ag2 0.4.1__py3-none-any.whl → 0.5.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ag2 might be problematic. Click here for more details.

Files changed (160) hide show
  1. {ag2-0.4.1.dist-info → ag2-0.5.0b2.dist-info}/METADATA +5 -146
  2. ag2-0.5.0b2.dist-info/RECORD +6 -0
  3. ag2-0.5.0b2.dist-info/top_level.txt +1 -0
  4. ag2-0.4.1.dist-info/RECORD +0 -158
  5. ag2-0.4.1.dist-info/top_level.txt +0 -1
  6. autogen/__init__.py +0 -17
  7. autogen/_pydantic.py +0 -116
  8. autogen/agentchat/__init__.py +0 -42
  9. autogen/agentchat/agent.py +0 -142
  10. autogen/agentchat/assistant_agent.py +0 -85
  11. autogen/agentchat/chat.py +0 -306
  12. autogen/agentchat/contrib/__init__.py +0 -0
  13. autogen/agentchat/contrib/agent_builder.py +0 -788
  14. autogen/agentchat/contrib/agent_eval/agent_eval.py +0 -107
  15. autogen/agentchat/contrib/agent_eval/criterion.py +0 -47
  16. autogen/agentchat/contrib/agent_eval/critic_agent.py +0 -47
  17. autogen/agentchat/contrib/agent_eval/quantifier_agent.py +0 -42
  18. autogen/agentchat/contrib/agent_eval/subcritic_agent.py +0 -48
  19. autogen/agentchat/contrib/agent_eval/task.py +0 -43
  20. autogen/agentchat/contrib/agent_optimizer.py +0 -450
  21. autogen/agentchat/contrib/capabilities/__init__.py +0 -0
  22. autogen/agentchat/contrib/capabilities/agent_capability.py +0 -21
  23. autogen/agentchat/contrib/capabilities/generate_images.py +0 -297
  24. autogen/agentchat/contrib/capabilities/teachability.py +0 -406
  25. autogen/agentchat/contrib/capabilities/text_compressors.py +0 -72
  26. autogen/agentchat/contrib/capabilities/transform_messages.py +0 -92
  27. autogen/agentchat/contrib/capabilities/transforms.py +0 -565
  28. autogen/agentchat/contrib/capabilities/transforms_util.py +0 -120
  29. autogen/agentchat/contrib/capabilities/vision_capability.py +0 -217
  30. autogen/agentchat/contrib/captainagent/tools/__init__.py +0 -0
  31. autogen/agentchat/contrib/captainagent/tools/data_analysis/calculate_correlation.py +0 -41
  32. autogen/agentchat/contrib/captainagent/tools/data_analysis/calculate_skewness_and_kurtosis.py +0 -29
  33. autogen/agentchat/contrib/captainagent/tools/data_analysis/detect_outlier_iqr.py +0 -29
  34. autogen/agentchat/contrib/captainagent/tools/data_analysis/detect_outlier_zscore.py +0 -29
  35. autogen/agentchat/contrib/captainagent/tools/data_analysis/explore_csv.py +0 -22
  36. autogen/agentchat/contrib/captainagent/tools/data_analysis/shapiro_wilk_test.py +0 -31
  37. autogen/agentchat/contrib/captainagent/tools/information_retrieval/arxiv_download.py +0 -26
  38. autogen/agentchat/contrib/captainagent/tools/information_retrieval/arxiv_search.py +0 -55
  39. autogen/agentchat/contrib/captainagent/tools/information_retrieval/extract_pdf_image.py +0 -54
  40. autogen/agentchat/contrib/captainagent/tools/information_retrieval/extract_pdf_text.py +0 -39
  41. autogen/agentchat/contrib/captainagent/tools/information_retrieval/get_wikipedia_text.py +0 -22
  42. autogen/agentchat/contrib/captainagent/tools/information_retrieval/get_youtube_caption.py +0 -35
  43. autogen/agentchat/contrib/captainagent/tools/information_retrieval/image_qa.py +0 -61
  44. autogen/agentchat/contrib/captainagent/tools/information_retrieval/optical_character_recognition.py +0 -62
  45. autogen/agentchat/contrib/captainagent/tools/information_retrieval/perform_web_search.py +0 -48
