ag2 0.9.9__py3-none-any.whl → 0.9.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ag2 might be problematic. Click here for more details.
- {ag2-0.9.9.dist-info → ag2-0.9.10.dist-info}/METADATA +232 -210
- {ag2-0.9.9.dist-info → ag2-0.9.10.dist-info}/RECORD +88 -80
- autogen/_website/generate_mkdocs.py +3 -3
- autogen/_website/notebook_processor.py +1 -1
- autogen/_website/utils.py +1 -1
- autogen/agentchat/assistant_agent.py +15 -15
- autogen/agentchat/chat.py +52 -40
- autogen/agentchat/contrib/agent_eval/criterion.py +1 -1
- autogen/agentchat/contrib/capabilities/text_compressors.py +5 -5
- autogen/agentchat/contrib/capabilities/tools_capability.py +1 -1
- autogen/agentchat/contrib/capabilities/transforms.py +1 -1
- autogen/agentchat/contrib/captainagent/agent_builder.py +1 -1
- autogen/agentchat/contrib/captainagent/captainagent.py +20 -19
- autogen/agentchat/contrib/graph_rag/falkor_graph_query_engine.py +2 -5
- autogen/agentchat/contrib/graph_rag/graph_rag_capability.py +5 -5
- autogen/agentchat/contrib/graph_rag/neo4j_graph_query_engine.py +18 -17
- autogen/agentchat/contrib/rag/mongodb_query_engine.py +2 -2
- autogen/agentchat/contrib/rag/query_engine.py +11 -11
- autogen/agentchat/contrib/retrieve_assistant_agent.py +3 -0
- autogen/agentchat/contrib/swarm_agent.py +3 -2
- autogen/agentchat/contrib/vectordb/couchbase.py +1 -1
- autogen/agentchat/contrib/vectordb/mongodb.py +1 -1
- autogen/agentchat/contrib/web_surfer.py +1 -1
- autogen/agentchat/conversable_agent.py +184 -80
- autogen/agentchat/group/context_expression.py +21 -21
- autogen/agentchat/group/handoffs.py +11 -11
- autogen/agentchat/group/multi_agent_chat.py +3 -2
- autogen/agentchat/group/on_condition.py +11 -11
- autogen/agentchat/group/safeguards/__init__.py +21 -0
- autogen/agentchat/group/safeguards/api.py +224 -0
- autogen/agentchat/group/safeguards/enforcer.py +1064 -0
- autogen/agentchat/group/safeguards/events.py +119 -0
- autogen/agentchat/group/safeguards/validator.py +435 -0
- autogen/agentchat/groupchat.py +58 -17
- autogen/agentchat/realtime/experimental/clients/realtime_client.py +2 -2
- autogen/agentchat/realtime/experimental/function_observer.py +2 -3
- autogen/agentchat/realtime/experimental/realtime_agent.py +2 -3
- autogen/agentchat/realtime/experimental/realtime_swarm.py +21 -10
- autogen/agentchat/user_proxy_agent.py +55 -53
- autogen/agents/experimental/document_agent/document_agent.py +1 -10
- autogen/agents/experimental/document_agent/parser_utils.py +5 -1
- autogen/browser_utils.py +4 -4
- autogen/cache/abstract_cache_base.py +2 -6
- autogen/cache/disk_cache.py +1 -6
- autogen/cache/in_memory_cache.py +2 -6
- autogen/cache/redis_cache.py +1 -5
- autogen/coding/__init__.py +10 -2
- autogen/coding/base.py +2 -1
- autogen/coding/docker_commandline_code_executor.py +1 -6
- autogen/coding/factory.py +9 -0
- autogen/coding/jupyter/docker_jupyter_server.py +1 -7
- autogen/coding/jupyter/jupyter_client.py +2 -9
- autogen/coding/jupyter/jupyter_code_executor.py +2 -7
- autogen/coding/jupyter/local_jupyter_server.py +2 -6
- autogen/coding/local_commandline_code_executor.py +0 -65
- autogen/coding/yepcode_code_executor.py +197 -0
- autogen/environments/docker_python_environment.py +3 -3
- autogen/environments/system_python_environment.py +5 -5
- autogen/environments/venv_python_environment.py +5 -5
- autogen/events/agent_events.py +1 -1
- autogen/events/client_events.py +1 -1
- autogen/fast_depends/utils.py +10 -0
- autogen/graph_utils.py +5 -7
- autogen/import_utils.py +3 -1
- autogen/interop/pydantic_ai/pydantic_ai.py +8 -5
- autogen/io/processors/console_event_processor.py +8 -3
- autogen/llm_config/config.py +168 -91
- autogen/llm_config/entry.py +38 -26
- autogen/llm_config/types.py +35 -0
- autogen/llm_config/utils.py +223 -0
