agent-brain-rag 1.2.0__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. {agent_brain_rag-1.2.0.dist-info → agent_brain_rag-2.0.0.dist-info}/METADATA +54 -16
  2. agent_brain_rag-2.0.0.dist-info/RECORD +50 -0
  3. agent_brain_server/__init__.py +1 -1
  4. agent_brain_server/api/main.py +30 -2
  5. agent_brain_server/api/routers/health.py +1 -0
  6. agent_brain_server/config/provider_config.py +308 -0
  7. agent_brain_server/config/settings.py +12 -1
  8. agent_brain_server/indexing/__init__.py +21 -0
  9. agent_brain_server/indexing/embedding.py +86 -135
  10. agent_brain_server/indexing/graph_extractors.py +582 -0
  11. agent_brain_server/indexing/graph_index.py +536 -0
  12. agent_brain_server/models/__init__.py +9 -0
  13. agent_brain_server/models/graph.py +253 -0
  14. agent_brain_server/models/health.py +15 -3
  15. agent_brain_server/models/query.py +14 -1
  16. agent_brain_server/providers/__init__.py +64 -0
  17. agent_brain_server/providers/base.py +251 -0
  18. agent_brain_server/providers/embedding/__init__.py +23 -0
  19. agent_brain_server/providers/embedding/cohere.py +163 -0
  20. agent_brain_server/providers/embedding/ollama.py +150 -0
  21. agent_brain_server/providers/embedding/openai.py +118 -0
  22. agent_brain_server/providers/exceptions.py +95 -0
  23. agent_brain_server/providers/factory.py +157 -0
  24. agent_brain_server/providers/summarization/__init__.py +41 -0
  25. agent_brain_server/providers/summarization/anthropic.py +87 -0
  26. agent_brain_server/providers/summarization/gemini.py +96 -0
  27. agent_brain_server/providers/summarization/grok.py +95 -0
  28. agent_brain_server/providers/summarization/ollama.py +114 -0
  29. agent_brain_server/providers/summarization/openai.py +87 -0
  30. agent_brain_server/services/indexing_service.py +39 -0
  31. agent_brain_server/services/query_service.py +203 -0
  32. agent_brain_server/storage/__init__.py +18 -2
  33. agent_brain_server/storage/graph_store.py +519 -0
  34. agent_brain_server/storage/vector_store.py +35 -0
  35. agent_brain_server/storage_paths.py +2 -0
  36. agent_brain_rag-1.2.0.dist-info/RECORD +0 -31
  37. {agent_brain_rag-1.2.0.dist-info → agent_brain_rag-2.0.0.dist-info}/WHEEL +0 -0
  38. {agent_brain_rag-1.2.0.dist-info → agent_brain_rag-2.0.0.dist-info}/entry_points.txt +0 -0
@@ -7,8 +7,13 @@ from typing import Any, Optional
7
7
  from llama_index.core.retrievers import BaseRetriever
8
8
  from llama_index.core.schema import NodeWithScore, QueryBundle, TextNode
9
9
 
10
+ from agent_brain_server.config import settings
10
11
  from agent_brain_server.indexing import EmbeddingGenerator, get_embedding_generator
11
12
  from agent_brain_server.indexing.bm25_index import BM25IndexManager, get_bm25_manager
13
+ from agent_brain_server.indexing.graph_index import (
14
+ GraphIndexManager,
15
+ get_graph_index_manager,
16
+ )
12
17
  from agent_brain_server.models import (
13
18
  QueryMode,
14
19
  QueryRequest,
@@ -69,6 +74,7 @@ class QueryService:
69
74
  vector_store: Optional[VectorStoreManager] = None,
70
75
  embedding_generator: Optional[EmbeddingGenerator] = None,
71
76
  bm25_manager: Optional[BM25IndexManager] = None,
77
+ graph_index_manager: Optional[GraphIndexManager] = None,
72
78
  ):
73
79
  """
74
80
  Initialize the query service.
@@ -77,10 +83,12 @@ class QueryService:
77
83
  vector_store: Vector store manager instance.
78
84
  embedding_generator: Embedding generator instance.
79
85
  bm25_manager: BM25 index manager instance.
86
+ graph_index_manager: Graph index manager instance (Feature 113).
80
87
  """
81
88
  self.vector_store = vector_store or get_vector_store()
82
89
  self.embedding_generator = embedding_generator or get_embedding_generator()
83
90
  self.bm25_manager = bm25_manager or get_bm25_manager()
91
+ self.graph_index_manager = graph_index_manager or get_graph_index_manager()
84
92
 
