|
+
|
|
1376
|
+
elif not isinstance(messages, list):
|
|
1377
|
+
raise Mem0ValidationError(
|
|
1378
|
+
message="messages must be str, dict, or list[dict]",
|
|
1379
|
+
error_code="VALIDATION_003",
|
|
1380
|
+
details={"provided_type": type(messages).__name__, "valid_types": ["str", "dict", "list[dict]"]},
|
|
1381
|
+
suggestion="Convert your input to a string, dictionary, or list of dictionaries."
|
|
1382
|
+
)
|
|
1383
|
+
|
|
1384
|
+
if agent_id is not None and memory_type == MemoryType.PROCEDURAL.value:
|
|
1385
|
+
results = await self._create_procedural_memory(
|
|
1386
|
+
messages, metadata=processed_metadata, prompt=prompt, llm=llm
|
|
1387
|
+
)
|
|
1388
|
+
return results
|
|
1389
|
+
|
|
1390
|
+
if self.config.llm.config.get("enable_vision"):
|
|
1391
|
+
messages = parse_vision_messages(messages, self.llm, self.config.llm.config.get("vision_details"))
|
|
1392
|
+
else:
|
|
1393
|
+
messages = parse_vision_messages(messages)
|
|
1394
|
+
|
|
1395
|
+
vector_store_task = asyncio.create_task(
|
|
1396
|
+
self._add_to_vector_store(messages, processed_metadata, effective_filters, infer)
|
|
1397
|
+
)
|
|
1398
|
+
graph_task = asyncio.create_task(self._add_to_graph(messages, effective_filters))
|
|
1399
|
+
|
|
1400
|
+
vector_store_result, graph_result = await asyncio.gather(vector_store_task, graph_task)
|
|
1401
|
+
|
|
1402
|
+
if self.enable_graph:
|
|
1403
|
+
return {
|
|
1404
|
+
"results": vector_store_result,
|
|
1405
|
+
"relations": graph_result,
|
|
1406
|
+
}
|
|
1407
|
+
|
|
1408
|
+
return {"results": vector_store_result}
|
|
1409
|
+
|
|
1410
|
+
async def _add_to_vector_store(
|
|
1411
|
+
self,
|
|
1412
|
+
messages: list,
|
|
1413
|
+
metadata: dict,
|
|
1414
|
+
effective_filters: dict,
|
|
1415
|
+
infer: bool,
|
|
1416
|
+
):
|
|
1417
|
+
if not infer:
|
|
1418
|
+
returned_memories = []
|
|
1419
|
+
for message_dict in messages:
|
|
1420
|
+
if (
|
|
1421
|
+
not isinstance(message_dict, dict)
|
|
1422
|
+
or message_dict.get("role") is None
|
|
1423
|
+
or message_dict.get("content") is None
|
|
1424
|
+
):
|
|
1425
|
+
logger.warning(f"Skipping invalid message format (async): {message_dict}")
|
|
1426
|
+
continue
|
|
1427
|
+
|
|
1428
|
+
if message_dict["role"] == "system":
|
|
1429
|
+
continue
|
|
1430
|
+
|
|
1431
|
+
per_msg_meta = deepcopy(metadata)
|
|
1432
|
+
per_msg_meta["role"] = message_dict["role"]
|
|
1433
|
+
|
|
1434
|
+
actor_name = message_dict.get("name")
|
|
1435
|
+
if actor_name:
|
|
1436
|
+
per_msg_meta["actor_id"] = actor_name
|
|
1437
|
+
|
|
1438
|
+
msg_content = message_dict["content"]
|
|
1439
|
+
msg_embeddings = await asyncio.to_thread(self.embedding_model.embed, msg_content, "add")
|
|
1440
|
+
mem_id = await self._create_memory(msg_content, msg_embeddings, per_msg_meta)
|
|
1441
|
+
|
|
1442
|
+
returned_memories.append(
|
|
1443
|
+
{
|
|
1444
|
+
"id": mem_id,
|
|
1445
|
+
"memory": msg_content,
|
|
1446
|
+
"event": "ADD",
|
|
1447
|
+
"actor_id": actor_name if actor_name else None,
|
|
1448
|
+
"role": message_dict["role"],
|
|
1449
|
+
}
|
|
1450
|
+
)
|
|
1451
|
+
return returned_memories
|
|
1452
|
+
|
|
1453
|
+
parsed_messages = parse_messages(messages)
|
|
1454
|
+
if self.config.custom_fact_extraction_prompt:
|
|
1455
|
+
system_prompt = self.config.custom_fact_extraction_prompt
|
|
1456
|
+
user_prompt = f"Input:\n{parsed_messages}"
|
|
1457
|
+
else:
|
|
1458
|
+
# Determine if this should use agent memory extraction based on agent_id presence
|
|
1459
|
+
# and role types in messages
|
|
1460
|
+
is_agent_memory = self._should_use_agent_memory_extraction(messages, metadata)
|
|
1461
|
+
system_prompt, user_prompt = get_fact_retrieval_messages(parsed_messages, is_agent_memory)
|
|
1462
|
+
|
|
1463
|
+
response = await asyncio.to_thread(
|
|
1464
|
+
self.llm.generate_response,
|
|
1465
|
+
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}],
|
|
1466
|
+
response_format={"type": "json_object"},
|
|
1467
|
+
)
|
|
1468
|
+
try:
|
|
1469
|
+
response = remove_code_blocks(response)
|
|
1470
|
+
if not response.strip():
|
|
1471
|
+
new_retrieved_facts = []
|
|
1472
|
+
else:
|
|
1473
|
+
try:
|
|
1474
|
+
# First try direct JSON parsing
|
|
1475
|
+
new_retrieved_facts = json.loads(response)["facts"]
|
|
1476
|
+
except json.JSONDecodeError:
|
|
1477
|
+
# Try extracting JSON from response using built-in function
|
|
1478
|
+
extracted_json = extract_json(response)
|
|
1479
|
+
new_retrieved_facts = json.loads(extracted_json)["facts"]
|
|
1480
|
+
except Exception as e:
|
|
1481
|
+
logger.error(f"Error in new_retrieved_facts: {e}")
|
|
1482
|
+
new_retrieved_facts = []
|
|
1483
|
+
|
|
1484
|
+
if not new_retrieved_facts:
|
|
1485
|
+
logger.debug("No new facts retrieved from input. Skipping memory update LLM call.")
