agent-mcp 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -0,0 +1,474 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: agent-mcp
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A bridge agent to enable agents with Model Context Protocol capabilities to be added to a Multi-agent Collaboration Network (MCN) to run on a Multi-agent Collaboration Platform (MCP)
|
|
5
|
+
Home-page: https://github.com/geniusgeek/agent-mcp
|
|
6
|
+
Author: Samuel Ekpe
|
|
7
|
+
License: MIT
|
|
8
|
+
Project-URL: Homepage, https://github.com/geniusgeek/agent-mcp
|
|
9
|
+
Classifier: Development Status :: 3 - Alpha
|
|
10
|
+
Classifier: Intended Audience :: Developers
|
|
11
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Classifier: Programming Language :: Python :: 3
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
+
Requires-Python: >=3.11
|
|
16
|
+
Description-Content-Type: text/markdown
|
|
17
|
+
Requires-Dist: autogen
|
|
18
|
+
Requires-Dist: langchain
|
|
19
|
+
Requires-Dist: langchain-openai
|
|
20
|
+
Requires-Dist: langchain-community
|
|
21
|
+
Requires-Dist: crewai>=0.11.0
|
|
22
|
+
Requires-Dist: langgraph>=0.0.15
|
|
23
|
+
Requires-Dist: openai>=1.12.0
|
|
24
|
+
Requires-Dist: fastapi==0.104.1
|
|
25
|
+
Requires-Dist: uvicorn==0.24.0
|
|
26
|
+
Requires-Dist: sse-starlette==1.8.2
|
|
27
|
+
Requires-Dist: firebase-admin==6.4.0
|
|
28
|
+
Requires-Dist: python-multipart==0.0.6
|
|
29
|
+
Requires-Dist: python-dotenv==1.0.0
|
|
30
|
+
Requires-Dist: google-cloud-firestore==2.13.1
|
|
31
|
+
Requires-Dist: aiohttp==3.9.1
|
|
32
|
+
Requires-Dist: duckduckgo-search==4.1.1
|
|
33
|
+
Dynamic: home-page
|
|
34
|
+
Dynamic: requires-python
|
|
35
|
+
|
|
36
|
+
# AgentMCP: Multi-Agent Collaboration Platform
|
|
37
|
+
|
|
38
|
+
## Put Your Agent to Work in 30 Seconds
|
|
39
|
+
|
|
40
|
+
```python
|
|
41
|
+
pip install agent-mcp # Step 1: Install
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
```python
|
|
45
|
+
from agent_mcp import mcp_agent # Step 2: Import
|
|
46
|
+
|
|
47
|
+
@mcp_agent(name="MyAgent") # Step 3: Add one line - that's it! 🎉
|
|
48
|
+
class MyAgent:
|
|
49
|
+
def analyze(self, data):
|
|
50
|
+
return "Analysis complete!"
|
|
51
|
+
```
|
|
52
|
+
|
|
53
|
+
## What is AgentMCP?
|
|
54
|
+
|
|
55
|
+
AgentMCP is a revolutionary Multi-agent Collaboration Platform (MCP) that implements the Model Context Protocol (MCP) to enable seamless collaboration between AI agents. With a single decorator, developers can transform any agent into an MCP-compatible agent that can participate in the Multi-agent Collaboration Network (MCN).
|
|
56
|
+
|
|
57
|
+
### 🎯 One Decorator = Infinite Possibilities
|
|
58
|
+
|
|
59
|
+
When you add `@mcp_agent`, your agent instantly becomes:
|
|
60
|
+
- 🌐 Connected to the Multi-agent Collaboration Network (MCN)
|
|
61
|
+
- 🤝 Ready to work with any other agent on the network
|
|
62
|
+
- 🔌 Framework-agnostic (works with Langchain, CrewAI, Autogen, or any custom implementation)
|
|
63
|
+
- 🧠 Empowered to communicate, share context, and collaborate with specialized agents globally
|
|
64
|
+
|
|
65
|
+
No complex setup. No infrastructure headaches. Just one line of code to join the world's largest AI agent collaboration network!
|
|
66
|
+
|
|
67
|
+
### 💡 It's Like Uber for AI Agents
|
|
68
|
+
|
|
69
|
+
Just like Uber connects drivers and riders, AgentMCP connects AI agents:
|
|
70
|
+
- **Your Agent**: Has specific skills? Put them to work!
