agent-brain-rag 1.2.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. {agent_brain_rag-1.2.0.dist-info → agent_brain_rag-3.0.0.dist-info}/METADATA +55 -18
  2. agent_brain_rag-3.0.0.dist-info/RECORD +56 -0
  3. {agent_brain_rag-1.2.0.dist-info → agent_brain_rag-3.0.0.dist-info}/WHEEL +1 -1
  4. {agent_brain_rag-1.2.0.dist-info → agent_brain_rag-3.0.0.dist-info}/entry_points.txt +0 -1
  5. agent_brain_server/__init__.py +1 -1
  6. agent_brain_server/api/main.py +146 -45
  7. agent_brain_server/api/routers/__init__.py +2 -0
  8. agent_brain_server/api/routers/health.py +85 -21
  9. agent_brain_server/api/routers/index.py +108 -36
  10. agent_brain_server/api/routers/jobs.py +111 -0
  11. agent_brain_server/config/provider_config.py +352 -0
  12. agent_brain_server/config/settings.py +22 -5
  13. agent_brain_server/indexing/__init__.py +21 -0
  14. agent_brain_server/indexing/bm25_index.py +15 -2
  15. agent_brain_server/indexing/document_loader.py +45 -4
  16. agent_brain_server/indexing/embedding.py +86 -135
  17. agent_brain_server/indexing/graph_extractors.py +582 -0
  18. agent_brain_server/indexing/graph_index.py +536 -0
  19. agent_brain_server/job_queue/__init__.py +11 -0
  20. agent_brain_server/job_queue/job_service.py +317 -0
  21. agent_brain_server/job_queue/job_store.py +427 -0
  22. agent_brain_server/job_queue/job_worker.py +434 -0
  23. agent_brain_server/locking.py +101 -8
  24. agent_brain_server/models/__init__.py +28 -0
  25. agent_brain_server/models/graph.py +253 -0
  26. agent_brain_server/models/health.py +30 -3
  27. agent_brain_server/models/job.py +289 -0
  28. agent_brain_server/models/query.py +16 -3
  29. agent_brain_server/project_root.py +1 -1
  30. agent_brain_server/providers/__init__.py +64 -0
  31. agent_brain_server/providers/base.py +251 -0
  32. agent_brain_server/providers/embedding/__init__.py +23 -0
  33. agent_brain_server/providers/embedding/cohere.py +163 -0
  34. agent_brain_server/providers/embedding/ollama.py +150 -0
  35. agent_brain_server/providers/embedding/openai.py +118 -0
  36. agent_brain_server/providers/exceptions.py +95 -0
  37. agent_brain_server/providers/factory.py +157 -0
  38. agent_brain_server/providers/summarization/__init__.py +41 -0
  39. agent_brain_server/providers/summarization/anthropic.py +87 -0
  40. agent_brain_server/providers/summarization/gemini.py +96 -0
  41. agent_brain_server/providers/summarization/grok.py +95 -0
  42. agent_brain_server/providers/summarization/ollama.py +114 -0
  43. agent_brain_server/providers/summarization/openai.py +87 -0
  44. agent_brain_server/runtime.py +2 -2
  45. agent_brain_server/services/indexing_service.py +39 -0
  46. agent_brain_server/services/query_service.py +203 -0
  47. agent_brain_server/storage/__init__.py +18 -2
  48. agent_brain_server/storage/graph_store.py +519 -0
  49. agent_brain_server/storage/vector_store.py +35 -0
  50. agent_brain_server/storage_paths.py +5 -3
  51. agent_brain_rag-1.2.0.dist-info/RECORD +0 -31
@@ -0,0 +1,114 @@
1