|
|
1486
|
+
|
|
1487
|
+
retrieved_old_memory = []
|
|
1488
|
+
new_message_embeddings = {}
|
|
1489
|
+
# Search for existing memories using the provided session identifiers
|
|
1490
|
+
# Use all available session identifiers for accurate memory retrieval
|
|
1491
|
+
search_filters = {}
|
|
1492
|
+
if effective_filters.get("user_id"):
|
|
1493
|
+
search_filters["user_id"] = effective_filters["user_id"]
|
|
1494
|
+
if effective_filters.get("agent_id"):
|
|
1495
|
+
search_filters["agent_id"] = effective_filters["agent_id"]
|
|
1496
|
+
if effective_filters.get("run_id"):
|
|
1497
|
+
search_filters["run_id"] = effective_filters["run_id"]
|
|
1498
|
+
|
|
1499
|
+
async def process_fact_for_search(new_mem_content):
|
|
1500
|
+
embeddings = await asyncio.to_thread(self.embedding_model.embed, new_mem_content, "add")
|
|
1501
|
+
new_message_embeddings[new_mem_content] = embeddings
|
|
1502
|
+
existing_mems = await asyncio.to_thread(
|
|
1503
|
+
self.vector_store.search,
|
|
1504
|
+
query=new_mem_content,
|
|
1505
|
+
vectors=embeddings,
|
|
1506
|
+
limit=5,
|
|
1507
|
+
filters=search_filters,
|
|
1508
|
+
)
|
|
1509
|
+
return [{"id": mem.id, "text": mem.payload.get("data", "")} for mem in existing_mems]
|
|
1510
|
+
|
|
1511
|
+
search_tasks = [process_fact_for_search(fact) for fact in new_retrieved_facts]
|
|
1512
|
+
search_results_list = await asyncio.gather(*search_tasks)
|
|
1513
|
+
for result_group in search_results_list:
|
|
1514
|
+
retrieved_old_memory.extend(result_group)
|
|
1515
|
+
|
|
1516
|
+
unique_data = {}
|
|
1517
|
+
for item in retrieved_old_memory:
|
|
1518
|
+
unique_data[item["id"]] = item
|
|
1519
|
+
retrieved_old_memory = list(unique_data.values())
|
|
1520
|
+
logger.info(f"Total existing memories: {len(retrieved_old_memory)}")
|
|
1521
|
+
temp_uuid_mapping = {}
|
|
1522
|
+
for idx, item in enumerate(retrieved_old_memory):
|
|
1523
|
+
temp_uuid_mapping[str(idx)] = item["id"]
|
|
1524
|
+
retrieved_old_memory[idx]["id"] = str(idx)
|
|
1525
|
+
|
|
1526
|
+
if new_retrieved_facts:
|
|
1527
|
+
function_calling_prompt = get_update_memory_messages(
|
|
1528
|
+
retrieved_old_memory, new_retrieved_facts, self.config.custom_update_memory_prompt
|
|
1529
|
+
)
|
|
1530
|
+
try:
|
|
1531
|
+
response = await asyncio.to_thread(
|
|
1532
|
+
self.llm.generate_response,
|
|
1533
|
+
messages=[{"role": "user", "content": function_calling_prompt}],
|
|
1534
|
+
response_format={"type": "json_object"},
|
|
1535
|
+
)
|
|
1536
|
+
except Exception as e:
|
|
1537
|
+
logger.error(f"Error in new memory actions response: {e}")
|
|
1538
|
+
response = ""
|
|
1539
|
+
try:
|
|
1540
|
+
if not response or not response.strip():
|
|
1541
|
+
logger.warning("Empty response from LLM, no memories to extract")
|
|
1542
|
+
new_memories_with_actions = {}
|
|
1543
|
+
else:
|
|
1544
|
+
response = remove_code_blocks(response)
|
|
1545
|
+
new_memories_with_actions = json.loads(response)
|
|
1546
|
+
except Exception as e:
|
|
1547
|
+
logger.error(f"Invalid JSON response: {e}")
|
|
1548
|
+
new_memories_with_actions = {}
|
|
1549
|
+
else:
|
|
1550
|
+
new_memories_with_actions = {}
|
|
1551
|
+
|
|
1552
|
+
returned_memories = []
|
|
1553
|
+
try:
|
|
1554
|
+
memory_tasks = []
|
|
1555
|
+
for resp in new_memories_with_actions.get("memory", []):
|
|
1556
|
+
logger.info(resp)
|
|
1557
|
+
try:
|
|
1558
|
+
action_text = resp.get("text")
|
|
1559
|
+
if not action_text:
|
|
1560
|
+
continue
|
|
1561
|
+
event_type = resp.get("event")
|
|
1562
|
+
|
|
1563
|
+
if event_type == "ADD":
|
|
1564
|
+
task = asyncio.create_task(
|
|
1565
|
+
self._create_memory(
|
|
1566
|
+
data=action_text,
|
|
1567
|
+
existing_embeddings=new_message_embeddings,
|
|
1568
|
+
metadata=deepcopy(metadata),
|
|
1569
|
+
)
|
|
1570
|
+
)
|
|
1571
|
+
memory_tasks.append((task, resp, "ADD", None))
|
|
1572
|
+
elif event_type == "UPDATE":
|
|
1573
|
+
task = asyncio.create_task(
|
|
1574
|
+
self._update_memory(
|
|
1575
|
+
memory_id=temp_uuid_mapping[resp["id"]],
|
|
1576
|
+
data=action_text,
|
|
1577
|
+
existing_embeddings=new_message_embeddings,
|
|
1578
|
+
metadata=deepcopy(metadata),
|
|
1579
|
+
)
|
|
1580
|
+
)
|
|
1581
|
+
memory_tasks.append((task, resp, "UPDATE", temp_uuid_mapping[resp["id"]]))
|
|
1582
|
+
elif event_type == "DELETE":
|
|
1583
|
+
task = asyncio.create_task(self._delete_memory(memory_id=temp_uuid_mapping[resp.get("id")]))
|
|
1584
|
+
memory_tasks.append((task, resp, "DELETE", temp_uuid_mapping[resp.get("id")]))
|
|
1585
|
+
elif event_type == "NONE":
|
|
1586
|
+
# Even if content doesn't need updating, update session IDs if provided
|
|
1587
|
+
memory_id = temp_uuid_mapping.get(resp.get("id"))
|
|
1588
|
+
if memory_id and (metadata.get("agent_id") or metadata.get("run_id")):
|
|
1589
|
+
# Create async task to update only the session identifiers
|
|
1590
|
+
async def update_session_ids(mem_id, meta):
|
|
1591
|
+
existing_memory = await asyncio.to_thread(self.vector_store.get, vector_id=mem_id)
|
|
1592
|
+
updated_metadata = deepcopy(existing_memory.payload)
|
|
1593
|
+
if meta.get("agent_id"):
|
|
1594
|
+
updated_metadata["agent_id"] = meta["agent_id"]
|
|
1595
|
+
if meta.get("run_id"):
|
|
1596
|
+
updated_metadata["run_id"] = meta["run_id"]
|
|
1597
|
+
updated_metadata["updated_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
|
|
1598
|
+
|
|
1599
|
+
await asyncio.to_thread(
|
|
1600
|
+
self.vector_store.update,
|
|
1601
|
+
vector_id=mem_id,
|
|
1602
|
+
vector=None, # Keep same embeddings
|
|
1603
|
+
payload=updated_metadata,
|
|
1604
|
+
)
|
|
1605
|
+
logger.info(f"Updated session IDs for memory {mem_id} (async)")
|
|
1606
|
+
|
|
1607
|
+
task = asyncio.create_task(update_session_ids(memory_id, metadata))
|
|
1608
|
+
memory_tasks.append((task, resp, "NONE", memory_id))
|
|
1609
|
+
else:
|
|
1610
|
+
logger.info("NOOP for Memory (async).")