  46. autogen/agentchat/contrib/captainagent/tools/information_retrieval/scrape_wikipedia_tables.py +0 -34
  47. autogen/agentchat/contrib/captainagent/tools/information_retrieval/transcribe_audio_file.py +0 -22
  48. autogen/agentchat/contrib/captainagent/tools/information_retrieval/youtube_download.py +0 -36
  49. autogen/agentchat/contrib/captainagent/tools/math/calculate_circle_area_from_diameter.py +0 -22
  50. autogen/agentchat/contrib/captainagent/tools/math/calculate_day_of_the_week.py +0 -19
  51. autogen/agentchat/contrib/captainagent/tools/math/calculate_fraction_sum.py +0 -29
  52. autogen/agentchat/contrib/captainagent/tools/math/calculate_matrix_power.py +0 -32
  53. autogen/agentchat/contrib/captainagent/tools/math/calculate_reflected_point.py +0 -17
  54. autogen/agentchat/contrib/captainagent/tools/math/complex_numbers_product.py +0 -26
  55. autogen/agentchat/contrib/captainagent/tools/math/compute_currency_conversion.py +0 -24
  56. autogen/agentchat/contrib/captainagent/tools/math/count_distinct_permutations.py +0 -28
  57. autogen/agentchat/contrib/captainagent/tools/math/evaluate_expression.py +0 -29
  58. autogen/agentchat/contrib/captainagent/tools/math/find_continuity_point.py +0 -35
  59. autogen/agentchat/contrib/captainagent/tools/math/fraction_to_mixed_numbers.py +0 -40
  60. autogen/agentchat/contrib/captainagent/tools/math/modular_inverse_sum.py +0 -23
  61. autogen/agentchat/contrib/captainagent/tools/math/simplify_mixed_numbers.py +0 -37
  62. autogen/agentchat/contrib/captainagent/tools/math/sum_of_digit_factorials.py +0 -16
  63. autogen/agentchat/contrib/captainagent/tools/math/sum_of_primes_below.py +0 -16
  64. autogen/agentchat/contrib/captainagent/tools/requirements.txt +0 -10
  65. autogen/agentchat/contrib/captainagent/tools/tool_description.tsv +0 -34
  66. autogen/agentchat/contrib/captainagent.py +0 -490
  67. autogen/agentchat/contrib/gpt_assistant_agent.py +0 -545
  68. autogen/agentchat/contrib/graph_rag/__init__.py +0 -0
  69. autogen/agentchat/contrib/graph_rag/document.py +0 -30
  70. autogen/agentchat/contrib/graph_rag/falkor_graph_query_engine.py +0 -111
  71. autogen/agentchat/contrib/graph_rag/falkor_graph_rag_capability.py +0 -81
  72. autogen/agentchat/contrib/graph_rag/graph_query_engine.py +0 -56
  73. autogen/agentchat/contrib/graph_rag/graph_rag_capability.py +0 -64
  74. autogen/agentchat/contrib/img_utils.py +0 -390
  75. autogen/agentchat/contrib/llamaindex_conversable_agent.py +0 -123
  76. autogen/agentchat/contrib/llava_agent.py +0 -176
  77. autogen/agentchat/contrib/math_user_proxy_agent.py +0 -471
  78. autogen/agentchat/contrib/multimodal_conversable_agent.py +0 -128
  79. autogen/agentchat/contrib/qdrant_retrieve_user_proxy_agent.py +0 -325
  80. autogen/agentchat/contrib/retrieve_assistant_agent.py +0 -56
  81. autogen/agentchat/contrib/retrieve_user_proxy_agent.py +0 -705
  82. autogen/agentchat/contrib/society_of_mind_agent.py +0 -203
  83. autogen/agentchat/contrib/swarm_agent.py +0 -463
  84. autogen/agentchat/contrib/text_analyzer_agent.py +0 -76
  85. autogen/agentchat/contrib/tool_retriever.py +0 -120
  86. autogen/agentchat/contrib/vectordb/__init__.py +0 -0
  87. autogen/agentchat/contrib/vectordb/base.py +0 -243
  88. autogen/agentchat/contrib/vectordb/chromadb.py +0 -326
  89. autogen/agentchat/contrib/vectordb/mongodb.py +0 -559