+ """Ollama summarization provider implementation."""
2
+
3
+ import logging
4
+ from typing import TYPE_CHECKING
5
+
6
+ from openai import AsyncOpenAI
7
+
8
+ from agent_brain_server.providers.base import BaseSummarizationProvider
9
+ from agent_brain_server.providers.exceptions import (
10
+ OllamaConnectionError,
11
+ ProviderError,
12
+ )
13
+
14
+ if TYPE_CHECKING:
15
+ from agent_brain_server.config.provider_config import SummarizationConfig
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ class OllamaSummarizationProvider(BaseSummarizationProvider):
21
+ """Ollama summarization provider using local models.
22
+
23
+ Uses OpenAI-compatible API endpoint provided by Ollama.
24
+
25
+ Supports:
26
+ - llama4:scout (Meta's Llama 4 Scout - lightweight, fast)
27
+ - mistral-small3.2 (Mistral Small 3.2 - balanced)
28
+ - qwen3-coder (Alibaba Qwen 3 Coder - code-focused)
29
+ - gemma3 (Google Gemma 3 - efficient)
30
+ - deepseek-coder-v3 (DeepSeek Coder V3)
31
+ - And any other chat model available in Ollama
32
+ """
33
+
34
+ def __init__(self, config: "SummarizationConfig") -> None:
35
+ """Initialize Ollama summarization provider.
36
+
37
+ Args:
38
+ config: Summarization configuration
39
+
40
+ Note:
41
+ Ollama does not require an API key as it runs locally.
42
+ """
43
+ max_tokens = config.params.get("max_tokens", 300)
44
+ temperature = config.params.get("temperature", 0.1)
45
+ prompt_template = config.params.get("prompt_template")
46
+
47
+ super().__init__(
48
+ model=config.model,
49
+ max_tokens=max_tokens,
50
+ temperature=temperature,
51
+ prompt_template=prompt_template,
52
+ )
53
+
54
+ # Ollama uses OpenAI-compatible API
55
+ base_url = config.get_base_url() or "http://localhost:11434/v1"
56
+ self._base_url = base_url
57
+ self._client = AsyncOpenAI(
58
+ api_key="ollama", # Ollama doesn't need real key
59
+ base_url=base_url,
60
+ )
61
+
62
+ # Optional parameters
63
+ self._num_ctx = config.params.get("num_ctx", 4096)
64
+
65
+ @property
66
+ def provider_name(self) -> str:
67
+ """Human-readable provider name."""
68
+ return "Ollama"
69
+
70
+ async def generate(self, prompt: str) -> str:
71
+ """Generate text based on prompt using Ollama.
72
+
73
+ Args:
74
+ prompt: The prompt to send to Ollama
75
+
76
+ Returns:
77
+ Generated text response
78
+
79
+ Raises:
80
+ OllamaConnectionError: If Ollama is not running
81
+ ProviderError: If generation fails
82
+ """
83
+ try:
84
+ response = await self._client.chat.completions.create(
85
+ model=self._model,
86
+ max_tokens=self._max_tokens,
87
+ temperature=self._temperature,
88
+ messages=[{"role": "user", "content": prompt}],
89
+ )
90
+ # Extract text from response
91
+ content = response.choices[0].message.content
92
+ return content if content else ""
93
+ except Exception as e:
94
+ if "connection" in str(e).lower() or "refused" in str(e).lower():
95
+ raise OllamaConnectionError(self._base_url, cause=e) from e
96
+ raise ProviderError(
97
+ f"Failed to generate text: {e}",
98
+ self.provider_name,
99
+ cause=e,
100