|
|
1611
|
+
except Exception as e:
|
|
1612
|
+
logger.error(f"Error processing memory action (async): {resp}, Error: {e}")
|
|
1613
|
+
|
|
1614
|
+
for task, resp, event_type, mem_id in memory_tasks:
|
|
1615
|
+
try:
|
|
1616
|
+
result_id = await task
|
|
1617
|
+
if event_type == "ADD":
|
|
1618
|
+
returned_memories.append({"id": result_id, "memory": resp.get("text"), "event": event_type})
|
|
1619
|
+
elif event_type == "UPDATE":
|
|
1620
|
+
returned_memories.append(
|
|
1621
|
+
{
|
|
1622
|
+
"id": mem_id,
|
|
1623
|
+
"memory": resp.get("text"),
|
|
1624
|
+
"event": event_type,
|
|
1625
|
+
"previous_memory": resp.get("old_memory"),
|
|
1626
|
+
}
|
|
1627
|
+
)
|
|
1628
|
+
elif event_type == "DELETE":
|
|
1629
|
+
returned_memories.append({"id": mem_id, "memory": resp.get("text"), "event": event_type})
|
|
1630
|
+
except Exception as e:
|
|
1631
|
+
logger.error(f"Error awaiting memory task (async): {e}")
|
|
1632
|
+
except Exception as e:
|
|
1633
|
+
logger.error(f"Error in memory processing loop (async): {e}")
|
|
1634
|
+
|
|
1635
|
+
keys, encoded_ids = process_telemetry_filters(effective_filters)
|
|
1636
|
+
capture_event(
|
|
1637
|
+
"mem0.add",
|
|
1638
|
+
self,
|
|
1639
|
+
{"version": self.api_version, "keys": keys, "encoded_ids": encoded_ids, "sync_type": "async"},
|
|
1640
|
+
)
|
|
1641
|
+
return returned_memories
|
|
1642
|
+
|
|
1643
|
+
async def _add_to_graph(self, messages, filters):
|
|
1644
|
+
added_entities = []
|
|
1645
|
+
if self.enable_graph:
|
|
1646
|
+
if filters.get("user_id") is None:
|
|
1647
|
+
filters["user_id"] = "user"
|
|
1648
|
+
|
|
1649
|
+
data = "\n".join([msg["content"] for msg in messages if "content" in msg and msg["role"] != "system"])
|
|
1650
|
+
added_entities = await asyncio.to_thread(self.graph.add, data, filters)
|
|
1651
|
+
|
|
1652
|
+
return added_entities
|
|
1653
|
+
|
|
1654
|
+
async def get(self, memory_id):
|
|
1655
|
+
"""
|
|
1656
|
+
Retrieve a memory by ID asynchronously.
|
|
1657
|
+
|
|
1658
|
+
Args:
|
|
1659
|
+
memory_id (str): ID of the memory to retrieve.
|
|
1660
|
+
|
|
1661
|
+
Returns:
|
|
1662
|
+
dict: Retrieved memory.
|
|
1663
|
+
"""
|
|
1664
|
+
capture_event("mem0.get", self, {"memory_id": memory_id, "sync_type": "async"})
|
|
1665
|
+
memory = await asyncio.to_thread(self.vector_store.get, vector_id=memory_id)
|
|
1666
|
+
if not memory:
|
|
1667
|
+
return None
|
|
1668
|
+
|
|
1669
|
+
promoted_payload_keys = [
|
|
1670
|
+
"user_id",
|
|
1671
|
+
"agent_id",
|
|
1672
|
+
"run_id",
|
|
1673
|
+
"actor_id",
|
|
1674
|
+
"role",
|
|
1675
|
+
]
|
|
1676
|
+
|
|
1677
|
+
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
|
1678
|
+
|
|
1679
|
+
result_item = MemoryItem(
|
|
1680
|
+
id=memory.id,
|
|
1681
|
+
memory=memory.payload.get("data", ""),
|
|
1682
|
+
hash=memory.payload.get("hash"),
|
|
1683
|
+
created_at=memory.payload.get("created_at"),
|
|
1684
|
+
updated_at=memory.payload.get("updated_at"),
|
|
1685
|
+
).model_dump()
|
|
1686
|
+
|
|
1687
|
+
for key in promoted_payload_keys:
|
|
1688
|
+
if key in memory.payload:
|
|
1689
|
+
result_item[key] = memory.payload[key]
|
|
1690
|
+
|
|
1691
|
+
additional_metadata = {k: v for k, v in memory.payload.items() if k not in core_and_promoted_keys}
|
|
1692
|
+
if additional_metadata:
|
|
1693
|
+
result_item["metadata"] = additional_metadata
|
|
1694
|
+
|
|
1695
|
+
return result_item
|
|
1696
|
+
|
|
1697
|
+
async def get_all(
|
|
1698
|
+
self,
|
|
1699
|
+
*,
|
|
1700
|
+
user_id: Optional[str] = None,
|
|
1701
|
+
agent_id: Optional[str] = None,
|
|
1702
|
+
run_id: Optional[str] = None,
|
|
1703
|
+
filters: Optional[Dict[str, Any]] = None,
|
|
1704
|
+
limit: int = 100,
|
|
1705
|
+
):
|
|
1706
|
+
"""
|
|
1707
|
+
List all memories.