|
|
71
|
+
- **Need Help?** Tap into a global network of specialized agents
|
|
72
|
+
- **No Lock-in**: Works with any framework or custom implementation
|
|
73
|
+
- **One Line**: That's all it takes to join the network
|
|
74
|
+
|
|
75
|
+
### 🔌 Availability & Connection
|
|
76
|
+
|
|
77
|
+
Just like Uber drivers, agents can go online and offline:
|
|
78
|
+
- **Active**: Your agent is online when your app is running
|
|
79
|
+
- **Discoverable**: Other agents can find yours when it's online
|
|
80
|
+
- **Smart Routing**: Tasks only go to available agents
|
|
81
|
+
- **Auto Recovery**: Handles disconnections gracefully
|
|
82
|
+
|
|
83
|
+
```python
|
|
84
|
+
@mcp_agent(name="MyAgent")
|
|
85
|
+
class MyCustomAgent:
|
|
86
|
+
@register_tool("analyze", "Analyze given data")
|
|
87
|
+
def analyze_data(self, data):
|
|
88
|
+
return "Analysis results"
|
|
89
|
+
```
|
|
90
|
+
|
|
91
|
+
### 🎯 What Just Happened?
|
|
92
|
+
|
|
93
|
+
Your agent just joined the world's largest AI agent collaboration network! It can now:
|
|
94
|
+
|
|
95
|
+
- 🌐 Work with specialized agents from around the world
|
|
96
|
+
- 🤝 Collaborate on complex tasks automatically
|
|
97
|
+
- 🔌 Connect with any framework (Langchain, CrewAI, Autogen, etc.)
|
|
98
|
+
- 🧠 Share context and knowledge with other agents
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
The platform unifies various AI frameworks (Langchain, CrewAI, Autogen, LangGraph) under a single protocol, allowing agents to communicate and collaborate regardless of their underlying implementation.
|
|
102
|
+
|
|
103
|
+
The platform uses a flexible coordinator-worker architecture with HTTP/FastAPI for communication, allowing agents to work together regardless of their underlying framework.
|
|
104
|
+
|
|
105
|
+
## Features
|
|
106
|
+
|
|
107
|
+
### Core Features
|
|
108
|
+
- **One-Line Integration**: Transform any agent into an MCP agent with a single decorator
|
|
109
|
+
- **Automatic Network Registration**: Agents automatically join the MCN upon creation
|
|
110
|
+
- **Framework Agnostic**: Works with any AI framework or custom implementation
|
|
111
|
+
- **Built-in Adapters**: Ready-to-use adapters for:
|
|
112
|
+
- Langchain (Chain-of-thought reasoning)
|
|
113
|
+
- CrewAI (Role-based collaboration)
|
|
114
|
+
- Autogen (Autonomous agents)
|
|
115
|
+
- LangGraph (Workflow orchestration)
|
|
116
|
+
|
|
117
|
+
### Architecture
|
|
118
|
+
- **Coordinator-Worker Pattern**: Centralized task management with distributed execution
|
|
119
|
+
- **FastAPI Integration**: Modern, high-performance HTTP communication
|
|
120
|
+
- **Asynchronous Processing**: Non-blocking task execution and message handling
|
|
121
|
+
- **Flexible Transport Layer**: Extensible communication protocols
|
|
122
|
+
|
|
123
|
+
## 🛠 Features That Just Work
|
|
124
|
+
|
|
125
|
+
### 🤖 For Your Agent
|
|
126
|
+
- **Auto-Registration**: Instant network access
|
|
127
|
+
- **Tool Discovery**: Find and use other agents' capabilities
|
|
128
|
+
- **Smart Routing**: Messages go to the right agent automatically
|
|
129
|
+
- **Built-in Memory**: Share and access collective knowledge
|
|
130
|
+
|
|
131
|
+
### 👩💻 For Developers
|
|
132
|
+
- **Framework Freedom**: Use any AI framework you love
|
|
133
|
+
- **Zero Config**: No complex setup or infrastructure
|
|
134
|
+
- **Simple API**: Everything through one decorator
|
|
135
|
+
- **Full Control**: Your agent, your rules
|
|
136
|
+
|
|
137
|
+
## 🚀 Quick Start
|
|
138
|
+
|
|
139
|
+
### 1️⃣ Install
|
|
140
|
+
```bash
|
|
141
|
+
pip install agent-mcp
|
|
142
|
+
```
|
|
143
|
+
|
|
144
|
+
### 2️⃣ Decorate
|
|
145
|
+
```python
|
|
146
|
+
from agent_mcp import mcp_agent
|
|
147
|
+
|
|
148
|
+
@mcp_agent()
|
|
149
|
+
class MyAgent:
|
|
150
|
+
def work(self): pass
|
|
151
|
+
```
|
|
152
|
+
|
|
153
|
+
### 3️⃣ That's it! 🎉
|
|
154
|
+
Your agent is now part of the network!