+ ) from e
101
+
102
+ async def health_check(self) -> bool:
103
+ """Check if Ollama is running and accessible.
104
+
105
+ Returns:
106
+ True if Ollama is healthy, False otherwise
107
+ """
108
+ try:
109
+ # Try to list models to verify connection
110
+ await self._client.models.list()
111
+ return True
112
+ except Exception as e:
113
+ logger.warning(f"Ollama health check failed: {e}")
114
+ return False
@@ -0,0 +1,87 @@
1
+ """OpenAI (GPT) summarization provider implementation."""
2
+
3
+ import logging
4
+ from typing import TYPE_CHECKING
5
+
6
+ from openai import AsyncOpenAI
7
+
8
+ from agent_brain_server.providers.base import BaseSummarizationProvider
9
+ from agent_brain_server.providers.exceptions import AuthenticationError, ProviderError
10
+
11
+ if TYPE_CHECKING:
12
+ from agent_brain_server.config.provider_config import SummarizationConfig
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+
17
+ class OpenAISummarizationProvider(BaseSummarizationProvider):
18
+ """OpenAI (GPT) summarization provider.
19
+
20
+ Supports:
21
+ - gpt-5 (most capable)
22
+ - gpt-5-mini (fast, cost-effective)
23
+ - And other OpenAI chat models
24
+ """
25
+
26
+ def __init__(self, config: "SummarizationConfig") -> None:
27
+ """Initialize OpenAI summarization provider.
28
+
29
+ Args:
30
+ config: Summarization configuration
31
+
32
+ Raises:
33
+ AuthenticationError: If API key is not available
34
+ """
35
+ api_key = config.get_api_key()
36
+ if not api_key:
37
+ raise AuthenticationError(
38
+ f"Missing API key. Set {config.api_key_env} environment variable.",
39
+ self.provider_name,
40
+ )
41
+
42
+ max_tokens = config.params.get("max_tokens", 300)
43
+ temperature = config.params.get("temperature", 0.1)
44
+ prompt_template = config.params.get("prompt_template")
45
+
46
+ super().__init__(
47
+ model=config.model,
48
+ max_tokens=max_tokens,
49
+ temperature=temperature,
50
+ prompt_template=prompt_template,
51
+ )
52
+
53
+ self._client = AsyncOpenAI(api_key=api_key)
54
+
55
+ @property
56
+ def provider_name(self) -> str:
57
+ """Human-readable provider name."""
58
+ return "OpenAI"
59
+
60
+ async def generate(self, prompt: str) -> str:
61
+ """Generate text based on prompt using GPT.
62
+
63
+ Args:
64
+ prompt: The prompt to send to GPT
65
+
66
+ Returns:
67
+ Generated text response
68
+
69
+ Raises:
70
+ ProviderError: If generation fails
71
+ """
72
+ try:
73
+ response = await self._client.chat.completions.create(
74
+ model=self._model,
75
+ max_tokens=self._max_tokens,
76
+ temperature=self._temperature,
77
+ messages=[{"role": "user", "content": prompt}],
78
+ )
79
+ # Extract text from response
80
+ content = response.choices[0].message.content
81
+ return content if content else ""
82
+ except Exception as e:
83
+ raise ProviderError(
84
+ f"Failed to generate text: {e}",
85
+ self.provider_name,
86
+ cause=e,
87
+ ) from e
@@ -1,4 +1,4 @@
1
- """Runtime state management for doc-serve instances."""
1
+ """Runtime state management for Agent Brain instances."""
2
2
 
