agent-mcp 0.1.2__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,325 @@
1
+ """
2
+ Adapter for Langchain agents to work with MCP.
3
+ """
4
+
5
+ import asyncio
6
+ from typing import Dict, Any, Optional
7
+ from .mcp_agent import MCPAgent
8
+ from .mcp_transport import MCPTransport
9
+ from langchain.agents import AgentExecutor
10
+ from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
11
+ import traceback
12
+ import json
13
+
14
+ # --- Setup Logger ---
15
+ import logging
16
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
17
+ logger = logging.getLogger(__name__)
18
+ # --- End Logger Setup ---
19
+
20
+ class LangchainMCPAdapter(MCPAgent):
21
+ """Adapter for Langchain agents to work with MCP"""
22
+
23
+ def __init__(self,
24
+ name: str,
25
+ transport: Optional[MCPTransport] = None,
26
+ client_mode: bool = False,
27
+ langchain_agent: OpenAIFunctionsAgent = None,
28
+ agent_executor: AgentExecutor = None,
29
+ system_message: str = "",
30
+ **kwargs):
31
+ # Set default system message if none provided
32
+ if not system_message:
33
+ system_message = "I am a Langchain agent that can help with various tasks."
34
+
35
+ # Initialize parent with system message
36
+ super().__init__(name=name, system_message=system_message, **kwargs)
37
+
38
+ # Set instance attributes
39
+ self.transport = transport
40
+ self.client_mode = client_mode
41
+ self.langchain_agent = langchain_agent
42
+ self.agent_executor = agent_executor
43
+ self.task_queue = asyncio.Queue()
44
+ self._task_processor = None
45
+ self._message_processor = None
46
+ self._processed_tasks = set() # For idempotency check
47
+
48
+ async def connect_to_server(self, server_url: str):
49
+ """Connect to another agent's server"""
50
+ if not self.client_mode or not self.transport:
51
+ raise ValueError("Agent not configured for client mode")
52
+
53
+ # Register with the server
54
+ registration = {
55
+ "type": "registration",
56
+ "agent_id": self.mcp_id,
57
+ "name": self.name,
58
+ "capabilities": []
59
+ }
60
+
61
+ response = await self.transport.send_message(server_url, registration)
62
+ if response.get("status") == "ok":
63
+ print(f"Successfully connected to server at {server_url}")
64
+
65
+ async def handle_incoming_message(self, message: Dict[str, Any], message_id: Optional[str] = None):
66
+ """Handle incoming messages from other agents"""
67
+ # First check if type is directly in the message
68
+ msg_type = message.get("type")
69
+
70
+ # If not, check if it's inside the content field
71
+ if not msg_type and "content" in message and isinstance(message["content"], dict):
72
+ msg_type = message["content"].get("type")
73
+
74
+ sender = message.get("sender", "Unknown")
75
+ task_id = message.get("task_id") or message.get("content", {}).get("task_id") if isinstance(message.get("content"), dict) else message.get("task_id")
76
+ logger.info(f"[{self.name}] Received message (ID: {message_id}) of type '{msg_type}' from {sender} (Task ID: {task_id})")
77
+
78
+ # --- Idempotency Check ---
79
+ if not super()._should_process_message(message):
80
+ # If skipped, acknowledge and stop
81
+ if message_id and self.transport:
82
+ asyncio.create_task(self.transport.acknowledge_message(self.name, message_id))
83
+ logger.info(f"[{self.name}] Acknowledged duplicate task {task_id} (msg_id: {message_id})")
84
+ return
85
+ # --- End Idempotency Check ---
86
+
87
+ if msg_type == "task":
88
+ logger.info(f"[{self.name}] Queueing task {task_id} (message_id: {message_id}) from {sender}")
89
+ content = message.get("content", {})
90
+ task_id = content.get("task_id") or message.get("task_id")
91
+ description = content.get("description") or message.get("description")
92
+ reply_to = content.get("reply_to")
93
+
94
+ if not task_id or not description:
95
+ print(f"[ERROR] {self.name}: Task message missing required fields: {message}")
96
+ return
97
+
98
+ # Add message_id to task
99
+ message['message_id'] = message_id
100
+
101
+ # Queue task for async processing
102
+ print(f"[DEBUG] {self.name}: Queueing task {task_id} with message_id {message_id} for processing")
103
+ await self.task_queue.put(message)
104
+ print(f"[DEBUG] {self.name}: Successfully queued task {task_id}")
105
+ else:
106
+ print(f"[WARN] {self.name}: Received unknown message type: {msg_type}")
107
+
108
+ async def _handle_task(self, message: Dict[str, Any]):
109
+ """Handle incoming task"""
110
+ print(f"{self.name}: Received task: {message}")
111
+ await self.task_queue.put(message)
112
+ return {"status": "ok"}
113
+
114
+ async def process_messages(self):
115
+ print(f"[{self.name}] Message processor loop started.")