  90. autogen/agentchat/contrib/vectordb/pgvectordb.py +0 -958
  91. autogen/agentchat/contrib/vectordb/qdrant.py +0 -334
  92. autogen/agentchat/contrib/vectordb/utils.py +0 -126
  93. autogen/agentchat/contrib/web_surfer.py +0 -305
  94. autogen/agentchat/conversable_agent.py +0 -2908
  95. autogen/agentchat/groupchat.py +0 -1668
  96. autogen/agentchat/user_proxy_agent.py +0 -109
  97. autogen/agentchat/utils.py +0 -207
  98. autogen/browser_utils.py +0 -291
  99. autogen/cache/__init__.py +0 -10
  100. autogen/cache/abstract_cache_base.py +0 -78
  101. autogen/cache/cache.py +0 -182
  102. autogen/cache/cache_factory.py +0 -85
  103. autogen/cache/cosmos_db_cache.py +0 -150
  104. autogen/cache/disk_cache.py +0 -109
  105. autogen/cache/in_memory_cache.py +0 -61
  106. autogen/cache/redis_cache.py +0 -128
  107. autogen/code_utils.py +0 -745
  108. autogen/coding/__init__.py +0 -22
  109. autogen/coding/base.py +0 -113
  110. autogen/coding/docker_commandline_code_executor.py +0 -262
  111. autogen/coding/factory.py +0 -45
  112. autogen/coding/func_with_reqs.py +0 -203
  113. autogen/coding/jupyter/__init__.py +0 -22
  114. autogen/coding/jupyter/base.py +0 -32
  115. autogen/coding/jupyter/docker_jupyter_server.py +0 -164
  116. autogen/coding/jupyter/embedded_ipython_code_executor.py +0 -182
  117. autogen/coding/jupyter/jupyter_client.py +0 -224
  118. autogen/coding/jupyter/jupyter_code_executor.py +0 -161
  119. autogen/coding/jupyter/local_jupyter_server.py +0 -168
  120. autogen/coding/local_commandline_code_executor.py +0 -410
  121. autogen/coding/markdown_code_extractor.py +0 -44
  122. autogen/coding/utils.py +0 -57
  123. autogen/exception_utils.py +0 -46
  124. autogen/extensions/__init__.py +0 -0
  125. autogen/formatting_utils.py +0 -76
  126. autogen/function_utils.py +0 -362
  127. autogen/graph_utils.py +0 -148
  128. autogen/io/__init__.py +0 -15
  129. autogen/io/base.py +0 -105
  130. autogen/io/console.py +0 -43
  131. autogen/io/websockets.py +0 -213
  132. autogen/logger/__init__.py +0 -11
  133. autogen/logger/base_logger.py +0 -140
  134. autogen/logger/file_logger.py +0 -287
  135. autogen/logger/logger_factory.py +0 -29
  136. autogen/logger/logger_utils.py +0 -42
  137. autogen/logger/sqlite_logger.py +0 -459
  138. autogen/math_utils.py +0 -356
  139. autogen/oai/__init__.py +0 -33
  140. autogen/oai/anthropic.py +0 -428
  141. autogen/oai/bedrock.py +0 -606
  142. autogen/oai/cerebras.py +0 -270
  143. autogen/oai/client.py +0 -1148
  144. autogen/oai/client_utils.py +0 -167
  145. autogen/oai/cohere.py +0 -453
  146. autogen/oai/completion.py +0 -1216
  147. autogen/oai/gemini.py +0 -469
  148. autogen/oai/groq.py +0 -281
  149. autogen/oai/mistral.py +0 -279
  150. autogen/oai/ollama.py +0 -582
  151. autogen/oai/openai_utils.py +0 -811
  152. autogen/oai/together.py +0 -343
  153. autogen/retrieve_utils.py +0 -487
  154. autogen/runtime_logging.py +0 -163
  155. autogen/token_count_utils.py +0 -259
  156. autogen/types.py +0 -20
  157. autogen/version.py +0 -7
  158. {ag2-0.4.1.dist-info → ag2-0.5.0b2.dist-info}/LICENSE +0 -0
  159. {ag2-0.4.1.dist-info → ag2-0.5.0b2.dist-info}/NOTICE.md +0 -0
  160. {ag2-0.4.1.dist-info → ag2-0.5.0b2.dist-info}/WHEEL +0 -0
@@ -1,217 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- #
5
- # Portions derived from https://github.com/microsoft/autogen are under the MIT License.