|
|
1708
|
+
|
|
1709
|
+
Args:
|
|
1710
|
+
user_id (str, optional): user id
|
|
1711
|
+
agent_id (str, optional): agent id
|
|
1712
|
+
run_id (str, optional): run id
|
|
1713
|
+
filters (dict, optional): Additional custom key-value filters to apply to the search.
|
|
1714
|
+
These are merged with the ID-based scoping filters. For example,
|
|
1715
|
+
`filters={"actor_id": "some_user"}`.
|
|
1716
|
+
limit (int, optional): The maximum number of memories to return. Defaults to 100.
|
|
1717
|
+
|
|
1718
|
+
Returns:
|
|
1719
|
+
dict: A dictionary containing a list of memories under the "results" key,
|
|
1720
|
+
and potentially "relations" if graph store is enabled. For API v1.0,
|
|
1721
|
+
it might return a direct list (see deprecation warning).
|
|
1722
|
+
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", ...}]}`
|
|
1723
|
+
"""
|
|
1724
|
+
|
|
1725
|
+
_, effective_filters = _build_filters_and_metadata(
|
|
1726
|
+
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
|
1727
|
+
)
|
|
1728
|
+
|
|
1729
|
+
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
|
1730
|
+
raise ValueError(
|
|
1731
|
+
"When 'conversation_id' is not provided (classic mode), "
|
|
1732
|
+
"at least one of 'user_id', 'agent_id', or 'run_id' must be specified for get_all."
|
|
1733
|
+
)
|
|
1734
|
+
|
|
1735
|
+
keys, encoded_ids = process_telemetry_filters(effective_filters)
|
|
1736
|
+
capture_event(
|
|
1737
|
+
"mem0.get_all", self, {"limit": limit, "keys": keys, "encoded_ids": encoded_ids, "sync_type": "async"}
|
|
1738
|
+
)
|
|
1739
|
+
|
|
1740
|
+
vector_store_task = asyncio.create_task(self._get_all_from_vector_store(effective_filters, limit))
|
|
1741
|
+
|
|
1742
|
+
graph_task = None
|
|
1743
|
+
if self.enable_graph:
|
|
1744
|
+
graph_get_all = getattr(self.graph, "get_all", None)
|
|
1745
|
+
if callable(graph_get_all):
|
|
1746
|
+
if asyncio.iscoroutinefunction(graph_get_all):
|
|
1747
|
+
graph_task = asyncio.create_task(graph_get_all(effective_filters, limit))
|
|
1748
|
+
else:
|
|
1749
|
+
graph_task = asyncio.create_task(asyncio.to_thread(graph_get_all, effective_filters, limit))
|
|
1750
|
+
|
|
1751
|
+
results_dict = {}
|
|
1752
|
+
if graph_task:
|
|
1753
|
+
vector_store_result, graph_entities_result = await asyncio.gather(vector_store_task, graph_task)
|
|
1754
|
+
results_dict.update({"results": vector_store_result, "relations": graph_entities_result})
|
|
1755
|
+
else:
|
|
1756
|
+
results_dict.update({"results": await vector_store_task})
|
|
1757
|
+
|
|
1758
|
+
return results_dict
|
|
1759
|
+
|
|
1760
|
+
async def _get_all_from_vector_store(self, filters, limit):
|
|
1761
|
+
memories_result = await asyncio.to_thread(self.vector_store.list, filters=filters, limit=limit)
|
|
1762
|
+
|
|
1763
|
+
# Handle different vector store return formats by inspecting first element
|
|
1764
|
+
if isinstance(memories_result, (tuple, list)) and len(memories_result) > 0:
|
|
1765
|
+
first_element = memories_result[0]
|
|
1766
|
+
|
|
1767
|
+
# If first element is a container, unwrap one level
|
|
1768
|
+
if isinstance(first_element, (list, tuple)):
|
|
1769
|
+
actual_memories = first_element
|
|
1770
|
+
else:
|
|
1771
|
+
# First element is a memory object, structure is already flat
|
|
1772
|
+
actual_memories = memories_result
|
|
1773
|
+
else:
|
|
1774
|
+
actual_memories = memories_result
|
|
1775
|
+
|
|
1776
|
+
promoted_payload_keys = [
|
|
1777
|
+
"user_id",
|
|
1778
|
+
"agent_id",
|
|
1779
|
+
"run_id",
|
|
1780
|
+
"actor_id",
|
|
1781
|
+
"role",
|
|
1782
|
+
]
|
|
1783
|
+
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
|
1784
|
+
|
|
1785
|
+
formatted_memories = []
|
|
1786
|
+
for mem in actual_memories:
|
|
1787
|
+
memory_item_dict = MemoryItem(
|
|
1788
|
+
id=mem.id,
|
|
1789
|
+
memory=mem.payload.get("data", ""),
|
|
1790
|
+
hash=mem.payload.get("hash"),
|
|
1791
|
+
created_at=mem.payload.get("created_at"),
|
|
1792
|
+
updated_at=mem.payload.get("updated_at"),
|
|
1793
|
+
).model_dump(exclude={"score"})
|
|
1794
|
+
|
|
1795
|
+
for key in promoted_payload_keys:
|
|
1796
|
+
if key in mem.payload:
|
|
1797
|
+
memory_item_dict[key] = mem.payload[key]
|
|
1798
|
+
|
|
1799
|
+
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
|
1800
|
+
if additional_metadata:
|
|
1801
|
+
memory_item_dict["metadata"] = additional_metadata
|
|
1802
|
+
|
|
1803
|
+
formatted_memories.append(memory_item_dict)
|
|
1804
|
+
|
|
1805
|
+
return formatted_memories
|
|
1806
|
+
|
|
1807
|
+
async def search(
|
|
1808
|
+
self,
|
|
1809
|
+
query: str,
|
|
1810
|
+
*,
|
|
1811
|
+
user_id: Optional[str] = None,
|
|
1812
|
+
agent_id: Optional[str] = None,
|
|
1813
|
+
run_id: Optional[str] = None,
|
|
1814
|
+
limit: int = 100,
|
|
1815
|
+
filters: Optional[Dict[str, Any]] = None,
|
|
1816
|
+
threshold: Optional[float] = None,
|
|
1817
|
+
metadata_filters: Optional[Dict[str, Any]] = None,
|
|
1818
|
+
rerank: bool = True,
|
|
1819
|
+
):
|
|
1820
|
+
"""
|
|
1821
|
+
Searches for memories based on a query
|
|
1822
|
+
Args:
|
|
1823
|
+
query (str): Query to search for.