85
93
  def is_ready(self) -> bool:
86
94
  """
@@ -115,6 +123,10 @@ class QueryService:
115
123
  results = await self._execute_bm25_query(request)
116
124
  elif request.mode == QueryMode.VECTOR:
117
125
  results = await self._execute_vector_query(request)
126
+ elif request.mode == QueryMode.GRAPH:
127
+ results = await self._execute_graph_query(request)
128
+ elif request.mode == QueryMode.MULTI:
129
+ results = await self._execute_multi_query(request)
118
130
  else: # HYBRID
119
131
  results = await self._execute_hybrid_query(request)
120
132
 
@@ -318,6 +330,197 @@ class QueryService:
318
330
 
319
331
  return fused_nodes
320
332
 
333
+ async def _execute_graph_query(
334
+ self,
335
+ request: QueryRequest,
336
+ traversal_depth: int = 2,
337
+ ) -> list[QueryResult]:
338
+ """Execute graph-only query using entity relationships.
339
+
340
+ Uses the knowledge graph to find documents related to
341
+ entities mentioned in the query.
342
+
343
+ Args:
344
+ request: Query request.
345
+ traversal_depth: How many hops to traverse in graph.
346
+
347
+ Returns:
348
+ List of QueryResult from graph retrieval.
349
+
350
+ Raises:
351
+ ValueError: If GraphRAG is not enabled.
352
+ """
353
+ if not settings.ENABLE_GRAPH_INDEX:
354
+ raise ValueError(
355
+ "GraphRAG not enabled. Set ENABLE_GRAPH_INDEX=true in environment."
356
+ )
357
+
358
+ # Query the graph for related entities
359
+ graph_results = self.graph_index_manager.query(
360
+ query_text=request.query,
361
+ top_k=request.top_k,
362
+ traversal_depth=traversal_depth,
363
+ )
364
+
365
+ if not graph_results:
366
+ logger.debug("No graph results found, falling back to vector search")
367
+ return await self._execute_vector_query(request)
368
+
369
+ # Convert graph results to QueryResults
370
+ results: list[QueryResult] = []
371
+ chunk_ids = [
372
+ r.get("source_chunk_id") for r in graph_results if r.get("source_chunk_id")
373
+ ]
374
+
375
+ if not chunk_ids:
376
+ # No source chunks in graph, fall back to vector search
377
+ return await self._execute_vector_query(request)
378
+
379
+ # Look up the actual documents from vector store
380
+ for graph_result in graph_results:
381
+ chunk_id = graph_result.get("source_chunk_id")
382
+ if not chunk_id:
383
+ continue
384
+
385
+ # Get document from vector store by ID
386
+ try:
387
+ doc = await self.vector_store.get_by_id(chunk_id)
388
+ if doc:
389
+ result = QueryResult(
390
+ text=doc.get("text", ""),
391
+ source=doc.get("metadata", {}).get(
392
+ "source",
393
+ doc.get("metadata", {}).get("file_path", "unknown"),
394
+ ),
395
+ score=graph_result.get("graph_score", 0.5),
396
+ graph_score=graph_result.get("graph_score", 0.5),
397
+ chunk_id=chunk_id,
398
+ source_type=doc.get("metadata", {}).get("source_type", "doc"),
399
+ language=doc.get("metadata", {}).get("language"),
400
+ related_entities=[
401
+ graph_result.get("subject", ""),
402
+ graph_result.get("object", ""),
403
+ ],
404
+ relationship_path=[graph_result.get("relationship_path", "")],
405
+ metadata={
406
+ k: v
407
+ for k, v in doc.get("metadata", {}).items()
408
+ if k
409
+ not in ("source", "file_path", "source_type", "language")
410
+ },
411
+ )
412
+ results.append(result)
413
+ except Exception as e:
414
+ logger.debug(f"Failed to retrieve chunk {chunk_id}: {e}")
415
+ continue
416
+
417
+ # If no results from graph, fall back to vector search
418
+ if not results:
419
+ logger.debug("No documents found from graph, falling back to vector search")
420
+ return await self._execute_vector_query(request)
421
+
422
+ return results[: request.top_k]
423
+
424
+ async def _execute_multi_query(self, request: QueryRequest) -> list[QueryResult]:
425
+ """Execute multi-retrieval query combining vector, BM25, and graph.
426
+
427
+ Uses Reciprocal Rank Fusion (RRF) to combine results from
428
+ all three retrieval methods.
429
+
430
+ Args:
431