6
- # SPDX-License-Identifier: MIT
7
- import copy
8
- from typing import Callable, Dict, List, Optional, Union
9
-
10
- from autogen.agentchat.assistant_agent import ConversableAgent
11
- from autogen.agentchat.contrib.capabilities.agent_capability import AgentCapability
12
- from autogen.agentchat.contrib.img_utils import (
13
- convert_base64_to_data_uri,
14
- get_image_data,
15
- get_pil_image,
16
- gpt4v_formatter,
17
- message_formatter_pil_to_b64,
18
- )
19
- from autogen.agentchat.contrib.multimodal_conversable_agent import MultimodalConversableAgent
20
- from autogen.agentchat.conversable_agent import colored
21
- from autogen.code_utils import content_str
22
- from autogen.oai.client import OpenAIWrapper
23
-
24
- DEFAULT_DESCRIPTION_PROMPT = (
25
- "Write a detailed caption for this image. "
26
- "Pay special attention to any details that might be useful or relevant "
27
- "to the ongoing conversation."
28
- )
29
-
30
-
31
- class VisionCapability(AgentCapability):
32
- """We can add vision capability to regular ConversableAgent, even if the agent does not have the multimodal capability,
33
- such as GPT-3.5-turbo agent, Llama, Orca, or Mistral agents. This vision capability will invoke a LMM client to describe
34
- the image (captioning) before sending the information to the agent's actual client.
35
-
36
- The vision capability will hook to the ConversableAgent's `process_last_received_message`.
37
-
38
- Some technical details:
39
- When the agent (who has the vision capability) received an message, it will:
40
- 1. _process_received_message:
41
- a. _append_oai_message
42
- 2. generate_reply: if the agent is a MultimodalAgent, it will also use the image tag.
43
- a. hook process_last_received_message (NOTE: this is where the vision capability will be hooked to.)
44
- b. hook process_all_messages_before_reply
45
- 3. send:
46
- a. hook process_message_before_send
47
- b. _append_oai_message
48
- """
49
-
50
- def __init__(
51
- self,
52
- lmm_config: Dict,
53
- description_prompt: Optional[str] = DEFAULT_DESCRIPTION_PROMPT,
54
- custom_caption_func: Callable = None,
55
- ) -> None:
56
- """
57
- Initializes a new instance, setting up the configuration for interacting with
58
- a Language Multimodal (LMM) client and specifying optional parameters for image
59
- description and captioning.
60
-
61
- Args:
62
- lmm_config (Dict): Configuration for the LMM client, which is used to call
63
- the LMM service for describing the image. This must be a dictionary containing
64
- the necessary configuration parameters. If `lmm_config` is False or an empty dictionary,
65
- it is considered invalid, and initialization will assert.
66
- description_prompt (Optional[str], optional): The prompt to use for generating
67
- descriptions of the image. This parameter allows customization of the
68
- prompt passed to the LMM service. Defaults to `DEFAULT_DESCRIPTION_PROMPT` if not provided.
69
- custom_caption_func (Callable, optional): A callable that, if provided, will be used
70
- to generate captions for images. This allows for custom captioning logic outside
71
- of the standard LMM service interaction.
72
- The callable should take three parameters as input:
73
- 1. an image URL (or local location)
74
- 2. image_data (a PIL image)
75
- 3. lmm_client (to call remote LMM)
76
- and then return a description (as string).
77
- If not provided, captioning will rely on the LMM client configured via `lmm_config`.
78
- If provided, we will not run the default self._get_image_caption method.
79
-
80
- Raises:
81
- AssertionError: If neither a valid `lmm_config` nor a `custom_caption_func` is provided,
82
- an AssertionError is raised to indicate that the Vision Capability requires
83
- one of these to be valid for operation.
84
- """
85
- self._lmm_config = lmm_config
86
- self._description_prompt = description_prompt
87
- self._parent_agent = None
88
-
89
- if lmm_config:
90
- self._lmm_client = OpenAIWrapper(**lmm_config)
91
- else:
92
- self._lmm_client = None
93
-
94
- self._custom_caption_func = custom_caption_func
95
- assert (
96
- self._lmm_config or custom_caption_func
97
- ), "Vision Capability requires a valid lmm_config or custom_caption_func."
98
-
99
- def add_to_agent(self, agent: ConversableAgent) -> None:
100
- self._parent_agent = agent
101
-
102
- # Append extra info to the system message.
103
- agent.update_system_message(agent.system_message + "\nYou've been given the ability to interpret images.")