3
3
  import json
4
4
  import logging
@@ -15,7 +15,7 @@ logger = logging.getLogger(__name__)
15
15
 
16
16
 
17
17
  class RuntimeState(BaseModel):
18
- """Runtime state for a doc-serve instance."""
18
+ """Runtime state for an Agent Brain instance."""
19
19
 
20
20
  schema_version: str = "1.0"
21
21
  mode: str = "project" # "project" or "shared"
@@ -10,6 +10,7 @@ from typing import Any, Callable, Optional, Union
10
10
 
11
11
  from llama_index.core.schema import TextNode
12
12
 
13
+ from agent_brain_server.config import settings
13
14
  from agent_brain_server.indexing import (
14
15
  BM25IndexManager,
15
16
  ContextAwareChunker,
@@ -18,6 +19,10 @@ from agent_brain_server.indexing import (
18
19
  get_bm25_manager,
19
20
  )
20
21
  from agent_brain_server.indexing.chunking import CodeChunk, CodeChunker, TextChunk
22
+ from agent_brain_server.indexing.graph_index import (
23
+ GraphIndexManager,
24
+ get_graph_index_manager,
25
+ )
21
26
  from agent_brain_server.models import IndexingState, IndexingStatusEnum, IndexRequest
22
27
  from agent_brain_server.storage import VectorStoreManager, get_vector_store
23
28
 
@@ -43,6 +48,7 @@ class IndexingService:
43
48
  chunker: Optional[ContextAwareChunker] = None,
44
49
  embedding_generator: Optional[EmbeddingGenerator] = None,
45
50
  bm25_manager: Optional[BM25IndexManager] = None,
51
+ graph_index_manager: Optional[GraphIndexManager] = None,
46
52
  ):
47
53
  """
48
54
  Initialize the indexing service.
@@ -53,12 +59,14 @@ class IndexingService:
53
59
  chunker: Text chunker instance.
54
60
  embedding_generator: Embedding generator instance.
55
61
  bm25_manager: BM25 index manager instance.
62
+ graph_index_manager: Graph index manager instance (Feature 113).
56
63
  """
57
64
  self.vector_store = vector_store or get_vector_store()
58
65
  self.document_loader = document_loader or DocumentLoader()
59
66
  self.chunker = chunker or ContextAwareChunker()
60
67
  self.embedding_generator = embedding_generator or EmbeddingGenerator()
61
68
  self.bm25_manager = bm25_manager or get_bm25_manager()
69
+ self.graph_index_manager = graph_index_manager or get_graph_index_manager()
62
70
 
63
71
  # Internal state
64
72
  self._state = IndexingState(
@@ -382,6 +390,21 @@ class IndexingService:
382
390
  ]
383
391
  self.bm25_manager.build_index(nodes)
384
392
 
393
+ # Step 6: Build graph index if enabled (Feature 113)
394
+ if settings.ENABLE_GRAPH_INDEX:
395
+ if progress_callback:
396
+ await progress_callback(97, 100, "Building graph index...")
397
+
398
+ def graph_progress(current: int, total: int, message: str) -> None:
399
+ # Synchronous callback wrapper
400
+ logger.debug(f"Graph indexing: {message}")
401
+
402
+ triplet_count = self.graph_index_manager.build_from_documents(
403
+ chunks,
404
+ progress_callback=graph_progress,
405
+ )
406
+ logger.info(f"Graph index built with {triplet_count} triplets")
407
+
385
408
  # Mark as completed
386
409
  self._state.status = IndexingStatusEnum.COMPLETED
387
410
  self._state.completed_at = datetime.now(timezone.utc)
@@ -424,6 +447,9 @@ class IndexingService:
424
447
  total_code_chunks = self._total_code_chunks
425
448
  supported_languages = sorted(self._supported_languages)
426
449
 
450
+ # Get graph index status (Feature 113)
451
+ graph_status = self.graph_index_manager.get_status()
452
+
427
453
  return {
428
454
  "status": self._state.status.value,
429
455
  "is_indexing": self._state.is_indexing,
@@ -446,6 +472,14 @@ class IndexingService:
446
472
  ),
447
473
  "error": self._state.error,
448
474
  "indexed_folders": sorted(self._indexed_folders),
475
+ # Graph index status (Feature 113)
476
+ "graph_index": {
477
+ "enabled": graph_status.enabled,
478
+ "initialized": graph_status.initialized,
479
+ "entity_count": graph_status.entity_count,
480
+ "relationship_count": graph_status.relationship_count,
481
+ "store_type": graph_status.store_type,
482
+ },
449
483
  }
450
484
 