116
+ while True:
117
+ try:
118
+ print(f"[{self.name}] Waiting for message from queue...")
119
+ message, message_id = await self.transport.receive_message()
120
+ print(f"{self.name}: Processing message {message_id}: {message}")
121
+
122
+ # Skip None messages
123
+ if message is None:
124
+ print(f"[{self.name}] Received None message, skipping...")
125
+ continue
126
+
127
+ await self.handle_incoming_message(message, message_id)
128
+ except asyncio.CancelledError:
129
+ print(f"[{self.name}] Message processor cancelled.")
130
+ break
131
+ except Exception as e:
132
+ print(f"[{self.name}] Error in message processor: {e}")
133
+ traceback.print_exc()
134
+ break
135
+ except Exception as e:
136
+ print(f"[{self.name}] Error in message processor: {e}")
137
+ await asyncio.sleep(1)
138
+ print(f"[{self.name}] Message processor loop finished.")
139
+
140
+ async def process_tasks(self):
141
+ print(f"[{self.name}] Task processor loop started.")
142
+ while True:
143
+ try:
144
+ print(f"[{self.name}] Waiting for task from queue...")
145
+ task = await self.task_queue.get()
146
+ print(f"\n[{self.name}] Got task from queue: {task}")
147
+
148
+ if not isinstance(task, dict):
149
+ print(f"[ERROR] {self.name}: Task is not a dictionary: {task}")
150
+ self.task_queue.task_done()
151
+ continue
152
+
153
+ # Get task details from content field if present
154
+ content = task.get("content", {})
155
+ task_desc = content.get("description") or task.get("description")
156
+ task_id = content.get("task_id") or task.get("task_id")
157
+ task_type = content.get("type") or task.get("type")
158
+ reply_to = content.get("reply_to") or task.get("reply_to")
159
+
160
+ print(f"[DEBUG] {self.name}: Task details:")
161
+ print(f" - Type: {task_type}")
162
+ print(f" - Task ID: {task_id}")
163
+ print(f" - Reply To: {reply_to}")
164
+ print(f" - Description: {task_desc}")
165
+
166
+ if not task_desc or not task_id:
167
+ print(f"[ERROR] {self.name}: Task is missing description or task_id")
168
+ self.task_queue.task_done()
169
+ continue
170
+
171
+ if task_type != "task":
172
+ print(f"[ERROR] {self.name}: Invalid task type: {task_type}")
173
+ self.task_queue.task_done()
174
+ continue
175
+
176
+ print(f"[DEBUG] {self.name}: Starting execution of task {task_id}")
177
+ # Execute task using Langchain agent
178
+ try:
179
+ print(f"[DEBUG] {self.name}: Calling agent_executor.arun with task description")
180
+ # Execute the task using the Langchain agent executor
181
+ result = await self.agent_executor.arun(task_desc)
182
+ print(f"[DEBUG] {self.name}: Agent execution completed. Result type: {type(result)}")
183
+ except Exception as e:
184
+ print(f"[ERROR] {self.name}: Agent execution failed: {e}")
185
+ print(f"[ERROR] {self.name}: Error type: {type(e)}")
186
+ traceback.print_exc() # Print the full traceback for detailed debugging
187
+ # Provide a user-friendly error message as the result
188
+ result = f"Agent execution failed due to an error: {str(e)}"
189
+
190
+ # Ensure result is always a string before sending
191
+ if not isinstance(result, str):
192
+ try:
193
+ result_str = json.dumps(result) # Try serializing if complex type
194
+ except (TypeError, OverflowError):
195
+ result_str = str(result) # Fallback to string conversion
196
+ else:
197
+ result_str = result
198
+
199
+ print(f"[DEBUG] {self.name}: Sending task result for task_id: {task_id}")
200
+ # Send the result back
201
+ if reply_to and self.transport:
202
+ try:
203
+ # --- FIX: Extract agent name from reply_to URL ---
204
+ try:
205
+ target_agent_name = reply_to.split('/')[-1]
206
+ except IndexError:
207
+ print(f"[ERROR] {self.name}: Could not extract agent name from reply_to URL: {reply_to}")
208
+ target_agent_name = reply_to # Fallback, though likely wrong
209
+
210
+ print(f"[DEBUG] {self.name}: Sending result to target agent: {target_agent_name} (extracted from {reply_to})")
211
+ # --- END FIX ---
212
+
213
+ await self.transport.send_message(
214
+ target_agent_name, # <<< Use extracted name, not full URL