- autogen/mcp/mcp_proxy/operation_grouping.py +48 -39
- autogen/messages/agent_messages.py +1 -1
- autogen/messages/client_messages.py +1 -1
- autogen/oai/__init__.py +8 -1
- autogen/oai/client.py +10 -3
- autogen/oai/client_utils.py +1 -1
- autogen/oai/cohere.py +4 -4
- autogen/oai/gemini.py +4 -6
- autogen/oai/gemini_types.py +1 -0
- autogen/oai/openai_utils.py +44 -115
- autogen/tools/dependency_injection.py +4 -8
- autogen/tools/experimental/reliable/reliable.py +3 -2
- autogen/tools/experimental/web_search_preview/web_search_preview.py +1 -1
- autogen/tools/function_utils.py +2 -1
- autogen/version.py +1 -1
- {ag2-0.9.9.dist-info → ag2-0.9.10.dist-info}/WHEEL +0 -0
- {ag2-0.9.9.dist-info → ag2-0.9.10.dist-info}/licenses/LICENSE +0 -0
- {ag2-0.9.9.dist-info → ag2-0.9.10.dist-info}/licenses/NOTICE.md +0 -0
|
@@ -0,0 +1,223 @@
|
|
|
1
|
+
# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
|
|
2
|
+
#
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
#
|
|
5
|
+
# Portions derived from https://github.com/microsoft/autogen are under the MIT License.
|
|
6
|
+
# SPDX-License-Identifier: MIT
|
|
7
|
+
import json
|
|
8
|
+
import os
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from typing import Any
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def config_list_from_json(
|
|
14
|
+
env_or_file: str | Path,
|
|
15
|
+
file_location: str | Path | None = "",
|
|
16
|
+
filter_dict: dict[str, list[str | None] | set[str | None]] | None = None,
|
|
17
|
+
) -> list[dict[str, Any]]:
|
|
18
|
+
"""Retrieves a list of API configurations from a JSON stored in an environment variable or a file.
|
|
19
|
+
|
|
20
|
+
This function attempts to parse JSON data from the given `env_or_file` parameter. If `env_or_file` is an
|
|
21
|
+
environment variable containing JSON data, it will be used directly. Otherwise, it is assumed to be a filename,
|
|
22
|
+
and the function will attempt to read the file from the specified `file_location`.
|
|
23
|
+
|
|
24
|
+
The `filter_dict` parameter allows for filtering the configurations based on specified criteria. Each key in the
|
|
25
|
+
`filter_dict` corresponds to a field in the configuration dictionaries, and the associated value is a list or set
|
|
26
|
+
of acceptable values for that field. If a field is missing in a configuration and `None` is included in the list
|
|
27
|
+
of acceptable values for that field, the configuration will still be considered a match.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
env_or_file (str): The name of the environment variable, the filename, or the environment variable of the filename
|
|
31
|
+
that containing the JSON data.
|
|
32
|
+
file_location (str, optional): The directory path where the file is located, if `env_or_file` is a filename.
|
|
33
|
+
filter_dict (dict, optional): A dictionary specifying the filtering criteria for the configurations, with
|
|
34
|
+
keys representing field names and values being lists or sets of acceptable values for those fields.
|
|
35
|
+
|
|
36
|
+
Example:
|
|
37
|
+
```python
|
|
38
|
+
# Suppose we have an environment variable 'CONFIG_JSON' with the following content:
|
|
39
|
+
# '[{"model": "gpt-3.5-turbo", "api_type": "azure"}, {"model": "gpt-4"}]'
|
|
40
|
+
|
|
41
|
+
# We can retrieve a filtered list of configurations like this:
|
|
42
|
+
filter_criteria = {"model": ["gpt-3.5-turbo"]}
|
|
43
|
+
configs = config_list_from_json("CONFIG_JSON", filter_dict=filter_criteria)
|
|
44
|
+
# The 'configs' variable will now contain only the configurations that match the filter criteria.
|
|
45
|
+
```
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
List[Dict]: A list of configuration dictionaries that match the filtering criteria specified in `filter_dict`.