|
|
1824
|
+
user_id (str, optional): ID of the user to search for. Defaults to None.
|
|
1825
|
+
agent_id (str, optional): ID of the agent to search for. Defaults to None.
|
|
1826
|
+
run_id (str, optional): ID of the run to search for. Defaults to None.
|
|
1827
|
+
limit (int, optional): Limit the number of results. Defaults to 100.
|
|
1828
|
+
filters (dict, optional): Legacy filters to apply to the search. Defaults to None.
|
|
1829
|
+
threshold (float, optional): Minimum score for a memory to be included in the results. Defaults to None.
|
|
1830
|
+
filters (dict, optional): Enhanced metadata filtering with operators:
|
|
1831
|
+
- {"key": "value"} - exact match
|
|
1832
|
+
- {"key": {"eq": "value"}} - equals
|
|
1833
|
+
- {"key": {"ne": "value"}} - not equals
|
|
1834
|
+
- {"key": {"in": ["val1", "val2"]}} - in list
|
|
1835
|
+
- {"key": {"nin": ["val1", "val2"]}} - not in list
|
|
1836
|
+
- {"key": {"gt": 10}} - greater than
|
|
1837
|
+
- {"key": {"gte": 10}} - greater than or equal
|
|
1838
|
+
- {"key": {"lt": 10}} - less than
|
|
1839
|
+
- {"key": {"lte": 10}} - less than or equal
|
|
1840
|
+
- {"key": {"contains": "text"}} - contains text
|
|
1841
|
+
- {"key": {"icontains": "text"}} - case-insensitive contains
|
|
1842
|
+
- {"key": "*"} - wildcard match (any value)
|
|
1843
|
+
- {"AND": [filter1, filter2]} - logical AND
|
|
1844
|
+
- {"OR": [filter1, filter2]} - logical OR
|
|
1845
|
+
- {"NOT": [filter1]} - logical NOT
|
|
1846
|
+
|
|
1847
|
+
Returns:
|
|
1848
|
+
dict: A dictionary containing the search results, typically under a "results" key,
|
|
1849
|
+
and potentially "relations" if graph store is enabled.
|
|
1850
|
+
Example for v1.1+: `{"results": [{"id": "...", "memory": "...", "score": 0.8, ...}]}`
|
|
1851
|
+
"""
|
|
1852
|
+
|
|
1853
|
+
_, effective_filters = _build_filters_and_metadata(
|
|
1854
|
+
user_id=user_id, agent_id=agent_id, run_id=run_id, input_filters=filters
|
|
1855
|
+
)
|
|
1856
|
+
|
|
1857
|
+
if not any(key in effective_filters for key in ("user_id", "agent_id", "run_id")):
|
|
1858
|
+
raise ValueError("at least one of 'user_id', 'agent_id', or 'run_id' must be specified ")
|
|
1859
|
+
|
|
1860
|
+
# Apply enhanced metadata filtering if advanced operators are detected
|
|
1861
|
+
if filters and self._has_advanced_operators(filters):
|
|
1862
|
+
processed_filters = self._process_metadata_filters(filters)
|
|
1863
|
+
effective_filters.update(processed_filters)
|
|
1864
|
+
elif filters:
|
|
1865
|
+
# Simple filters, merge directly
|
|
1866
|
+
effective_filters.update(filters)
|
|
1867
|
+
|
|
1868
|
+
keys, encoded_ids = process_telemetry_filters(effective_filters)
|
|
1869
|
+
capture_event(
|
|
1870
|
+
"mem0.search",
|
|
1871
|
+
self,
|
|
1872
|
+
{
|
|
1873
|
+
"limit": limit,
|
|
1874
|
+
"version": self.api_version,
|
|
1875
|
+
"keys": keys,
|
|
1876
|
+
"encoded_ids": encoded_ids,
|
|
1877
|
+
"sync_type": "async",
|
|
1878
|
+
"threshold": threshold,
|
|
1879
|
+
"advanced_filters": bool(filters and self._has_advanced_operators(filters)),
|
|
1880
|
+
},
|
|
1881
|
+
)
|
|
1882
|
+
|
|
1883
|
+
vector_store_task = asyncio.create_task(self._search_vector_store(query, effective_filters, limit, threshold))
|
|
1884
|
+
|
|
1885
|
+
graph_task = None
|
|
1886
|
+
if self.enable_graph:
|
|
1887
|
+
if hasattr(self.graph.search, "__await__"): # Check if graph search is async
|
|
1888
|
+
graph_task = asyncio.create_task(self.graph.search(query, effective_filters, limit))
|
|
1889
|
+
else:
|
|
1890
|
+
graph_task = asyncio.create_task(asyncio.to_thread(self.graph.search, query, effective_filters, limit))
|
|
1891
|
+
|
|
1892
|
+
if graph_task:
|
|
1893
|
+
original_memories, graph_entities = await asyncio.gather(vector_store_task, graph_task)
|
|
1894
|
+
else:
|
|
1895
|
+
original_memories = await vector_store_task
|
|
1896
|
+
graph_entities = None
|
|
1897
|
+
|
|
1898
|
+
# Apply reranking if enabled and reranker is available
|
|
1899
|
+
if rerank and self.reranker and original_memories:
|
|
1900
|
+
try:
|
|
1901
|
+
# Run reranking in thread pool to avoid blocking async loop
|
|
1902
|
+
reranked_memories = await asyncio.to_thread(
|
|
1903
|
+
self.reranker.rerank, query, original_memories, limit
|
|
1904
|
+
)
|
|
1905
|
+
original_memories = reranked_memories
|
|
1906