104
-
105
- # Register a hook for processing the last message.
106
- agent.register_hook(hookable_method="process_last_received_message", hook=self.process_last_received_message)
107
-
108
- def process_last_received_message(self, content: Union[str, List[dict]]) -> str:
109
- """
110
- Processes the last received message content by normalizing and augmenting it
111
- with descriptions of any included images. The function supports input content
112
- as either a string or a list of dictionaries, where each dictionary represents
113
- a content item (e.g., text, image). If the content contains image URLs, it
114
- fetches the image data, generates a caption for each image, and inserts the
115
- caption into the augmented content.
116
-
117
- The function aims to transform the content into a format compatible with GPT-4V
118
- multimodal inputs, specifically by formatting strings into PIL-compatible
119
- images if needed and appending text descriptions for images. This allows for
120
- a more accessible presentation of the content, especially in contexts where
121
- images cannot be displayed directly.
122
-
123
- Args:
124
- content (Union[str, List[dict]]): The last received message content, which
125
- can be a plain text string or a list of dictionaries representing
126
- different types of content items (e.g., text, image_url).
127
-
128
- Returns:
129
- str: The augmented message content
130
-
131
- Raises:
132
- AssertionError: If an item in the content list is not a dictionary.
133
-
134
- Examples:
135
- Assuming `self._get_image_caption(img_data)` returns
136
- "A beautiful sunset over the mountains" for the image.
137
-
138
- - Input as String:
139
- content = "Check out this cool photo!"
140
- Output: "Check out this cool photo!"
141
- (Content is a string without an image, remains unchanged.)
142
-
143
- - Input as String, with image location:
144
- content = "What's weather in this cool photo: <img http://example.com/photo.jpg>"
145
- Output: "What's weather in this cool photo: <img http://example.com/photo.jpg> in case you can not see, the caption of this image is:
146
- A beautiful sunset over the mountains\n"
147
- (Caption added after the image)
148
-
149
- - Input as List with Text Only:
150
- content = [{"type": "text", "text": "Here's an interesting fact."}]
151
- Output: "Here's an interesting fact."
152
- (No images in the content, it remains unchanged.)
153
-
154
- - Input as List with Image URL:
155
- content = [
156
- {"type": "text", "text": "What's weather in this cool photo:"},
157
- {"type": "image_url", "image_url": {"url": "http://example.com/photo.jpg"}}
158
- ]
159
- Output: "What's weather in this cool photo: <img http://example.com/photo.jpg> in case you can not see, the caption of this image is:
160
- A beautiful sunset over the mountains\n"
161
- (Caption added after the image)
162
- """
163
- copy.deepcopy(content)
164
- # normalize the content into the gpt-4v format for multimodal
165
- # we want to keep the URL format to keep it concise.
166
- if isinstance(content, str):
167
- content = gpt4v_formatter(content, img_format="url")
168
-
169
- aug_content: str = ""
170
- for item in content:
171
- assert isinstance(item, dict)
172
- if item["type"] == "text":
173
- aug_content += item["text"]
174
- elif item["type"] == "image_url":
175
- img_url = item["image_url"]["url"]
176
- img_caption = ""
177
-
178
- if self._custom_caption_func:
179
- img_caption = self._custom_caption_func(img_url, get_pil_image(img_url), self._lmm_client)
180
- elif self._lmm_client:
181
- img_data = get_image_data(img_url)
182
- img_caption = self._get_image_caption(img_data)
183
- else:
184
- img_caption = ""
185
-
186
- aug_content += f"<img {img_url}> in case you can not see, the caption of this image is: {img_caption}\n"
187
- else:
188
- print(f"Warning: the input type should either be `test` or `image_url`. Skip {item['type']} here.")
189
-
190
- return aug_content
191
-
192
- def _get_image_caption(self, img_data: str) -> str:
193
- """
194
- Args:
195
- img_data (str): base64 encoded image data.
196
- Returns:
197
- str: caption for the given image.
198
- """
199
- response = self._lmm_client.create(
200
- context=None,
201
- messages=[
202
- {
203
- "role": "user",
204
- "content": [
205
- {"type": "text", "text": self._description_prompt},
206
- {
207
- "type": "image_url",
208
- "image_url": {
209
- "url": convert_base64_to_data_uri(img_data),
210
- },
211
- },
212
- ],
213
- }
214
- ],
215
- )
216
- description = response.choices[0].message.content
217
- return content_str(description)
File without changes
@@ -1,41 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- def calculate_correlation(csv_path: str, column1: str, column2: str, method: str = "pearson") -> float:
5
- """
6
- Calculate the correlation between two columns in a CSV file.