|
|
49
|
+
|
|
50
|
+
Raises:
|
|
51
|
+
FileNotFoundError: if env_or_file is neither found as an environment variable nor a file
|
|
52
|
+
"""
|
|
53
|
+
env_str = os.environ.get(str(env_or_file))
|
|
54
|
+
|
|
55
|
+
if env_str:
|
|
56
|
+
# The environment variable exists. We should use information from it.
|
|
57
|
+
if os.path.exists(env_str): # noqa: SIM108
|
|
58
|
+
# It is a file location, and we need to load the json from the file.
|
|
59
|
+
json_str = Path(env_str).read_text()
|
|
60
|
+
else:
|
|
61
|
+
# Else, it should be a JSON string by itself.
|
|
62
|
+
json_str = env_str
|
|
63
|
+
config_list = json.loads(json_str)
|
|
64
|
+
|
|
65
|
+
else:
|
|
66
|
+
# The environment variable does not exist.
|
|
67
|
+
# So, `env_or_file` is a filename. We should use the file location.
|
|
68
|
+
config_list_path = Path(file_location) / env_or_file if file_location else Path(env_or_file)
|
|
69
|
+
|
|
70
|
+
with open(config_list_path) as json_file:
|
|
71
|
+
config_list = json.load(json_file)
|
|
72
|
+
|
|
73
|
+
return filter_config(config_list, filter_dict)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def filter_config(
|
|
77
|
+
config_list: list[dict[str, Any]],
|
|
78
|
+
filter_dict: dict[str, list[str | None] | set[str | None]] | None,
|
|
79
|
+
exclude: bool = False,
|
|
80
|
+
) -> list[dict[str, Any]]:
|
|
81
|
+
"""Filter configuration dictionaries based on specified criteria.
|
|
82
|
+
|
|
83
|
+
This function filters a list of configuration dictionaries by applying ALL criteria specified in `filter_dict`.
|
|
84
|
+
A configuration is included in the result if it satisfies every key-value constraint in the filter dictionary.
|
|
85
|
+
For each filter key, the configuration's corresponding field value must match at least one of the acceptable
|
|
86
|
+
values (OR logic within each criteria, AND logic between different criteria).
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
config_list (list of dict): A list of configuration dictionaries to be filtered.
|
|
90
|
+
|
|
91
|
+
filter_dict (dict, optional): A dictionary specifying filter criteria where:
|
|
92
|
+
- Keys are field names to check in each configuration dictionary
|
|
93
|
+
- Values are lists/sets of acceptable values for that field
|
|
94
|
+
- A configuration matches if ALL filter keys are satisfied AND for each key,
|
|
95
|
+
the config's field value matches at least one acceptable value
|
|
96
|
+
- If a filter value includes None, configurations missing that field will match
|
|
97
|
+
- If None, no filtering is applied
|
|
98
|
+
|
|
99
|
+
exclude (bool, optional): If False (default), return configurations that match the filter.
|
|
100
|
+
If True, return configurations that do NOT match the filter.
|
|
101
|
+
|
|
102
|
+
Returns:
|
|
103
|
+
list of dict: Filtered list of configuration dictionaries.