|
+
except Exception as e:
|
|
1907
|
+
logger.warning(f"Reranking failed, using original results: {e}")
|
|
1908
|
+
|
|
1909
|
+
if self.enable_graph:
|
|
1910
|
+
return {"results": original_memories, "relations": graph_entities}
|
|
1911
|
+
|
|
1912
|
+
return {"results": original_memories}
|
|
1913
|
+
|
|
1914
|
+
async def _search_vector_store(self, query, filters, limit, threshold: Optional[float] = None):
|
|
1915
|
+
embeddings = await asyncio.to_thread(self.embedding_model.embed, query, "search")
|
|
1916
|
+
memories = await asyncio.to_thread(
|
|
1917
|
+
self.vector_store.search, query=query, vectors=embeddings, limit=limit, filters=filters
|
|
1918
|
+
)
|
|
1919
|
+
|
|
1920
|
+
promoted_payload_keys = [
|
|
1921
|
+
"user_id",
|
|
1922
|
+
"agent_id",
|
|
1923
|
+
"run_id",
|
|
1924
|
+
"actor_id",
|
|
1925
|
+
"role",
|
|
1926
|
+
]
|
|
1927
|
+
|
|
1928
|
+
core_and_promoted_keys = {"data", "hash", "created_at", "updated_at", "id", *promoted_payload_keys}
|
|
1929
|
+
|
|
1930
|
+
original_memories = []
|
|
1931
|
+
for mem in memories:
|
|
1932
|
+
memory_item_dict = MemoryItem(
|
|
1933
|
+
id=mem.id,
|
|
1934
|
+
memory=mem.payload.get("data", ""),
|
|
1935
|
+
hash=mem.payload.get("hash"),
|
|
1936
|
+
created_at=mem.payload.get("created_at"),
|
|
1937
|
+
updated_at=mem.payload.get("updated_at"),
|
|
1938
|
+
score=mem.score,
|
|
1939
|
+
).model_dump()
|
|
1940
|
+
|
|
1941
|
+
for key in promoted_payload_keys:
|
|
1942
|
+
if key in mem.payload:
|
|
1943
|
+
memory_item_dict[key] = mem.payload[key]
|
|
1944
|
+
|
|
1945
|
+
additional_metadata = {k: v for k, v in mem.payload.items() if k not in core_and_promoted_keys}
|
|
1946
|
+
if additional_metadata:
|
|
1947
|
+
memory_item_dict["metadata"] = additional_metadata
|
|
1948
|
+
|
|
1949
|
+
if threshold is None or mem.score >= threshold:
|
|
1950
|
+
original_memories.append(memory_item_dict)
|
|
1951
|
+
|
|
1952
|
+
return original_memories
|
|
1953
|
+
|
|
1954
|
+
async def update(self, memory_id, data):
|
|
1955
|
+
"""
|
|
1956
|
+
Update a memory by ID asynchronously.
|
|
1957
|
+
|
|
1958
|
+
Args:
|
|
1959
|
+
memory_id (str): ID of the memory to update.
|
|
1960
|
+
data (str): New content to update the memory with.
|
|
1961
|
+
|
|
1962
|
+
Returns:
|
|
1963
|
+
dict: Success message indicating the memory was updated.
|
|
1964
|
+
|
|
1965
|
+
Example:
|
|
1966
|
+
>>> await m.update(memory_id="mem_123", data="Likes to play tennis on weekends")
|
|
1967
|
+
{'message': 'Memory updated successfully!'}
|
|
1968
|
+
"""
|
|
1969
|
+
capture_event("mem0.update", self, {"memory_id": memory_id, "sync_type": "async"})
|
|
1970
|
+
|
|
1971
|
+
embeddings = await asyncio.to_thread(self.embedding_model.embed, data, "update")
|
|
1972
|
+
existing_embeddings = {data: embeddings}
|
|
1973
|
+
|
|
1974
|
+
await self._update_memory(memory_id, data, existing_embeddings)
|
|
1975
|
+
return {"message": "Memory updated successfully!"}
|
|
1976
|
+
|
|
1977
|
+
async def delete(self, memory_id):
|
|
1978
|
+
"""
|
|
1979
|
+
Delete a memory by ID asynchronously.
|
|
1980
|
+
|
|
1981
|
+
Args:
|
|
1982
|
+
memory_id (str): ID of the memory to delete.
|
|
1983
|
+
"""
|
|
1984
|
+
capture_event("mem0.delete", self, {"memory_id": memory_id, "sync_type": "async"})
|
|
1985
|
+
await self._delete_memory(memory_id)
|
|
1986
|
+
return {"message": "Memory deleted successfully!"}
|
|
1987
|
+
|
|
1988
|
+
async def delete_all(self, user_id=None, agent_id=None, run_id=None):
|
|
1989
|
+
"""
|
|
1990
|
+
Delete all memories asynchronously.
|
|
1991
|
+
|
|
1992
|
+
Args:
|
|
1993
|
+
user_id (str, optional): ID of the user to delete memories for. Defaults to None.
|
|
1994
|
+
agent_id (str, optional): ID of the agent to delete memories for. Defaults to None.
|
|
1995
|
+
run_id (str, optional): ID of the run to delete memories for. Defaults to None.
|
|
1996
|
+
"""
|
|
1997
|
+
filters = {}
|
|
1998
|
+
if user_id:
|
|
1999
|
+
filters["user_id"] = user_id
|
|
2000
|
+
if agent_id:
|
|
2001
|
+
filters["agent_id"] = agent_id
|
|
2002
|
+
if run_id:
|
|
2003
|
+
filters["run_id"] = run_id
|
|
2004
|
+
|
|
2005
|
+
if not filters:
|
|
2006
|
+
raise ValueError(
|
|
2007
|
+
"At least one filter is required to delete all memories. If you want to delete all memories, use the `reset()` method."