215
+ {
216
+ "type": "task_result",
217
+ "task_id": task_id,
218
+ "result": result_str,
219
+ "sender": self.name,
220
+ "original_message_id": task.get('message_id') # Include original message ID
221
+ }
222
+ )
223
+ print(f"[DEBUG] {self.name}: Result sent successfully")
224
+
225
+ # Acknowledge task completion using message_id
226
+ message_id = task.get('message_id')
227
+ if message_id:
228
+ await self.transport.acknowledge_message(self.name, message_id)
229
+ print(f"[DEBUG] {self.name}: Task {task_id} acknowledged with message_id {message_id}")
230
+ else:
231
+ print(f"[WARN] {self.name}: No message_id for task {task_id}, cannot acknowledge")
232
+ except Exception as send_error:
233
+ print(f"[ERROR] {self.name}: Failed to send result: {str(send_error)}")
234
+ traceback.print_exc()
235
+ else:
236
+ print(f"[WARN] {self.name}: No reply_to URL in task {task_id}, cannot send result")
237
+
238
+ super()._mark_task_completed(task_id) # Call base class method
239
+
240
+ self.task_queue.task_done()
241
+ print(f"[DEBUG] {self.name}: Task {task_id} fully processed")
242
+
243
+ except Exception as e:
244
+ print(f"[ERROR] {self.name}: Error processing task: {e}")
245
+ traceback.print_exc()
246
+ await asyncio.sleep(1)
247
+ print(f"[{self.name}] Task processor loop finished.")
248
+
249
+ def _should_process_message(self, message: Dict[str, Any]) -> bool:
250
+ """Check if a message should be processed based on idempotency"""
251
+ task_id = message.get("content", {}).get("task_id") if isinstance(message.get("content"), dict) else message.get("task_id")
252
+ if task_id in self._processed_tasks:
253
+ logger.info(f"[{self.name}] Skipping duplicate task {task_id}")
254
+ return False
255
+ return True
256
+
257
+ def _mark_task_completed(self, task_id: str) -> None:
258
+ """Mark a task as completed for idempotency"""
259
+ self._processed_tasks.add(task_id)
260
+ logger.info(f"[{self.name}] Marked task {task_id} as completed")
261
+
262
+ async def run(self):
263
+ """Run the agent's main loop asynchronously."""
264
+ print(f"[{self.name}] Starting agent run loop...")
265
+
266
+ # Ensure transport is ready (polling should be started by HeterogeneousGroupChat)
267
+ if not self.transport:
268
+ print(f"[ERROR] {self.name}: Transport is not configured. Cannot run agent.")
269
+ return
270
+
271
+ # We no longer call connect_to_server here, as registration and polling start
272
+ # are handled by HeterogeneousGroupChat._register_and_start_agent
273
+ # if self.client_mode and hasattr(self.transport, 'connect'):
274
+ # print(f"[{self.name}] Client mode: connecting transport...")
275
+ # # Assuming connect handles polling start now
276
+ # await self.transport.connect(agent_name=self.name, token=self.transport.token)
277
+ # else:
278
+ # print(f"[{self.name}] Not in client mode or transport does not support connect. Assuming ready.")
279
+
280
+ # Start message and task processors as background tasks
281
+ try:
282
+ print(f"[{self.name}] Creating message and task processor tasks...")
283
+ self._message_processor = asyncio.create_task(self.process_messages())
284
+ self._task_processor = asyncio.create_task(self.process_tasks())
285
+ print(f"[{self.name}] Processor tasks created.")
286
+
287
+ # Wait for either task to complete (or be cancelled)
288
+ # This keeps the agent alive while processors are running
289
+ done, pending = await asyncio.wait(
290
+ [self._message_processor, self._task_processor],
291
+ return_when=asyncio.FIRST_COMPLETED,
292
+ )
293
+
294
+ print(f"[{self.name}] One of the processor tasks completed or was cancelled.")
295
+ # Handle completion or cancellation if needed
296
+ for task in done:
297
+ try:
298
+ # Check if task raised an exception
299
+ exc = task.exception()
300
+ if exc:
301
+ print(f"[{self.name}] Processor task ended with error: {exc}")
302
+ # Optionally re-raise or handle
303
+ except asyncio.CancelledError:
304
+ print(f"[{self.name}] Processor task was cancelled.")