|
|
104
|
+
|
|
105
|
+
Matching Logic:
|
|
106
|
+
- **Between different filter keys**: AND logic (all criteria must be satisfied)
|
|
107
|
+
- **Within each filter key's values**: OR logic (any acceptable value can match)
|
|
108
|
+
- **For list-type config values**: Match if there's any intersection with acceptable values
|
|
109
|
+
- **For scalar config values**: Match if the value is in the list of acceptable values
|
|
110
|
+
- **Missing fields**: Only match if None is included in the acceptable values for that field
|
|
111
|
+
|
|
112
|
+
Examples:
|
|
113
|
+
```python
|
|
114
|
+
configs = [
|
|
115
|
+
{"model": "gpt-3.5-turbo", "api_type": "openai"},
|
|
116
|
+
{"model": "gpt-4", "api_type": "openai"},
|
|
117
|
+
{"model": "gpt-3.5-turbo", "api_type": "azure", "api_version": "2024-02-01"},
|
|
118
|
+
{"model": "gpt-4", "tags": ["premium", "latest"]},
|
|
119
|
+
]
|
|
120
|
+
|
|
121
|
+
# Example 1: Single criterion - matches any model in the list
|
|
122
|
+
filter_dict = {"model": ["gpt-4", "gpt-4o"]}
|
|
123
|
+
result = filter_config(configs, filter_dict)
|
|
124
|
+
# Returns: [{"model": "gpt-4", "api_type": "openai"}, {"model": "gpt-4", "tags": ["premium", "latest"]}]
|
|
125
|
+
|
|
126
|
+
# Example 2: Multiple criteria - must satisfy ALL conditions
|
|
127
|
+
filter_dict = {"model": ["gpt-3.5-turbo"], "api_type": ["azure"]}
|
|
128
|
+
result = filter_config(configs, filter_dict)
|
|
129
|
+
# Returns: [{"model": "gpt-3.5-turbo", "api_type": "azure", "api_version": "2024-02-01"}]
|
|
130
|
+
|
|
131
|
+
# Example 3: Tag filtering with list intersection
|
|
132
|
+
filter_dict = {"tags": ["premium"]}
|
|
133
|
+
result = filter_config(configs, filter_dict)
|
|
134
|
+
# Returns: [{"model": "gpt-4", "tags": ["premium", "latest"]}]
|
|
135
|
+
|
|
136
|
+
# Example 4: Exclude matching configurations
|
|
137
|
+
filter_dict = {"api_type": ["openai"]}
|
|
138
|
+
result = filter_config(configs, filter_dict, exclude=True)
|
|
139
|
+
# Returns configs that do NOT have api_type="openai"
|
|
140
|
+
```
|
|
141
|
+
Note:
|
|
142
|
+
- If `filter_dict` is empty or None, no filtering is applied and `config_list` is returned as is.
|
|
143
|
+
- If a configuration dictionary in `config_list` does not contain a key specified in `filter_dict`,
|
|
144
|
+
it is considered a non-match and is excluded from the result.
|
|
145
|
+
|
|
146
|
+
"""
|
|
147
|
+
if filter_dict:
|
|
148
|
+
return [
|
|
149
|
+
item
|
|
150
|
+
for item in config_list
|
|
151
|
+
if all(_satisfies_criteria(item.get(key), values) != exclude for key, values in filter_dict.items())
|
|
152
|
+
]
|
|
153
|
+
|
|
154
|
+
return config_list
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def _satisfies_criteria(config_value: Any, criteria_values: Any) -> bool:
|
|
158
|
+
"""Check if a configuration field value satisfies the filter criteria.
|
|
159
|
+
|
|
160
|
+
This helper function implements the matching logic between a single configuration
|
|
161
|
+
field value and the acceptable values specified in the filter criteria. It handles
|
|
162
|
+
both scalar and list-type configuration values with appropriate matching strategies.
|
|
163
|
+
|
|
164
|
+
Args:
|
|
165
|
+
config_value (Any): The value from a configuration dictionary field.
|
|
166
|
+
Can be None, a scalar value, or a list of values.
|
|
167
|
+
criteria_values (Any): The acceptable values from the filter dictionary.
|
|
168
|
+
Can be a single value or a list/set of acceptable values.
|
|
169
|
+
|
|
170
|
+
Returns:
|
|
171
|
+
bool: True if the config_value satisfies the criteria, False otherwise.