|
|
155
|
+
|
|
156
|
+
## 🔥 Supported Frameworks
|
|
157
|
+
|
|
158
|
+
Works seamlessly with:
|
|
159
|
+
- **Langchain** - For chain-of-thought reasoning
|
|
160
|
+
- **CrewAI** - For role-based agent teams
|
|
161
|
+
- **Autogen** - For autonomous agents
|
|
162
|
+
- **LangGraph** - For complex agent workflows
|
|
163
|
+
- **Custom Agents** - Your code, your way!
|
|
164
|
+
|
|
165
|
+
### 💎 Premium Features
|
|
166
|
+
- **Agent Discovery**: Find the right agent for any task
|
|
167
|
+
- **Smart Routing**: Messages flow to the right place
|
|
168
|
+
- **Collective Memory**: Shared knowledge across agents
|
|
169
|
+
- **Real-time Monitoring**: Track your agent's work
|
|
170
|
+
|
|
171
|
+
## 📚 Examples
|
|
172
|
+
|
|
173
|
+
### 🤖 Add AI to Any Agent
|
|
174
|
+
|
|
175
|
+
```python
|
|
176
|
+
from agent_mcp import mcp_agent
|
|
177
|
+
|
|
178
|
+
# Your existing agent - no changes needed!
|
|
179
|
+
class MyMLAgent:
|
|
180
|
+
def predict(self, data):
|
|
181
|
+
return self.model.predict(data)
|
|
182
|
+
|
|
183
|
+
# Add one line to join the network
|
|
184
|
+
@mcp_agent(name="MLPredictor")
|
|
185
|
+
class NetworkEnabledMLAgent(MyMLAgent):
|
|
186
|
+
pass # That's it! All methods become available to other agents
|
|
187
|
+
```
|
|
188
|
+
|
|
189
|
+
### 🤝 Instant Collaboration
|
|
190
|
+
|
|
191
|
+
```python
|
|
192
|
+
# Your agent can now work with others!
|
|
193
|
+
results = await my_agent.collaborate({
|
|
194
|
+
"task": "Analyze this dataset",
|
|
195
|
+
"steps": [
|
|
196
|
+
{"agent": "DataCleaner", "action": "clean"},
|
|
197
|
+
{"agent": "MLPredictor", "action": "predict"},
|
|
198
|
+
{"agent": "Analyst", "action": "interpret"}
|
|
199
|
+
]
|
|
200
|
+
})
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
## 🔗 Network API
|
|
204
|
+
|
|
205
|
+
### 🌐 Global Agent Network
|
|
206
|
+
|
|
207
|
+
Your agent automatically joins our hosted network at `https://mcp-server-ixlfhxquwq-ew.a.run.app`
|
|
208
|
+
|
|
209
|
+
### 🔑 Authentication
|
|
210
|
+
|
|
211
|
+
All handled for you! The `@mcp_agent` decorator:
|
|
212
|
+
1. Registers your agent
|
|
213
|
+
2. Gets an access token
|
|
214
|
+
3. Maintains the connection
|
|
215
|
+
|
|
216
|
+
### 📂 API Methods
|
|
217
|
+
|
|
218
|
+
```python
|
|
219
|
+
# All of these happen automatically!
|
|
220
|
+
|
|
221
|
+
# 1. Register your agent
|
|
222
|
+
response = await network.register(agent)
|
|
223
|
+
|
|
224
|
+
# 2. Discover other agents
|
|
225
|
+
agents = await network.list_agents()
|
|
226
|
+
|
|
227
|
+
# 3. Send messages
|
|
228
|
+
await network.send_message(target_agent, message)
|
|
229
|
+
|
|
230
|
+
# 4. Receive messages
|
|
231
|
+
messages = await network.receive_messages()
|
|
232
|
+
```
|
|
233
|
+
|
|
234
|
+
### 🚀 Advanced Features
|
|
235
|
+
|
|
236
|
+
```python
|
|
237
|
+
# Find agents by capability
|
|
238
|
+
analysts = await network.find_agents(capability="analyze")
|
|
239
|
+
|
|
240
|
+
# Get agent status
|
|
241
|
+
status = await network.get_agent_status(agent_id)
|
|
242
|
+
|
|
243
|
+
# Update agent info
|
|
244
|
+
await network.update_agent(agent_id, new_info)
|
|
245
|
+
```
|
|
246
|
+
|
|
247
|
+
All of this happens automatically when you use the `@mcp_agent` decorator!
|
|
248
|
+
|
|
249
|
+
## 🏛 Architecture
|
|
250
|
+
|
|
251
|
+
### 🌐 The Network
|
|
252
|
+
|
|
253
|
+
```mermaid
|
|
254
|
+
graph TD
|
|
255
|
+
A[Your Agent] -->|@mcp_agent| B[MCP Network]
|
|
256
|
+
B -->|Discover| C[AI Agents]
|
|
257
|
+
B -->|Collaborate| D[Tools]
|
|
258
|
+
B -->|Share| E[Knowledge]
|
|
259
|
+
```
|
|
260
|
+
|
|
261
|
+
### 🧰 How It Works
|
|
262
|
+
|
|
263
|
+
1. **One Decorator** `@mcp_agent`
|
|
264
|
+
- Transforms your agent
|
|
265
|
+
- Handles registration
|
|
266
|
+
- Sets up communication
|
|
267
|
+
|
|
268
|
+
2. **Instant Access**
|
|
269
|
+
- Global agent directory
|
|
270
|
+
- Automatic discovery
|
|
271
|
+
- Smart routing
|
|
272
|
+
|
|
273
|
+
3. **Built-in Adapters**
|
|
274
|
+
- Langchain 🧩
|
|
275
|
+
- CrewAI 👨💻
|
|
276
|
+
- Autogen 🤖
|
|
277
|
+
- LangGraph 📈
|
|
278
|
+
|
|
279
|
+
3. **Task Management**
|
|
280
|
+
```python
|
|
281
|
+
task = {
|
|
282
|
+
"task_id": "research_project",
|
|
283
|
+
"steps": [
|
|
284
|
+
{
|
|
285
|
+
"agent": "LangchainWorker",
|
|
286
|
+
"task_id": "research",
|
|
287
|
+
"description": "Research topic"
|
|
288
|
+
},
|
|
289
|
+
{
|
|
290
|
+
"agent": "CrewAIWorker",
|
|
291
|
+
"task_id": "analysis",
|
|
292
|
+
"depends_on": ["research"]
|
|
293
|
+
}
|
|
294
|
+
]
|
|
295
|
+
}
|
|
296
|
+
```
|
|
297
|
+
|
|
298
|
+
### Registering Custom Tools
|
|
299
|
+
|
|
300
|
+
```python
|
|
301
|
+
from mcp_agent import MCPAgent
|
|
302
|
+
|
|
303
|
+
# Create an MCP-enabled agent
|
|
304
|
+
agent = MCPAgent(name="ToolAgent")
|
|
305
|
+
|
|
306
|
+
# Define a custom tool function
|
|
307
|
+
def calculate_sum(a: int, b: int):
|
|
308
|
+
"""Calculate the sum of two numbers."""