451
485
  async def reset(self) -> None:
@@ -453,6 +487,8 @@ class IndexingService:
453
487
  async with self._lock:
454
488
  await self.vector_store.reset()
455
489
  self.bm25_manager.reset()
490
+ # Clear graph index (Feature 113)
491
+ self.graph_index_manager.clear()
456
492
  self._state = IndexingState(
457
493
  current_job_id="",
458
494
  folder_path="",
@@ -461,6 +497,9 @@ class IndexingService:
461
497
  error=None,
462
498
  )
463
499
  self._indexed_folders.clear()
500
+ self._total_doc_chunks = 0
501
+ self._total_code_chunks = 0
502
+ self._supported_languages.clear()
464
503
  logger.info("Indexing service reset")
465
504
 
466
505
 
@@ -7,8 +7,13 @@ from typing import Any, Optional
7
7
  from llama_index.core.retrievers import BaseRetriever
8
8
  from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode
9
9
 
10
+ from agent_brain_server.config import settings
10
11
  from agent_brain_server.indexing import EmbeddingGenerator, get_embedding_generator
11
12
  from agent_brain_server.indexing.bm25_index import BM25IndexManager, get_bm25_manager
13
+ from agent_brain_server.indexing.graph_index import (
14
+ GraphIndexManager,
15
+ get_graph_index_manager,
16
+ )
12
17
  from agent_brain_server.models import (
13
18
  QueryMode,
14
19
  QueryRequest,
@@ -69,6 +74,7 @@ class QueryService:
69
74
  vector_store: Optional[VectorStoreManager] = None,
70
75
  embedding_generator: Optional[EmbeddingGenerator] = None,
71
76
  bm25_manager: Optional[BM25IndexManager] = None,
77
+ graph_index_manager: Optional[GraphIndexManager] = None,
72
78
  ):
73
79
  """
74
80
  Initialize the query service.
@@ -77,10 +83,12 @@ class QueryService:
77
83
  vector_store: Vector store manager instance.
78
84
  embedding_generator: Embedding generator instance.
79
85
  bm25_manager: BM25 index manager instance.
86
+ graph_index_manager: Graph index manager instance (Feature 113).
80
87
  """
81
88
  self.vector_store = vector_store or get_vector_store()
82
89
  self.embedding_generator = embedding_generator or get_embedding_generator()
83
90
  self.bm25_manager = bm25_manager or get_bm25_manager()
91
+ self.graph_index_manager = graph_index_manager or get_graph_index_manager()
84
92
 
85
93
  def is_ready(self) -> bool:
86
94
  """
@@ -115,6 +123,10 @@ class QueryService:
115
123
  results = await self._execute_bm25_query(request)
116
124
  elif request.mode == QueryMode.VECTOR:
117
125
  results = await self._execute_vector_query(request)
126
+ elif request.mode == QueryMode.GRAPH:
127
+ results = await self._execute_graph_query(request)
128
+ elif request.mode == QueryMode.MULTI:
129
+ results = await self._execute_multi_query(request)
118
130
  else: # HYBRID
119
131
  results = await self._execute_hybrid_query(request)
120
132
 