|
|
172
|
+
|
|
173
|
+
Matching Logic:
|
|
174
|
+
- **None config values**: Always return False (missing fields don't match)
|
|
175
|
+
- **List config values**:
|
|
176
|
+
- If criteria is a list: Match if there's any intersection (set overlap)
|
|
177
|
+
- If criteria is scalar: Match if the scalar is contained in the config list
|
|
178
|
+
- **Scalar config values**:
|
|
179
|
+
- If criteria is a list: Match if the config value is in the criteria list
|
|
180
|
+
- If criteria is scalar: Match if the values are exactly equal
|
|
181
|
+
|
|
182
|
+
Examples:
|
|
183
|
+
```python
|
|
184
|
+
# List config value with list criteria (intersection matching)
|
|
185
|
+
_satisfies_criteria(["gpt-4", "gpt-3.5"], ["gpt-4", "claude"]) # True (gpt-4 intersects)
|
|
186
|
+
_satisfies_criteria(["tag1", "tag2"], ["tag3", "tag4"]) # False (no intersection)
|
|
187
|
+
|
|
188
|
+
# List config value with scalar criteria (containment matching)
|
|
189
|
+
_satisfies_criteria(["premium", "latest"], "premium") # True (premium is in list)
|
|
190
|
+
_satisfies_criteria(["tag1", "tag2"], "tag3") # False (tag3 not in list)
|
|
191
|
+
|
|
192
|
+
# Scalar config value with list criteria (membership matching)
|
|
193
|
+
_satisfies_criteria("gpt-4", ["gpt-4", "gpt-3.5"]) # True (gpt-4 in criteria)
|
|
194
|
+
_satisfies_criteria("claude", ["gpt-4", "gpt-3.5"]) # False (claude not in criteria)
|
|
195
|
+
|
|
196
|
+
# Scalar config value with scalar criteria (equality matching)
|
|
197
|
+
_satisfies_criteria("openai", "openai") # True (exact match)
|
|
198
|
+
_satisfies_criteria("openai", "azure") # False (different values)
|
|
199
|
+
|
|
200
|
+
# None config values (missing fields)
|
|
201
|
+
_satisfies_criteria(None, ["gpt-4"]) # False (missing field)
|
|
202
|
+
_satisfies_criteria(None, "gpt-4") # False (missing field)
|
|
203
|
+
```
|
|
204
|
+
|
|
205
|
+
Note:
|
|
206
|
+
This is an internal helper function used by `filter_config()`. The function
|
|
207
|
+
assumes that both parameters can be of various types and handles type
|
|
208
|
+
checking internally to determine the appropriate matching strategy.
|
|
209
|
+
"""
|
|
210
|
+
if config_value is None:
|
|
211
|
+
return False
|
|
212
|
+
|
|
213
|
+
if isinstance(config_value, list):
|
|
214
|
+
if isinstance(criteria_values, list):
|
|
215
|
+
return bool(set(config_value) & set(criteria_values)) # Non-empty intersection
|
|
216
|
+
else:
|
|
217
|
+
return criteria_values in config_value
|
|
218
|
+
else:
|
|
219
|
+
# In filter_dict, filter could be either a list of values or a single value.
|
|
220
|
+
# For example, filter_dict = {"model": ["gpt-3.5-turbo"]} or {"model": "gpt-3.5-turbo"}
|
|
221
|
+
if isinstance(criteria_values, list):
|
|
222
|
+
return config_value in criteria_values
|
|
223
|
+
return bool(config_value == criteria_values)
|
|
@@ -67,37 +67,43 @@ def discover_groups(operations: list["Operation"], chunk_size: int = 30) -> dict
|
|
|
67
67
|
for config in llm_config.config_list:
|
|
68
68
|
config.response_format = GroupSuggestions
|
|
69
69
|
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
70
|
+
agent = ConversableAgent(
|
|
71
|
+
name="group_discovery_agent",
|
|
72
|
+
system_message=GROUP_DISCOVERY_MESSAGE,
|
|
73
|
+
llm_config=llm_config,
|
|
74
|
+
)
|
|
75
|
+
groups = {}
|
|
73
76
|
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
+
for chunk in chunk_list(operations, chunk_size):
|
|
78
|
+
func_descriptions = [f"- {op.function_name}: {op.summary} (args: {op.arguments})" for op in chunk]
|
|
79
|
+
message = "Here are some functions:\n" + "\n".join(func_descriptions)