305
+
306
+ # Cancel any pending tasks to ensure clean shutdown
307
+ for task in pending:
308
+ print(f"[{self.name}] Cancelling pending processor task...")
309
+ task.cancel()
310
+ try:
311
+ await task # Await cancellation
312
+ except asyncio.CancelledError:
313
+ pass # Expected
314
+
315
+ except Exception as e:
316
+ print(f"[ERROR] {self.name}: Unhandled exception in run loop: {e}")
317
+ traceback.print_exc()
318
+ finally:
319
+ print(f"[{self.name}] Agent run loop finished.")
320
+ # Ensure processors are stopped if they weren't already cancelled
321
+ if self._message_processor and not self._message_processor.done():
322
+ self._message_processor.cancel()
323
+ if self._task_processor and not self._task_processor.done():
324
+ self._task_processor.cancel()
325
+ # Note: Transport disconnect should be handled by HeterogeneousGroupChat.shutdown()
@@ -0,0 +1,325 @@
1
+ """
2
+ LangGraph MCP Adapter - Adapt LangGraph agents to work with MCP.
3
+
4
+ This module provides an adapter that allows LangGraph agents to work within
5
+ the Model Context Protocol (MCP) framework, enabling them to collaborate
6
+ with agents from other frameworks like Autogen and CrewAI.
7
+
8
+ Supports both workflow-based and tool-based LangGraph agents:
9
+ 1. Workflow-based: Uses StateGraph for defining agent behavior
10
+ 2. Tool-based: Uses LangChain tools and agent executors
11
+ """
12
+
13
+ import asyncio
14
+ import traceback
15
+ from typing import Dict, Any, Optional, Callable, List, Union
16
+ from langchain.tools import BaseTool
17
+ from langchain.agents import AgentExecutor
18
+ from langchain_openai import ChatOpenAI
19
+ from langchain.agents import create_openai_tools_agent
20
+ from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
21
+ from langgraph.graph import StateGraph
22
+ from .mcp_agent import MCPAgent
23
+ from .mcp_transport import HTTPTransport
24
+ from fastapi import FastAPI, Request
25
+ import uvicorn
26
+ from threading import Thread
27
+ import time
28
+
29
+ class LangGraphMCPAdapter(MCPAgent):
30
+ """
31
+ Adapter for LangGraph agents to work with MCP.
32
+
33
+ This adapter supports both:
34
+ 1. Workflow-based agents using StateGraph
35
+ 2. Tool-based agents using LangChain tools
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ name: str,
41
+ workflow: Optional[StateGraph] = None,
42
+ tools: Optional[List[BaseTool]] = None,
43
+ process_message: Optional[Callable] = None,
44
+ transport: Optional[HTTPTransport] = None,
45
+ client_mode: bool = True,
46
+ state_type: Optional[type] = None,
47
+ **kwargs
48
+ ):
49
+ """
50
+ Initialize the LangGraph MCP adapter.
51
+
52
+ Args:
53
+ name: Name of the agent
54
+ workflow: Optional StateGraph workflow for workflow-based agents
55
+ tools: Optional list of tools for tool-based agents
56
+ process_message: Optional custom message processing function
57
+ transport: Optional transport layer
58
+ client_mode: Whether to run in client mode
59
+ **kwargs: Additional arguments to pass to MCPAgent
60
+ """
61
+ # Initialize MCPAgent with transport
62
+ super().__init__(name=name, transport=transport, **kwargs)
63
+
64
+ if workflow and tools:
65
+ raise ValueError("Cannot specify both workflow and tools. Choose one pattern.")