7
-
8
- Args:
9
- csv_path (str): The path to the CSV file.
10
- column1 (str): The name of the first column.
11
- column2 (str): The name of the second column.
12
- method (str or callable, optional): The method used to calculate the correlation.
13
- - 'pearson' (default): Pearson correlation coefficient.
14
- - 'kendall': Kendall Tau correlation coefficient.
15
- - 'spearman': Spearman rank correlation coefficient.
16
- - callable: A custom correlation function that takes two arrays and returns a scalar.
17
-
18
- Returns:
19
- float: The correlation coefficient between the two columns.
20
- """
21
- import pandas as pd
22
-
23
- # Read the CSV file into a pandas DataFrame
24
- df = pd.read_csv(csv_path)
25
-
26
- # Select the specified columns
27
- selected_columns = df[[column1, column2]]
28
-
29
- # Calculate the correlation based on the specified method
30
- if method == "pearson":
31
- correlation = selected_columns.corr().iloc[0, 1]
32
- elif method == "kendall":
33
- correlation = selected_columns.corr(method="kendall").iloc[0, 1]
34
- elif method == "spearman":
35
- correlation = selected_columns.corr(method="spearman").iloc[0, 1]
36
- elif callable(method):
37
- correlation = selected_columns.corr(method=method).iloc[0, 1]
38
- else:
39
- raise ValueError("Invalid correlation method. Please choose 'pearson', 'kendall', 'spearman', or a callable.")
40
-
41
- return correlation
@@ -1,29 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- def calculate_skewness_and_kurtosis(csv_file: str, column_name: str) -> tuple:
5
- """
6
- Calculate the skewness and kurtosis of a specified column in a CSV file. The kurtosis is calculated using the Fisher definition.
7
- The two metrics are computed using scipy.stats functions.
8
-
9
- Args:
10
- csv_file (str): The path to the CSV file.
11
- column_name (str): The name of the column to calculate skewness and kurtosis for.
12
-
13
- Returns:
14
- tuple: (skewness, kurtosis)
15
- """
16
- import pandas as pd
17
- from scipy.stats import kurtosis, skew
18
-
19
- # Read the CSV file into a pandas DataFrame
20
- df = pd.read_csv(csv_file)
21
-
22
- # Extract the specified column
23
- column = df[column_name]
24
-
25
- # Calculate the skewness and kurtosis
26
- skewness = skew(column)
27
- kurt = kurtosis(column)
28
-
29
- return skewness, kurt
@@ -1,29 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- def detect_outlier_iqr(csv_file: str, column_name: str):
5
- """
6
- Detect outliers in a specified column of a CSV file using the IQR method.
7
-
8
- Args:
9
- csv_file (str): The path to the CSV file.
10
- column_name (str): The name of the column to detect outliers in.
11
-
12
- Returns:
13
- list: A list of row indices that correspond to the outliers.
14
- """
15
- import pandas as pd
16
-
17
- # Read the CSV file into a pandas DataFrame
18
- df = pd.read_csv(csv_file)
19
-
20
- # Calculate the quartiles and IQR for the specified column
21
- q1 = df[column_name].quantile(0.25)
22
- q3 = df[column_name].quantile(0.75)
23
- iqr = q3 - q1
24
-
25
- # Find the outliers based on the defined criteria
26
- outliers = df[(df[column_name] < q1 - 1.5 * iqr) | (df[column_name] > q3 + 1.5 * iqr)]
27
-
28
- # Return the row indices of the outliers
29
- return outliers.index.tolist()
@@ -1,29 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- def detect_outlier_zscore(csv_file, column_name, threshold=3):
5
- """
6
- Detect outliers in a CSV file based on a specified column. The outliers are determined by calculating the z-score of the data points in the column.
7
-
8
- Args:
9
- csv_file (str): The path to the CSV file.
10
- column_name (str): The name of the column to calculate z-scores for.
11
- threshold (float, optional): The threshold value for determining outliers. By default set to 3.
12
-
13
- Returns:
14
- list: A list of row indices where the z-score is above the threshold.