|
|
77
80
|
|
|
78
|
-
|
|
81
|
+
response = agent.run(message=message, max_turns=1, user_input=False)
|
|
79
82
|
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
83
|
+
for event in response.events:
|
|
84
|
+
if event.type == "text" and event.content.sender == "group_discovery_agent":
|
|
85
|
+
# Naively parse "group_name: description" from text block
|
|
86
|
+
new_groups = GroupSuggestions.model_validate_json(event.content.content).groups
|
|
87
|
+
groups.update(new_groups)
|
|
85
88
|
|
|
86
89
|
logger.warning("Discovered groups: %s", groups)
|
|
87
90
|
|
|
88
91
|
# Remove duplicates
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
for
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
92
|
+
agent = ConversableAgent(
|
|
93
|
+
name="group_refining_agent",
|
|
94
|
+
system_message=GROUP_DISCOVERY_MESSAGE,
|
|
95
|
+
llm_config=llm_config,
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
message = (
|
|
99
|
+
"You need to refine the group names and descriptions to ensure they are unique.\n"
|
|
100
|
+
"Here are the groups:\n" + "\n".join([f"- {name}: {desc}" for name, desc in groups.items()])
|
|
101
|
+
)
|
|
102
|
+
response = agent.run(message=message, max_turns=1, user_input=False)
|
|
103
|
+
for event in response.events:
|
|
104
|
+
if event.type == "text" and event.content.sender == "group_refining_agent":
|
|
105
|
+
# Naively parse "group_name: description" from text block
|
|
106
|
+
refined_groups = json.loads(event.content.content)
|
|
101
107
|
|
|
102
108
|
return refined_groups
|
|
103
109
|
|
|
@@ -108,25 +114,28 @@ def assign_operation_to_group(operation: "Operation", groups: dict[str, str]) ->
|
|
|
108
114
|
for config in llm_config.config_list:
|
|
109
115
|
config.response_format = GroupNames
|
|
110
116
|
|
|
111
|
-
|
|
112
|
-
|
|
117
|
+
agent = ConversableAgent(
|
|
118
|
+
name="group_assignment_agent",
|
|
119
|
+
system_message=GROUP_ASSIGNMENT_MESSAGE,
|
|
120
|
+
llm_config=llm_config,
|
|
121
|
+
)
|
|
113
122
|
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
123
|
+
message = (
|
|
124
|
+
"Function summary:\n"
|
|
125
|
+
f"{operation.summary}\n\n"
|
|
126
|
+
f"Arguments: {operation.arguments}\n\n"
|
|
127
|
+
f"Available groups: {json.dumps(groups)}\n\n"
|
|
128
|
+
"What group should this function go in?"
|
|
129
|
+
)
|
|
121
130
|
|
|
122
|
-
|
|
131
|
+
response = agent.run(message=message, max_turns=1, user_input=True)
|
|
123
132
|
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
133
|
+
groups = []
|
|
134
|
+
for event in response.events:
|
|
135
|
+
if event.type == "text" and event.content.sender == "group_assignment_agent":
|
|
136
|
+
groups = GroupNames.model_validate_json(event.content.content).groups
|
|
128
137
|
|
|
129
|
-
|
|
138
|
+
return groups
|
|
130
139
|
|
|
131
140
|
|
|
132
141
|
def refine_group_names(groups: dict[str, str]) -> dict[str, str]:
|
|
@@ -911,7 +911,7 @@ class GenerateCodeExecutionReplyMessage(BaseMessage):
|
|
|
911
911
|
else:
|
|
912
912
|
f(
|
|
913
913
|
colored(
|
|
914
|
-
f"\n>>>>>>>> EXECUTING {num_code_blocks} CODE BLOCKS (inferred languages are [{', '.join(
|
|
914
|
+
f"\n>>>>>>>> EXECUTING {num_code_blocks} CODE BLOCKS (inferred languages are [{', '.join(list(self.code_block_languages))}])...",
|
|
915
915
|
"red",
|
|
916
916
|
),
|
|
917
917
|
flush=True,
|
|
@@ -64,7 +64,7 @@ def _change_usage_summary_format(
|
|
|
64
64
|
usage_summary_altered_format: dict[str, list[dict[str, Any]]] = {"usages": []}
|
|
65
65
|
for k, v in usage_summary.items():
|
|
66
66
|
if isinstance(k, str) and isinstance(v, dict):
|
|
67
|