+ request: Query request.
432
+
433
+ Returns:
434
+ List of QueryResult with combined scores.
435
+ """
436
+ # Get results from each retriever
437
+ vector_results = await self._execute_vector_query(request)
438
+ bm25_results = await self._execute_bm25_query(request)
439
+
440
+ # Get graph results if enabled
441
+ graph_results: list[QueryResult] = []
442
+ if settings.ENABLE_GRAPH_INDEX:
443
+ try:
444
+ graph_results = await self._execute_graph_query(request)
445
+ except ValueError:
446
+ pass # Graph not enabled, skip
447
+
448
+ # Apply Reciprocal Rank Fusion
449
+ rrf_k = settings.GRAPH_RRF_K # Typical value is 60
450
+ combined_scores: dict[str, dict[str, Any]] = {}
451
+
452
+ # Process vector results
453
+ for rank, result in enumerate(vector_results):
454
+ chunk_id = result.chunk_id
455
+ rrf_score = 1.0 / (rrf_k + rank + 1)
456
+ if chunk_id not in combined_scores:
457
+ combined_scores[chunk_id] = {
458
+ "result": result,
459
+ "rrf_score": 0.0,
460
+ "vector_rank": None,
461
+ "bm25_rank": None,
462
+ "graph_rank": None,
463
+ }
464
+ combined_scores[chunk_id]["rrf_score"] += rrf_score
465
+ combined_scores[chunk_id]["vector_rank"] = rank + 1
466
+
467
+ # Process BM25 results
468
+ for rank, result in enumerate(bm25_results):
469
+ chunk_id = result.chunk_id
470
+ rrf_score = 1.0 / (rrf_k + rank + 1)
471
+ if chunk_id not in combined_scores:
472
+ combined_scores[chunk_id] = {
473
+ "result": result,
474
+ "rrf_score": 0.0,
475
+ "vector_rank": None,
476
+ "bm25_rank": None,
477
+ "graph_rank": None,
478
+ }
479
+ combined_scores[chunk_id]["rrf_score"] += rrf_score
480
+ combined_scores[chunk_id]["bm25_rank"] = rank + 1
481
+
482
+ # Process graph results
483
+ for rank, result in enumerate(graph_results):
484
+ chunk_id = result.chunk_id
485
+ rrf_score = 1.0 / (rrf_k + rank + 1)
486
+ if chunk_id not in combined_scores:
487
+ combined_scores[chunk_id] = {
488
+ "result": result,
489
+ "rrf_score": 0.0,
490
+ "vector_rank": None,
491
+ "bm25_rank": None,
492
+ "graph_rank": None,
493
+ }
494
+ combined_scores[chunk_id]["rrf_score"] += rrf_score
495
+ combined_scores[chunk_id]["graph_rank"] = rank + 1
496
+ # Preserve graph-specific fields
497
+ if result.related_entities:
498
+ combined_scores[chunk_id][
499
+ "result"
500
+ ].related_entities = result.related_entities
501
+ if result.relationship_path:
502
+ combined_scores[chunk_id][
503
+ "result"
504
+ ].relationship_path = result.relationship_path
505
+ if result.graph_score:
506
+ combined_scores[chunk_id]["result"].graph_score = result.graph_score
507
+
508
+ # Sort by RRF score and take top_k
509
+ sorted_results = sorted(
510
+ combined_scores.values(),
511
+ key=lambda x: x["rrf_score"],
512
+ reverse=True,
513
+ )
514
+
515
+ # Update scores and return
516
+ final_results: list[QueryResult] = []
517
+ for data in sorted_results[: request.top_k]:
518
+ result = data["result"]
519
+ result.score = data["rrf_score"]
520
+ final_results.append(result)
521
+
522
+ return final_results
523
+
321
524
  async def get_document_count(self) -> int:
322
525
  """
323
526
  Get the total number of indexed documents.
@@ -1,5 +1,21 @@
1
- """Storage layer for vector database operations."""
1
+ """Storage layer for vector database and graph operations."""
2
2
 
3
+ from .graph_store import (
4
+ GraphStoreManager,
5
+ get_graph_store_manager,
6
+ initialize_graph_store,
7
+ reset_graph_store_manager,
8
+ )
3
9
  from .vector_store import VectorStoreManager, get_vector_store, initialize_vector_store
4
10
 
5
- __all__ = ["VectorStoreManager", "get_vector_store", "initialize_vector_store"]
11
+ __all__ = [
12
+ # Vector store
13
+ "VectorStoreManager",
14
+ "get_vector_store",
15
+ "initialize_vector_store",
16
+ # Graph store (Feature 113)
17
+ "GraphStoreManager",
18
+ "get_graph_store_manager",
19
+ "initialize_graph_store",
20
+ "reset_graph_store_manager",
21
+ ]