@@ -318,6 +330,197 @@ class QueryService:
318
330
 
319
331
  return fused_nodes
320
332
 
333
+ async def _execute_graph_query(
334
+ self,
335
+ request: QueryRequest,
336
+ traversal_depth: int = 2,
337
+ ) -> list[QueryResult]:
338
+ """Execute graph-only query using entity relationships.
339
+
340
+ Uses the knowledge graph to find documents related to
341
+ entities mentioned in the query.
342
+
343
+ Args:
344
+ request: Query request.
345
+ traversal_depth: How many hops to traverse in graph.
346
+
347
+ Returns:
348
+ List of QueryResult from graph retrieval.
349
+
350
+ Raises:
351
+ ValueError: If GraphRAG is not enabled.
352
+ """
353
+ if not settings.ENABLE_GRAPH_INDEX:
354
+ raise ValueError(
355
+ "GraphRAG not enabled. Set ENABLE_GRAPH_INDEX=true in environment."
356
+ )
357
+
358
+ # Query the graph for related entities
359
+ graph_results = self.graph_index_manager.query(
360
+ query_text=request.query,
361
+ top_k=request.top_k,
362
+ traversal_depth=traversal_depth,
363
+ )
364
+
365
+ if not graph_results:
366
+ logger.debug("No graph results found, falling back to vector search")
367
+ return await self._execute_vector_query(request)
368
+
369
+ # Convert graph results to QueryResults
370
+ results: list[QueryResult] = []
371
+ chunk_ids = [
372
+ r.get("source_chunk_id") for r in graph_results if r.get("source_chunk_id")
373
+ ]
374
+
375
+ if not chunk_ids:
376
+ # No source chunks in graph, fall back to vector search
377
+ return await self._execute_vector_query(request)
378
+
379
+ # Look up the actual documents from vector store
380
+ for graph_result in graph_results:
381
+ chunk_id = graph_result.get("source_chunk_id")
382
+ if not chunk_id:
383
+ continue
384
+
385
+ # Get document from vector store by ID
386
+ try:
387
+ doc = await self.vector_store.get_by_id(chunk_id)
388
+ if doc:
389
+ result = QueryResult(
390
+ text=doc.get("text", ""),
391
+ source=doc.get("metadata", {}).get(
392
+ "source",
393
+ doc.get("metadata", {}).get("file_path", "unknown"),
394
+ ),
395
+ score=graph_result.get("graph_score", 0.5),
396
+ graph_score=graph_result.get("graph_score", 0.5),
397
+ chunk_id=chunk_id,
398
+ source_type=doc.get("metadata", {}).get("source_type", "doc"),
399
+ language=doc.get("metadata", {}).get("language"),
400
+ related_entities=[
401
+ graph_result.get("subject", ""),
402
+ graph_result.get("object", ""),
403
+ ],
404
+ relationship_path=[graph_result.get("relationship_path", "")],
405
+ metadata={
406
+ k: v
407
+ for k, v in doc.get("metadata", {}).items()
408
+ if k
409
+ not in ("source", "file_path", "source_type", "language")
410
+ },
411
+ )
412
+ results.append(result)
413
+ except Exception as e:
414
+ logger.debug(f"Failed to retrieve chunk {chunk_id}: {e}")
415
+ continue
416
+
417
+ # If no results from graph, fall back to vector search
418
+ if not results:
419
+ logger.debug("No documents found from graph, falling back to vector search")
420
+ return await self._execute_vector_query(request)
421
+
422
+ return results[: request.top_k]
423
+
424
+ async def _execute_multi_query(self, request: QueryRequest) -> list[QueryResult]:
425
+ """Execute multi-retrieval query combining vector, BM25, and graph.
426
+
427
+ Uses Reciprocal Rank Fusion (RRF) to combine results from
428
+ all three retrieval methods.
429
+
430
+ Args:
431
+ request: Query request.
432
+
433
+ Returns:
434
+ List of QueryResult with combined scores.
435
+ """
436
+ # Get results from each retriever
437
+ vector_results = await self._execute_vector_query(request)
438
+ bm25_results = await self._execute_bm25_query(request)
439
+
440