-
current_usage =
|
|
67
|
+
current_usage = dict(v.items())
|
|
68
68
|
current_usage["model"] = k
|
|
69
69
|
usage_summary_altered_format["usages"].append(current_usage)
|
|
70
70
|
else:
|
autogen/oai/__init__.py
CHANGED
|
@@ -8,7 +8,13 @@ from ..cache.cache import Cache
|
|
|
8
8
|
from .anthropic import AnthropicLLMConfigEntry
|
|
9
9
|
from .bedrock import BedrockLLMConfigEntry
|
|
10
10
|
from .cerebras import CerebrasLLMConfigEntry
|
|
11
|
-
from .client import
|
|
11
|
+
from .client import (
|
|
12
|
+
AzureOpenAILLMConfigEntry,
|
|
13
|
+
DeepSeekLLMConfigEntry,
|
|
14
|
+
OpenAILLMConfigEntry,
|
|
15
|
+
OpenAIResponsesLLMConfigEntry,
|
|
16
|
+
OpenAIWrapper,
|
|
17
|
+
)
|
|
12
18
|
from .cohere import CohereLLMConfigEntry
|
|
13
19
|
from .gemini import GeminiLLMConfigEntry
|
|
14
20
|
from .groq import GroqLLMConfigEntry
|
|
@@ -39,6 +45,7 @@ __all__ = [
|
|
|
39
45
|
"MistralLLMConfigEntry",
|
|
40
46
|
"OllamaLLMConfigEntry",
|
|
41
47
|
"OpenAILLMConfigEntry",
|
|
48
|
+
"OpenAIResponsesLLMConfigEntry",
|
|
42
49
|
"OpenAIWrapper",
|
|
43
50
|
"TogetherLLMConfigEntry",
|
|
44
51
|
"config_list_from_dotenv",
|
autogen/oai/client.py
CHANGED
|
@@ -2,7 +2,6 @@
|
|
|
2
2
|
#
|
|
3
3
|
# SPDX-License-Identifier: Apache-2.0
|
|
4
4
|
#
|
|
5
|
-
# Portions derived from https://github.com/microsoft/autogen are under the MIT License.
|
|
6
5
|
# SPDX-License-Identifier: MIT
|
|
7
6
|
from __future__ import annotations
|
|
8
7
|
|
|
@@ -287,7 +286,7 @@ class AzureOpenAIEntryDict(LLMConfigEntryDict, total=False):
|
|
|
287
286
|
stream: bool
|
|
288
287
|
tool_choice: Literal["none", "auto", "required"] | None
|
|
289
288
|
user: str | None
|
|
290
|
-
reasoning_effort: Literal["low", "medium", "high"] | None
|
|
289
|
+
reasoning_effort: Literal["low", "minimal", "medium", "high"] | None
|
|
291
290
|
max_completion_tokens: int | None
|
|
292
291
|
|
|
293
292
|
|
|
@@ -301,7 +300,7 @@ class AzureOpenAILLMConfigEntry(LLMConfigEntry):
|
|
|
301
300
|
# reasoning models - see:
|
|
302
301
|
# - https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/reasoning
|
|
303
302
|
# - https://learn.microsoft.com/en-us/azure/ai-services/openai/reference-preview
|
|
304
|
-
reasoning_effort: Literal["low", "medium", "high"] | None = None
|
|
303
|
+
reasoning_effort: Literal["low", "minimal", "medium", "high"] | None = None
|
|
305
304
|
max_completion_tokens: int | None = None
|
|
306
305
|
|
|
307
306
|
def create_client(self) -> ModelClient:
|
|
@@ -884,6 +883,7 @@ class OpenAIWrapper:
|
|
|
884
883
|
# a config for a custom client is set
|
|
885
884
|
# adding placeholder until the register_model_client is called with the appropriate class
|
|
886
885
|
self._clients.append(PlaceHolderClient(config))
|
|
886
|
+
# codeql[py/clear-text-logging-sensitive-data]
|
|
887
887
|
logger.info(
|
|
888
888
|
f"Detected custom model client in config: {model_client_cls_name}, model client can not be used until register_model_client is called."
|
|
889
889
|
)
|
|
@@ -1462,6 +1462,13 @@ class OpenAIWrapper:
|
|
|
1462
1462
|
# -----------------------------------------------------------------------------
|
|
1463
1463
|
|
|
1464
1464
|
|
|
1465
|
+
class OpenAIResponsesEntryDict(LLMConfigEntryDict, total=False):
|
|
1466
|
+
api_type: Literal["responses"]
|
|
1467
|
+
|
|
1468
|
+
tool_choice: Literal["none", "auto", "required"] | None
|
|
1469
|
+
built_in_tools: list[str] | None
|
|
1470
|
+
|
|
1471
|
+
|
|
1465
1472
|
class OpenAIResponsesLLMConfigEntry(OpenAILLMConfigEntry):
|
|
1466
1473
|
"""LLMConfig entry for the OpenAI Responses API (stateful, tool-enabled).