|
|
2008
|
+
)
|
|
2009
|
+
|
|
2010
|
+
keys, encoded_ids = process_telemetry_filters(filters)
|
|
2011
|
+
capture_event("mem0.delete_all", self, {"keys": keys, "encoded_ids": encoded_ids, "sync_type": "async"})
|
|
2012
|
+
memories = await asyncio.to_thread(self.vector_store.list, filters=filters)
|
|
2013
|
+
|
|
2014
|
+
delete_tasks = []
|
|
2015
|
+
for memory in memories[0]:
|
|
2016
|
+
delete_tasks.append(self._delete_memory(memory.id))
|
|
2017
|
+
|
|
2018
|
+
await asyncio.gather(*delete_tasks)
|
|
2019
|
+
|
|
2020
|
+
logger.info(f"Deleted {len(memories[0])} memories")
|
|
2021
|
+
|
|
2022
|
+
if self.enable_graph:
|
|
2023
|
+
await asyncio.to_thread(self.graph.delete_all, filters)
|
|
2024
|
+
|
|
2025
|
+
return {"message": "Memories deleted successfully!"}
|
|
2026
|
+
|
|
2027
|
+
async def history(self, memory_id):
|
|
2028
|
+
"""
|
|
2029
|
+
Get the history of changes for a memory by ID asynchronously.
|
|
2030
|
+
|
|
2031
|
+
Args:
|
|
2032
|
+
memory_id (str): ID of the memory to get history for.
|
|
2033
|
+
|
|
2034
|
+
Returns:
|
|
2035
|
+
list: List of changes for the memory.
|
|
2036
|
+
"""
|
|
2037
|
+
capture_event("mem0.history", self, {"memory_id": memory_id, "sync_type": "async"})
|
|
2038
|
+
return await asyncio.to_thread(self.db.get_history, memory_id)
|
|
2039
|
+
|
|
2040
|
+
async def _create_memory(self, data, existing_embeddings, metadata=None):
|
|
2041
|
+
logger.debug(f"Creating memory with {data=}")
|
|
2042
|
+
if data in existing_embeddings:
|
|
2043
|
+
embeddings = existing_embeddings[data]
|
|
2044
|
+
else:
|
|
2045
|
+
embeddings = await asyncio.to_thread(self.embedding_model.embed, data, memory_action="add")
|
|
2046
|
+
|
|
2047
|
+
memory_id = str(uuid.uuid4())
|
|
2048
|
+
metadata = metadata or {}
|
|
2049
|
+
metadata["data"] = data
|
|
2050
|
+
metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
|
|
2051
|
+
metadata["created_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
|
|
2052
|
+
|
|
2053
|
+
await asyncio.to_thread(
|
|
2054
|
+
self.vector_store.insert,
|
|
2055
|
+
vectors=[embeddings],
|
|
2056
|
+
ids=[memory_id],
|
|
2057
|
+
payloads=[metadata],
|
|
2058
|
+
)
|
|
2059
|
+
|
|
2060
|
+
await asyncio.to_thread(
|
|
2061
|
+
self.db.add_history,
|
|
2062
|
+
memory_id,
|
|
2063
|
+
None,
|
|
2064
|
+
data,
|
|
2065
|
+
"ADD",
|
|
2066
|
+
created_at=metadata.get("created_at"),
|
|
2067
|
+
actor_id=metadata.get("actor_id"),
|
|
2068
|
+
role=metadata.get("role"),
|
|
2069
|
+
)
|
|
2070
|
+
|
|
2071
|
+
return memory_id
|
|
2072
|
+
|
|
2073
|
+
async def _create_procedural_memory(self, messages, metadata=None, llm=None, prompt=None):
|
|
2074
|
+
"""
|
|
2075
|
+
Create a procedural memory asynchronously
|
|
2076
|
+
|
|
2077
|
+
Args:
|
|
2078
|
+
messages (list): List of messages to create a procedural memory from.
|
|
2079
|
+
metadata (dict): Metadata to create a procedural memory from.
|
|
2080
|
+
llm (llm, optional): LLM to use for the procedural memory creation. Defaults to None.
|
|
2081
|
+
prompt (str, optional): Prompt to use for the procedural memory creation. Defaults to None.
|
|
2082
|
+
"""
|
|
2083
|
+
try:
|
|
2084
|
+
from langchain_core.messages.utils import (
|
|
2085
|
+
convert_to_messages, # type: ignore
|
|
2086
|
+
)
|
|
2087
|
+
except Exception:
|
|
2088
|
+
logger.error(
|
|
2089
|
+
"Import error while loading langchain-core. Please install 'langchain-core' to use procedural memory."
|
|
2090
|
+
)
|
|
2091
|
+
raise
|
|
2092
|
+
|
|
2093
|
+
logger.info("Creating procedural memory")
|
|
2094
|
+
|
|
2095
|
+
parsed_messages = [
|
|
2096
|
+
{"role": "system", "content": prompt or PROCEDURAL_MEMORY_SYSTEM_PROMPT},
|
|
2097
|
+
*messages,
|
|
2098
|
+
{"role": "user", "content": "Create procedural memory of the above conversation."},
|
|
2099
|
+
]
|
|
2100
|
+
|
|
2101
|
+
try:
|
|
2102
|
+
if llm is not None:
|
|
2103
|
+
parsed_messages = convert_to_messages(parsed_messages)
|
|
2104
|
+
response = await asyncio.to_thread(llm.invoke, input=parsed_messages)
|
|
2105
|
+
procedural_memory = response.content
|
|
2106
|
+
else:
|
|
2107
|
+
procedural_memory = await asyncio.to_thread(self.llm.generate_response, messages=parsed_messages)
|
|
2108
|
+
procedural_memory = remove_code_blocks(procedural_memory)
|
|
2109
|
+
|
|
2110
|
+
except Exception as e:
|
|
2111
|
+
logger.error(f"Error generating procedural memory summary: {e}")
|
|
2112
|
+
raise
|
|
2113
|
+
|
|
2114
|
+
if metadata is None:
|
|
2115
|
+
raise ValueError("Metadata cannot be done for procedural memory.")
|
|
2116
|
+
|
|
2117
|
+
metadata["memory_type"] = MemoryType.PROCEDURAL.value
|
|
2118
|
+
embeddings = await asyncio.to_thread(self.embedding_model.embed, procedural_memory, memory_action="add")
|
|
2119
|
+
memory_id = await self._create_memory(procedural_memory, {procedural_memory: embeddings}, metadata=metadata)
|
|
2120
|
+
capture_event("mem0._create_procedural_memory", self, {"memory_id": memory_id, "sync_type": "async"})
|
|
2121
|
+
|
|
2122
|
+
result = {"results": [{"id": memory_id, "memory": procedural_memory, "event": "ADD"}]}
|
|
2123
|
+
|
|
2124
|
+
return result
|
|
2125
|
+
|
|
2126
|
+
async def _update_memory(self, memory_id, data, existing_embeddings, metadata=None):
|
|
2127
|
+
logger.info(f"Updating memory with {data=}")
|
|
2128
|
+
|
|
2129
|
+
try:
|
|
2130
|
+
existing_memory = await asyncio.to_thread(self.vector_store.get, vector_id=memory_id)
|
|
2131
|
+
except Exception:
|
|
2132
|
+
logger.error(f"Error getting memory with ID {memory_id} during update.")