+ # Get graph results if enabled
441
+ graph_results: list[QueryResult] = []
442
+ if settings.ENABLE_GRAPH_INDEX:
443
+ try:
444
+ graph_results = await self._execute_graph_query(request)
445
+ except ValueError:
446
+ pass # Graph not enabled, skip
447
+
448
+ # Apply Reciprocal Rank Fusion
449
+ rrf_k = settings.GRAPH_RRF_K # Typical value is 60
450
+ combined_scores: dict[str, dict[str, Any]] = {}
451
+
452
+ # Process vector results
453
+ for rank, result in enumerate(vector_results):
454
+ chunk_id = result.chunk_id
455
+ rrf_score = 1.0 / (rrf_k + rank + 1)
456
+ if chunk_id not in combined_scores:
457
+ combined_scores[chunk_id] = {
458
+ "result": result,
459
+ "rrf_score": 0.0,
460
+ "vector_rank": None,
461
+ "bm25_rank": None,
462
+ "graph_rank": None,
463
+ }
464
+ combined_scores[chunk_id]["rrf_score"] += rrf_score
465
+ combined_scores[chunk_id]["vector_rank"] = rank + 1
466
+
467
+ # Process BM25 results
468
+ for rank, result in enumerate(bm25_results):
469
+ chunk_id = result.chunk_id
470
+ rrf_score = 1.0 / (rrf_k + rank + 1)
471
+ if chunk_id not in combined_scores:
472
+ combined_scores[chunk_id] = {
473
+ "result": result,
474
+ "rrf_score": 0.0,
475
+ "vector_rank": None,
476
+ "bm25_rank": None,
477
+ "graph_rank": None,
478
+ }
479
+ combined_scores[chunk_id]["rrf_score"] += rrf_score
480
+ combined_scores[chunk_id]["bm25_rank"] = rank + 1
481
+
482
+ # Process graph results
483
+ for rank, result in enumerate(graph_results):
484
+ chunk_id = result.chunk_id
485
+ rrf_score = 1.0 / (rrf_k + rank + 1)
486
+ if chunk_id not in combined_scores:
487
+ combined_scores[chunk_id] = {
488
+ "result": result,
489
+ "rrf_score": 0.0,
490
+ "vector_rank": None,
491
+ "bm25_rank": None,
492
+ "graph_rank": None,
493
+ }
494
+ combined_scores[chunk_id]["rrf_score"] += rrf_score
495
+ combined_scores[chunk_id]["graph_rank"] = rank + 1
496
+ # Preserve graph-specific fields
497
+ if result.related_entities:
498
+ combined_scores[chunk_id][
499
+ "result"
500
+ ].related_entities = result.related_entities
501
+ if result.relationship_path:
502
+ combined_scores[chunk_id][
503
+ "result"
504
+ ].relationship_path = result.relationship_path
505
+ if result.graph_score:
506
+ combined_scores[chunk_id]["result"].graph_score = result.graph_score
507
+
508
+ # Sort by RRF score and take top_k
509
+ sorted_results = sorted(
510
+ combined_scores.values(),
511
+ key=lambda x: x["rrf_score"],
512
+ reverse=True,
513
+ )
514
+
515
+ # Update scores and return
516
+ final_results: list[QueryResult] = []
517
+ for data in sorted_results[: request.top_k]:
518
+ result = data["result"]
519
+ result.score = data["rrf_score"]
520
+ final_results.append(result)
521
+
522
+ return final_results
523
+
321
524
  async def get_document_count(self) -> int:
322
525
  """
323
526
  Get the total number of indexed documents.
@@ -1,5 +1,21 @@
1
- """Storage layer for vector database operations."""
1
+ """Storage layer for vector database and graph operations."""
2
2
 
3
+ from .graph_store import (
4
+ GraphStoreManager,
5
+ get_graph_store_manager,
6
+ initialize_graph_store,
7
+ reset_graph_store_manager,
8
+ )
3
9
  from .vector_store import VectorStoreManager, get_vector_store, initialize_vector_store
4
10
 
5
- __all__ = ["VectorStoreManager", "get_vector_store", "initialize_vector_store"]
11
+ __all__ = [
12
+ # Vector store
13
+ "VectorStoreManager",
14
+ "get_vector_store",
15
+ "initialize_vector_store",
16
+ # Graph store (Feature 113)
17
+ "GraphStoreManager",
18
+ "get_graph_store_manager",
19
+ "initialize_graph_store",
20
+ "reset_graph_store_manager",
21
+ ]