|
|
1467
1474
|
|
autogen/oai/client_utils.py
CHANGED
|
@@ -131,7 +131,7 @@ def should_hide_tools(messages: list[dict[str, Any]], tools: list[dict[str, Any]
|
|
|
131
131
|
return False
|
|
132
132
|
elif hide_tools_param == "if_any_run":
|
|
133
133
|
# Return True if any tool_call_id exists, indicating a tool call has been executed. False otherwise.
|
|
134
|
-
return any(
|
|
134
|
+
return any("tool_call_id" in dictionary for dictionary in messages)
|
|
135
135
|
elif hide_tools_param == "if_all_run":
|
|
136
136
|
# Return True if all tools have been executed at least once. False otherwise.
|
|
137
137
|
|
autogen/oai/cohere.py
CHANGED
|
@@ -260,7 +260,7 @@ class CohereClient:
|
|
|
260
260
|
cohere_params["messages"] = messages
|
|
261
261
|
|
|
262
262
|
if "tools" in params:
|
|
263
|
-
cohere_tool_names =
|
|
263
|
+
cohere_tool_names = {tool["function"]["name"] for tool in params["tools"]}
|
|
264
264
|
cohere_params["tools"] = params["tools"]
|
|
265
265
|
|
|
266
266
|
# Strip out name
|
|
@@ -285,9 +285,9 @@ class CohereClient:
|
|
|
285
285
|
) not in cohere_tool_names:
|
|
286
286
|
message["role"] = "assistant"
|
|
287
287
|
message["content"] = f"{message.pop('tool_plan', '')}{str(message['tool_calls'])}"
|
|
288
|
-
tool_calls_modified_ids = tool_calls_modified_ids.union(
|
|
289
|
-
|
|
290
|
-
)
|
|
288
|
+
tool_calls_modified_ids = tool_calls_modified_ids.union({
|
|
289
|
+
tool_call.get("id") for tool_call in message["tool_calls"]
|
|
290
|
+
})
|
|
291
291
|
del message["tool_calls"]
|
|
292
292
|
break
|
|
293
293
|
|
autogen/oai/gemini.py
CHANGED
|
@@ -246,7 +246,7 @@ class GeminiClient:
|
|
|
246
246
|
|
|
247
247
|
if model_name == "gemini-pro-vision":
|
|
248
248
|
raise ValueError(
|
|
249
|
-
"Gemini 1.0 Pro vision ('gemini-pro-vision') has been deprecated, please consider switching to a different model, for example 'gemini-
|
|
249
|
+
"Gemini 1.0 Pro vision ('gemini-pro-vision') has been deprecated, please consider switching to a different model, for example 'gemini-2.5-flash'."
|
|
250
250
|
)
|
|
251
251
|
elif not model_name:
|
|
252
252
|
raise ValueError(
|
|
@@ -385,9 +385,7 @@ class GeminiClient:
|
|
|
385
385
|
function={
|
|
386
386
|
"name": fn_call.name,
|
|
387
387
|
"arguments": (
|
|
388
|
-
json.dumps(
|
|
389
|
-
if fn_call.args is not None
|
|
390
|
-
else ""
|
|
388
|
+
json.dumps(dict(fn_call.args.items())) if fn_call.args is not None else ""
|
|
391
389
|
),
|
|
392
390
|
},
|
|
393
391
|
type="function",
|
|
@@ -857,10 +855,10 @@ class GeminiClient:
|
|
|
857
855
|
"""Convert safety settings to VertexAI format if needed,
|
|
858
856
|
like when specifying them in the OAI_CONFIG_LIST
|
|
859
857
|
"""
|
|
860
|
-
if isinstance(safety_settings, list) and all(
|
|
858
|
+
if isinstance(safety_settings, list) and all(
|
|
861
859
|
isinstance(safety_setting, dict) and not isinstance(safety_setting, VertexAISafetySetting)
|
|
862
860
|
for safety_setting in safety_settings
|
|
863
|
-
|
|
861
|
+
):
|
|
864
862
|
vertexai_safety_settings = []
|
|
865
863
|
for safety_setting in safety_settings:
|
|
866
864
|
if safety_setting["category"] not in VertexAIHarmCategory.__members__:
|