66
+
67
+ if workflow:
68
+ # Workflow-based agent
69
+ self.workflow = workflow
70
+ self.state_type = state_type
71
+ self.executor = None
72
+ elif tools:
73
+ # Tool-based agent
74
+ llm = ChatOpenAI(temperature=0)
75
+ prompt = ChatPromptTemplate.from_messages([
76
+ ("system", "You are a helpful AI assistant that can use tools to accomplish tasks."),
77
+ ("human", "{input}"),
78
+ MessagesPlaceholder(variable_name="agent_scratchpad")
79
+ ])
80
+ agent = create_openai_tools_agent(llm, tools, prompt)
81
+ self.executor = AgentExecutor.from_agent_and_tools(
82
+ agent=agent,
83
+ tools=tools,
84
+ handle_parsing_errors=True
85
+ )
86
+ self.workflow = None
87
+ self.state_type = None
88
+ else:
89
+ raise ValueError("Must specify either workflow or tools")
90
+
91
+ self.custom_process_message = process_message
92
+ self.transport = transport
93
+ self.client_mode = client_mode
94
+ self.task_queue = asyncio.Queue()
95
+ self.state: Dict[str, Any] = {}
96
+ self.server_ready = asyncio.Event()
97
+
98
+ # Create FastAPI app for server mode
99
+ self.app = FastAPI()
100
+
101
+ @self.app.post("/message")
102
+ async def handle_message(request: Request):
103
+ return await self._handle_message(request)
104
+
105
+ @self.app.on_event("startup")
106
+ async def startup_event():
107
+ self.server_ready.set()
108
+
109
+ self.server_thread = None
110
+
111
+ async def _handle_message(self, request: Request):
112
+ """Handle incoming HTTP messages"""
113
+ try:
114
+ message = await request.json()
115
+ await self.task_queue.put(message)
116
+ return {"status": "ok"}
117
+ except Exception as e:
118
+ return {"status": "error", "message": str(e)}
119
+
120
+ async def process_messages(self):
121
+ """Process incoming messages from the transport layer"""
122
+ while True:
123
+ try:
124
+ message, message_id = await self.transport.receive_message()
125
+ print(f"{self.name}: Received message {message_id}: {message}")
126
+
127
+ if message and isinstance(message, dict):
128
+ # Add message_id to message for tracking
129
+ message['message_id'] = message_id
130
+
131
+ # Standardize message structure
132
+ if 'content' not in message and message.get('type') == 'task':
133
+ message = {
134
+ 'type': 'task',
135
+ 'content': {
136
+ 'task_id': message.get('task_id'),
137
+ 'description': message.get('description'),
138
+ 'type': 'task'
139
+ },
140
+ 'message_id': message_id,
141
+ 'from': message.get('from', 'unknown')
142
+ }
143
+
144
+ # --- Idempotency Check ---
145
+ if not super()._should_process_message(message):
146
+ if message_id and self.transport:
147
+ asyncio.create_task(self.transport.acknowledge_message(self.name, message_id))
148
+ print(f"[{self.name}] Acknowledged duplicate task {message.get('task_id')} (msg_id: {message_id})")
149
+ continue
150
+
151
+ if message.get('type') == 'task':
152
+ print(f"{self.name}: Queueing task with message_id {message_id}")
153
+ await self.task_queue.put(message)
154
+ elif self.custom_process_message:
155
+ await self.custom_process_message(self, message)
156
+ else:
157
+ print(f"{self.name}: Unknown message type: {message.get('type')}")
158
+ if message_id and self.transport:
159
+ await self.transport.acknowledge_message(self.name, message_id)
160
+ print(f"{self.name}: Acknowledged unknown message {message_id}")
161
+ except asyncio.CancelledError:
162
+ print(f"{self.name}: Message processor cancelled")
163
+ break
164
+ except Exception as e:
165
+ print(f"{self.name}: Error processing message: {e}")
166
+ traceback.print_exc()
167
+ await asyncio.sleep(1)
168
+
169
+ async def execute_task(self, task: Dict[str, Any]):
170
+ """Execute a task using either workflow or executor"""
171
+ try:
172
+ if self.workflow:
173
+ # Always initialize state as a dictionary for LangGraph workflows here.
174
+ # LangGraph itself handles the state type defined in StateGraph().