|
|
309
|
+
result = a + b
|
|
310
|
+
return {"status": "success", "result": result}
|
|
311
|
+
|
|
312
|
+
# Register the custom tool
|
|
313
|
+
agent.register_mcp_tool(
|
|
314
|
+
name="math_sum",
|
|
315
|
+
description="Calculate the sum of two numbers",
|
|
316
|
+
func=calculate_sum,
|
|
317
|
+
a_description="First number to add",
|
|
318
|
+
b_description="Second number to add"
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
# Use the custom tool
|
|
322
|
+
result = agent.execute_tool("math_sum", a=5, b=7)
|
|
323
|
+
print(f"5 + 7 = {result}")
|
|
324
|
+
```
|
|
325
|
+
|
|
326
|
+
### 🔗 Network Benefits
|
|
327
|
+
|
|
328
|
+
- **Auto-Discovery**: Find the right agents for any task
|
|
329
|
+
- **Smart Routing**: Tasks go to the best available agent
|
|
330
|
+
- **Progress Tracking**: Real-time updates on your tasks
|
|
331
|
+
- **Error Handling**: Automatic retries and fallbacks
|
|
332
|
+
|
|
333
|
+
## Model Context Protocol Support
|
|
334
|
+
|
|
335
|
+
The MCPAgent implements the Model Context Protocol, which provides a standardized way for AI systems to share context and capabilities. This implementation supports:
|
|
336
|
+
|
|
337
|
+
### Context Management
|
|
338
|
+
|
|
339
|
+
```python
|
|
340
|
+
# Set context
|
|
341
|
+
agent.update_context("key", "value")
|
|
342
|
+
|
|
343
|
+
# Get context
|
|
344
|
+
value = agent.get_context("key")
|
|
345
|
+
|
|
346
|
+
# List all context keys
|
|
347
|
+
keys = agent.execute_tool("context_list")
|
|
348
|
+
|
|
349
|
+
# Remove context
|
|
350
|
+
agent.execute_tool("context_remove", key="key_to_remove")
|
|
351
|
+
```
|
|
352
|
+
|
|
353
|
+
### 🧠 Smart Protocol
|
|
354
|
+
|
|
355
|
+
### 🔗 Multiple Ways to Connect
|
|
356
|
+
|
|
357
|
+
```python
|
|
358
|
+
# 1. Simple Function Calls
|
|
359
|
+
result = agent.call("analyze", data=my_data)
|
|
360
|
+
|
|
361
|
+
# 2. OpenAI Compatible
|
|
362
|
+
result = agent.run({
|
|
363
|
+
"name": "analyze",
|
|
364
|
+
"arguments": {"data": my_data}
|
|
365
|
+
})
|
|
366
|
+
|
|
367
|
+
# 3. Natural Language
|
|
368
|
+
result = agent.process(
|
|
369
|
+
"Please analyze this data and "
|
|
370
|
+
"send the results to the visualization team"
|
|
371
|
+
)
|
|
372
|
+
```
|
|
373
|
+
|
|
374
|
+
### 🤓 Smart Features
|
|
375
|
+
|
|
376
|
+
- **Auto-Detection**: Understands different call formats
|
|
377
|
+
- **Context Aware**: Maintains conversation history
|
|
378
|
+
- **Tool Discovery**: Finds the right tools for the job
|
|
379
|
+
- **Error Recovery**: Handles failures gracefully
|
|
380
|
+
|
|
381
|
+
### MCP Information
|
|
382
|
+
|
|
383
|
+
You can retrieve information about an agent's MCP capabilities:
|
|
384
|
+
|
|
385
|
+
```python
|
|
386
|
+
info = agent.execute_tool("mcp_info")
|
|
387
|
+
print(f"Agent ID: {info['id']}")
|
|
388
|
+
print(f"Agent Version: {info['version']}")
|
|
389
|
+
print(f"Available Tools: {len(info['tools'])}")
|
|
390
|
+
```
|
|
391
|
+
|
|
392
|
+
## Advanced Examples
|
|
393
|
+
|
|
394
|
+
The project includes several advanced examples that demonstrate the full potential of MCPAgent:
|
|
395
|
+
|
|
396
|
+
### 1. MCPFeaturesDemo
|
|
397
|
+
|
|
398
|
+
Run `python mcp_features_demo.py` to see a step-by-step demonstration of all MCPAgent features:
|
|
399
|
+
- Context management operations
|
|
400
|
+
- Custom tool registration and usage
|
|
401
|
+
- Using agents as tools
|
|
402
|
+
- LLM integration with context
|
|
403
|
+
|
|
404
|
+
This is the best example to start with to understand the core capabilities of MCPAgent.
|
|
405
|
+
|
|
406
|
+
### 2. Agent Network
|
|
407
|
+
|
|
408
|
+
Run `python agent_network_example.py` to start an interactive agent network example:
|
|
409
|
+
- Simulates a social network of agents
|
|
410
|
+
- Each agent has a specialized role (Coordinator, Researcher, Analyst, etc.)