|
|
2133
|
+
raise ValueError(f"Error getting memory with ID {memory_id}. Please provide a valid 'memory_id'")
|
|
2134
|
+
|
|
2135
|
+
prev_value = existing_memory.payload.get("data")
|
|
2136
|
+
|
|
2137
|
+
new_metadata = deepcopy(metadata) if metadata is not None else {}
|
|
2138
|
+
|
|
2139
|
+
new_metadata["data"] = data
|
|
2140
|
+
new_metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
|
|
2141
|
+
new_metadata["created_at"] = existing_memory.payload.get("created_at")
|
|
2142
|
+
new_metadata["updated_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
|
|
2143
|
+
|
|
2144
|
+
# Preserve session identifiers from existing memory only if not provided in new metadata
|
|
2145
|
+
if "user_id" not in new_metadata and "user_id" in existing_memory.payload:
|
|
2146
|
+
new_metadata["user_id"] = existing_memory.payload["user_id"]
|
|
2147
|
+
if "agent_id" not in new_metadata and "agent_id" in existing_memory.payload:
|
|
2148
|
+
new_metadata["agent_id"] = existing_memory.payload["agent_id"]
|
|
2149
|
+
if "run_id" not in new_metadata and "run_id" in existing_memory.payload:
|
|
2150
|
+
new_metadata["run_id"] = existing_memory.payload["run_id"]
|
|
2151
|
+
|
|
2152
|
+
if "actor_id" not in new_metadata and "actor_id" in existing_memory.payload:
|
|
2153
|
+
new_metadata["actor_id"] = existing_memory.payload["actor_id"]
|
|
2154
|
+
if "role" not in new_metadata and "role" in existing_memory.payload:
|
|
2155
|
+
new_metadata["role"] = existing_memory.payload["role"]
|
|
2156
|
+
|
|
2157
|
+
if data in existing_embeddings:
|
|
2158
|
+
embeddings = existing_embeddings[data]
|
|
2159
|
+
else:
|
|
2160
|
+
embeddings = await asyncio.to_thread(self.embedding_model.embed, data, "update")
|
|
2161
|
+
|
|
2162
|
+
await asyncio.to_thread(
|
|
2163
|
+
self.vector_store.update,
|
|
2164
|
+
vector_id=memory_id,
|
|
2165
|
+
vector=embeddings,
|
|
2166
|
+
payload=new_metadata,
|
|
2167
|
+
)
|
|
2168
|
+
logger.info(f"Updating memory with ID {memory_id=} with {data=}")
|
|
2169
|
+
|
|
2170
|
+
await asyncio.to_thread(
|
|
2171
|
+
self.db.add_history,
|
|
2172
|
+
memory_id,
|
|
2173
|
+
prev_value,
|
|
2174
|
+
data,
|
|
2175
|
+
"UPDATE",
|
|
2176
|
+
created_at=new_metadata["created_at"],
|
|
2177
|
+
updated_at=new_metadata["updated_at"],
|
|
2178
|
+
actor_id=new_metadata.get("actor_id"),
|
|
2179
|
+
role=new_metadata.get("role"),
|
|
2180
|
+
)
|
|
2181
|
+
return memory_id
|
|
2182
|
+
|
|
2183
|
+
async def _delete_memory(self, memory_id):
|
|
2184
|
+
logger.info(f"Deleting memory with {memory_id=}")
|
|
2185
|
+
existing_memory = await asyncio.to_thread(self.vector_store.get, vector_id=memory_id)
|
|
2186
|
+
prev_value = existing_memory.payload.get("data", "")
|
|
2187
|
+
|
|
2188
|
+
await asyncio.to_thread(self.vector_store.delete, vector_id=memory_id)
|
|
2189
|
+
await asyncio.to_thread(
|
|
2190
|
+
self.db.add_history,
|
|
2191
|
+
memory_id,
|
|
2192
|
+
prev_value,
|
|
2193
|
+
None,
|
|
2194
|
+
"DELETE",
|
|
2195
|
+
actor_id=existing_memory.payload.get("actor_id"),
|
|
2196
|
+
role=existing_memory.payload.get("role"),
|
|
2197
|
+
is_deleted=1,
|
|
2198
|
+
)
|
|
2199
|
+
|
|
2200
|
+
return memory_id
|
|
2201
|
+
|
|
2202
|
+
async def reset(self):
|
|
2203
|
+
"""
|
|
2204
|
+
Reset the memory store asynchronously by:
|
|
2205
|
+
Deletes the vector store collection
|
|
2206
|
+
Resets the database
|
|
2207
|
+
Recreates the vector store with a new client
|
|
2208
|
+
"""
|
|
2209
|
+
logger.warning("Resetting all memories")
|
|
2210
|
+
await asyncio.to_thread(self.vector_store.delete_col)
|
|
2211
|
+
|
|
2212
|
+
gc.collect()
|
|
2213
|
+
|
|
2214
|
+
if hasattr(self.vector_store, "client") and hasattr(self.vector_store.client, "close"):
|
|
2215
|
+
await asyncio.to_thread(self.vector_store.client.close)
|
|
2216
|
+
|
|
2217
|
+
if hasattr(self.db, "connection") and self.db.connection:
|
|
2218
|
+
await asyncio.to_thread(lambda: self.db.connection.execute("DROP TABLE IF EXISTS history"))
|
|
2219
|
+
await asyncio.to_thread(self.db.connection.close)
|
|
2220
|
+
|
|
2221
|
+
self.db = SQLiteManager(self.config.history_db_path)
|
|
2222
|
+
|
|
2223
|
+
self.vector_store = VectorStoreFactory.create(
|
|
2224
|
+
self.config.vector_store.provider, self.config.vector_store.config
|
|
2225
|
+
)
|
|
2226
|
+
capture_event("mem0.reset", self, {"sync_type": "async"})
|
|
2227
|
+
|
|
2228
|
+
async def chat(self, query):
|
|
2229
|
+
raise NotImplementedError("Chat function not implemented yet.")
|