15
- """
16
- import numpy as np
17
- import pandas as pd
18
-
19
- # Read the CSV file into a pandas DataFrame
20
- df = pd.read_csv(csv_file)
21
-
22
- # Calculate the z-score for the specified column
23
- z_scores = np.abs((df[column_name] - df[column_name].mean()) / df[column_name].std())
24
-
25
- # Find the row indices where the z-score is above the threshold
26
- outlier_indices = np.where(z_scores > threshold)[0]
27
-
28
- # Return the row indices of the outliers
29
- return outlier_indices
@@ -1,22 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- def explore_csv(file_path, num_lines=5):
5
- """
6
- Reads a CSV file and prints the column names, shape, data types, and the first few lines of data.
7
-
8
- Args:
9
- file_path (str): The path to the CSV file.
10
- num_lines (int, optional): The number of lines to print. Defaults to 5.
11
- """
12
- import pandas as pd
13
-
14
- df = pd.read_csv(file_path)
15
- header = df.columns
16
- print("Columns:")
17
- print(", ".join(header))
18
- print("Shape:", df.shape)
19
- print("Data Types:")
20
- print(df.dtypes)
21
- print("First", num_lines, "lines:")
22
- print(df.head(num_lines))
@@ -1,31 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- from autogen.coding.func_with_reqs import with_requirements
5
-
6
-
7
- @with_requirements(["pandas", "scipy"])
8
- def shapiro_wilk_test(csv_file, column_name):
9
- """
10
- Perform the Shapiro-Wilk test on a specified column of a CSV file.
11
-
12
- Args:
13
- csv_file (str): The path to the CSV file.
14
- column_name (str): The name of the column to perform the test on.
15
-
16
- Returns:
17
- float: The p-value resulting from the Shapiro-Wilk test.
18
- """
19
- import pandas as pd
20
- from scipy.stats import shapiro
21
-
22
- # Read the CSV file into a pandas DataFrame
23
- df = pd.read_csv(csv_file)
24
-
25
- # Extract the specified column as a numpy array
26
- column_data = df[column_name].values
27
-
28
- # Perform the Shapiro-Wilk test
29
- _, p_value = shapiro(column_data)
30
-
31
- return p_value
@@ -1,26 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- import arxiv
5
-
6
- from autogen.coding.func_with_reqs import with_requirements
7
-
8
-
9
- @with_requirements(["arxiv"], ["arxiv"])
10
- def arxiv_download(id_list: list, download_dir="./"):
11
- """
12
- Downloads PDF files from ArXiv based on a list of arxiv paper IDs.
13
-
14
- Args:
15
- id_list (list): A list of paper IDs to download. e.g. [2302.00006v1]
16
- download_dir (str, optional): The directory to save the downloaded PDF files. Defaults to './'.
17
-
18
- Returns:
19
- list: A list of paths to the downloaded PDF files.
20
- """
21
- paths = []
22
- for paper in arxiv.Client().results(arxiv.Search(id_list=id_list)):
23
- path = paper.download_pdf(download_dir, filename=paper.get_short_id() + ".pdf")
24
- paths.append(path)
25
- print("Paper id:", paper.get_short_id(), "Downloaded to:", path)
26
- return paths
@@ -1,55 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- import arxiv
5
-
6
- from autogen.coding.func_with_reqs import with_requirements
7
-
8
-
9
- @with_requirements(["arxiv"], ["arxiv"])
10
- def arxiv_search(query, max_results=10, sortby="relevance"):
11
- """
12
- Search for articles on arXiv based on the given query.
13
-
14
- Args:
15
- query (str): The search query.
16
- max_results (int, optional): The maximum number of results to retrieve. Defaults to 10.
17
- sortby (str, optional): The sorting criterion for the search results. Can be 'relevance' or 'submittedDate'. Defaults to 'relevance'.
18
-
19
- Returns:
20
- list: A list of dictionaries containing information about the search results. Each dictionary contains the following keys:
21
- - 'title': The title of the article.
22
- - 'authors': The authors of the article.
23
- - 'summary': The summary of the article.
24
- - 'entry_id': The entry ID of the article.
25
- - 'doi': The DOI of the article (If applicable).
26
- - 'published': The publication date of the article in the format 'Y-M'.