175
+ state_dict = {"message": task, "result": None}
176
+
177
+ # Run workflow
178
+ try:
179
+ print(f"{self.name}: Running workflow with initial state_dict: {state_dict}")
180
+ # Compile the workflow if not already compiled
181
+ if not hasattr(self, '_compiled_workflow'):
182
+ self._compiled_workflow = self.workflow.compile()
183
+ # Pass the initial state dict directly
184
+ final_state = await self._compiled_workflow.ainvoke(state_dict)
185
+ # Use the workflow's final state
186
+ result = final_state
187
+ print(f"{self.name}: Workflow finished with final_state: {result}")
188
+ return {"result": result, "error": None}
189
+ except Exception as e:
190
+ print(f"Error running workflow: {str(e)}")
191
+ import traceback
192
+ traceback.print_exc()
193
+ return {"result": None, "error": str(e)}
194
+ elif self.executor:
195
+ # Run with executor
196
+ result = await self.executor.arun(task)
197
+ return {"result": result, "error": None}
198
+ else:
199
+ return {"result": None, "error": "No workflow or executor configured"}
200
+ except Exception as e:
201
+ return {
202
+ "result": f"[FROM EXECUTE_TASK] Error executing task: {str(e)}",
203
+ "error": True
204
+ }
205
+
206
+ async def process_tasks(self):
207
+ """Process tasks from the queue"""
208
+ while True:
209
+ try:
210
+ task = await self.task_queue.get()
211
+
212
+ # Extract task details
213
+ task_content = task.get('content', task.get('task', {}))
214
+ task_id = task.get('task_id') or task_content.get('task_id')
215
+ task_description = task.get('description') or task_content.get('description')
216
+ message_id = task.get('message_id')
217
+ reply_to = task.get('reply_to')
218
+
219
+ if not task_id or not task_description:
220
+ print(f"[ERROR] {self.name}: Task missing required fields: {task}")
221
+ self.task_queue.task_done()
222
+ continue
223
+
224
+ print(f"\n{self.name}: Processing task {task_id} with message_id {message_id}")
225
+
226
+ try:
227
+ # Execute the task
228
+ result = await self.execute_task(task_content)
229
+
230
+ # Mark task completed
231
+ super()._mark_task_completed(task_id)
232
+
233
+ # Send result back if reply_to is specified
234
+ if reply_to:
235
+ print(f"{self.name}: Sending result back to {reply_to}")
236
+ await self.transport.send_message(
237
+ reply_to,
238
+ {
239
+ "type": "task_result",
240
+ "task_id": task_id,
241
+ "result": result['result'],
242
+ "sender": self.name,
243
+ "original_message_id": message_id,
244
+ "error": result['error']
245
+ }
246
+ )
247
+ print(f"{self.name}: Result sent successfully")
248
+
249
+ # Acknowledge task completion
250
+ if message_id:
251
+ await self.transport.acknowledge_message(self.name, message_id)
252
+ print(f"{self.name}: Task {task_id} acknowledged with message_id {message_id}")
253
+ else:
254
+ print(f"{self.name}: No message_id for task {task_id}, cannot acknowledge")
255
+ except Exception as e:
256
+ print(f"{self.name}: Error processing task: {e}")
257
+ traceback.print_exc()
258
+
259
+ if reply_to:
260
+ await self.transport.send_message(
261
+ reply_to,
262
+ {
263
+ "type": "task_result",
264
+ "task_id": task_id,
265
+ "result": f"Error: {str(e)}",
266
+ "sender": self.name,
267
+ "original_message_id": message_id,
268
+ "error": True
269
+ }
270
+ )
271
+
272
+ self.task_queue.task_done()
273
+
274
+ except Exception as e:
275
+ print(f"{self.name}: Error processing task: {e}")
276
+ traceback.print_exc()
277
+ await asyncio.sleep(1)
278
+
279
+ def run(self):
280
+ """Start the message and task processors"""
281
+ if not self.transport:
282
+ raise ValueError(f"{self.name}: No transport configured")
283
+
284
+ # Start the transport server if not in client mode
285
+ if not self.client_mode:
286
+ def run_server():
287
+ config = uvicorn.Config(
288
+ app=self.app,
289
+ host=self.transport.host,
290
+ port=self.transport.port,
291
+ log_level="info"
292
+ )
293
+ server = uvicorn.Server(config)
294
+ server.run()
295
+
296
+ self.server_thread = Thread(target=run_server, daemon=True)
297
+ self.server_thread.start()
298
+ else:
299
+ # In client mode, we're ready immediately
300
+ self.server_ready.set()
301
+
302
+ print(f"{self.name}: Starting message processor...")
303
+ asyncio.create_task(self.process_messages())
304
+
305
+ print(f"{self.name}: Starting task processor...")
306
+ asyncio.create_task(self.process_tasks())
307
+
308
+ async def connect_to_server(self, server_url: str):
309
+ """Connect to a coordinator server"""
310
+ if not self.client_mode:
311
+ raise ValueError("Agent not configured for client mode")
312
+
313
+ # Wait for server to be ready before connecting
314
+ if not self.server_ready.is_set():
315
+ await asyncio.wait_for(self.server_ready.wait(), timeout=10)
316
+
317
+ # Register with the coordinator
318
+ await self.transport.send_message(
319
+ server_url,
320
+ {
321
+ "type": "register",
322
+ "agent_name": self.name,
323
+ "agent_url": self.transport.get_url()
324
+ }
325
+ )