|
|
411
|
+
- Agents can communicate with each other through tool calls
|
|
412
|
+
- You can interact with any agent and broadcast messages
|
|
413
|
+
- Human input is fully supported
|
|
414
|
+
|
|
415
|
+
This example demonstrates how MCPAgent enables creating complex agent networks where agents can call and interact with each other.
|
|
416
|
+
|
|
417
|
+
### 3. Collaborative Project
|
|
418
|
+
|
|
419
|
+
Run `python collaborative_task_example.py` to start a collaborative project simulation:
|
|
420
|
+
- Team of agents working together on a shared project
|
|
421
|
+
- Shared workspace context with research, analysis, and tasks
|
|
422
|
+
- Task assignment and progress tracking
|
|
423
|
+
- Full conversation history captured
|
|
424
|
+
- Human input for setting topics and interacting with agents
|
|
425
|
+
|
|
426
|
+
This example showcases how MCPAgent can be used in a structured collaborative environment where agents share a workspace and contribute to a common goal.
|
|
427
|
+
|
|
428
|
+
## LangGraph Implementation
|
|
429
|
+
|
|
430
|
+
MCPAgent has also been implemented for LangGraph, providing the same Model Context Protocol capabilities within the LangGraph framework:
|
|
431
|
+
|
|
432
|
+
```python
|
|
433
|
+
from mcp_langgraph import MCPNode, MCPReactAgent, create_mcp_langgraph
|
|
434
|
+
from langchain_openai import ChatOpenAI
|
|
435
|
+
|
|
436
|
+
# Create a LLM
|
|
437
|
+
llm = ChatOpenAI(model="gpt-4o")
|
|
438
|
+
|
|
439
|
+
# Create a LangGraph with MCP capabilities
|
|
440
|
+
graph = create_mcp_langgraph(
|
|
441
|
+
llm,
|
|
442
|
+
name="SimpleMCPGraph",
|
|
443
|
+
system_message="You are a helpful assistant that uses context to answer questions."
|
|
444
|
+
)
|
|
445
|
+
|
|
446
|
+
# Access the MCP agent for the graph
|
|
447
|
+
mcp_agent = graph.mcp_agent
|
|
448
|
+
|
|
449
|
+
# Add context to the MCP agent
|
|
450
|
+
mcp_agent.update_context("user_info", {
|
|
451
|
+
"name": "Alice",
|
|
452
|
+
"occupation": "Data Scientist"
|
|
453
|
+
})
|
|
454
|
+
|
|
455
|
+
# Run the graph with a user query
|
|
456
|
+
from langchain_core.messages import HumanMessage
|
|
457
|
+
|
|
458
|
+
question = "What should I learn next in my field?"
|
|
459
|
+
initial_state = {"messages": [HumanMessage(content=question)]}
|
|
460
|
+
result = graph.invoke(initial_state)
|
|
461
|
+
```
|
|
462
|
+
|
|
463
|
+
### LangGraph Examples
|
|
464
|
+
|
|
465
|
+
The project includes several examples that demonstrate how to use the MCP protocol with LangGraph:
|
|
466
|
+
|
|
467
|
+
1. **Basic LangGraph Example**
|
|
468
|
+
Run `python langgraph_example.py` to see a step-by-step demonstration of MCPNode with LangGraph.
|
|
469
|
+
|
|
470
|
+
2. **LangGraph Agent Network**
|
|
471
|
+
Run `python langgraph_agent_network.py` to start an interactive agent network built with LangGraph.
|
|
472
|
+
|
|
473
|
+
3. **LangGraph Collaborative Project**
|
|
474
|
+
Run `python langgraph_collaborative_task.py` to start a collaborative project simulation with LangGraph agents.
|
|
@@ -0,0 +1,5 @@
|
|
|
1
|
+
agent_mcp-0.1.0.dist-info/METADATA,sha256=NEQQA5P-eE3oo2ncarW9OGO1LQREM-SjmJN5VusVrRc,14325
|
|
2
|
+
agent_mcp-0.1.0.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
3
|
+
agent_mcp-0.1.0.dist-info/entry_points.txt,sha256=6wJ3TtpqqkX4cL5kz1ZUCc7f8xUI7bUbDk4oSXMQswE,61
|
|
4
|
+
agent_mcp-0.1.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
5
|
+
agent_mcp-0.1.0.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|