27
- """
28
-
29
- def get_author(r):
30
- return ", ".join(a.name for a in r.authors)
31
-
32
- criterion = {"relevance": arxiv.SortCriterion.Relevance, "submittedDate": arxiv.SortCriterion.SubmittedDate}[sortby]
33
-
34
- client = arxiv.Client()
35
- search = arxiv.Search(query=query, max_results=max_results, sort_by=criterion)
36
- res = []
37
- results = client.results(search)
38
- for r in results:
39
- print("Entry id:", r.entry_id)
40
- print("Title:", r.title)
41
- print("Authors:", get_author(r))
42
- print("DOI:", r.doi)
43
- print("Published:", r.published.strftime("%Y-%m"))
44
- # print("Summary:", r.summary)
45
- res.append(
46
- {
47
- "title": r.title,
48
- "authors": get_author(r),
49
- "summary": r.summary,
50
- "entry_id": r.entry_id,
51
- "doi": r.doi,
52
- "published": r.published.strftime("%Y-%m"),
53
- }
54
- )
55
- return res
@@ -1,54 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- import os
5
-
6
- from autogen.coding.func_with_reqs import with_requirements
7
-
8
-
9
- @with_requirements(["PyMuPDF"], ["os"])
10
- def extract_pdf_image(pdf_path: str, output_dir: str, page_number=None):
11
- """
12
- Extracts images from a PDF file and saves them to the specified output directory.
13
-
14
- Args:
15
- pdf_path (str): The path to the PDF file.
16
- output_dir (str): The directory to save the extracted images.
17
- page_number (int, optional): The page number to extract images from. If not provided, extract images from all pages.
18
- """
19
- import fitz # PyMuPDF library
20
-
21
- # Open the PDF file
22
- doc = fitz.open(pdf_path)
23
-
24
- # Create the output directory if it doesn't exist
25
- os.makedirs(output_dir, exist_ok=True)
26
-
27
- # Extract images from the PDF file
28
- images = []
29
- if page_number is not None:
30
- page = doc[page_number - 1] # Adjust page number to 0-based index
31
- for img in page.get_images():
32
- xref = img[0]
33
- base_image = doc.extract_image(xref)
34
- image_bytes = base_image["image"]
35
- images.append(image_bytes)
36
- else:
37
- for page in doc:
38
- for img in page.get_images():
39
- xref = img[0]
40
- base_image = doc.extract_image(xref)
41
- image_bytes = base_image["image"]
42
- images.append(image_bytes)
43
-
44
- # Save the extracted images
45
- for i, image_bytes in enumerate(images):
46
- image_path = os.path.join(output_dir, f"image_{i}.png")
47
- with open(image_path, "wb") as f:
48
- f.write(image_bytes)
49
-
50
- # Print the total number of images saved
51
- print(f"Saved a total of {len(images)} images")
52
-
53
- # Close the PDF file
54
- doc.close()
@@ -1,39 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- from autogen.coding.func_with_reqs import with_requirements
5
-
6
-
7
- @with_requirements(["PyMuPDF"])
8
- def extract_pdf_text(pdf_path, page_number=None):
9
- """
10
- Extracts text from a specified page or the entire PDF file.
11
-
12
- Args:
13
- pdf_path (str): The path to the PDF file.
14
- page_number (int, optional): The page number to extract (starting from 0). If not provided,
15
- the function will extract text from the entire PDF file.
16
-
17
- Returns:
18
- str: The extracted text.
19
- """
20
- import fitz
21
-
22
- # Open the PDF file
23
- doc = fitz.open(pdf_path)
24
-
25
- # Extract text from the entire PDF file or a specific page
26
- text = ""
27
- if page_number is None:
28
- # Extract content from the entire PDF file
29
- for page in doc:
30
- text += page.get_text()
31
- else:
32
- # Extract content from a specific page
33
- page = doc[page_number]
34
- text = page.get_text()
35
-
36
- # Close the PDF file
37
- doc.close()
38
-
39
- return text
@@ -1,22 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- def get_wikipedia_text(title):
5
- """
6
- Retrieves the text content of a Wikipedia page. It does not support tables and other complex formatting.
7
-
8
- Args:
9
- title (str): The title of the Wikipedia page.
10
-
11
- Returns:
12
- str or None: The text content of the Wikipedia page if it exists, None otherwise.
13
- """
14
- import wikipediaapi
15
-
16
- wiki_wiki = wikipediaapi.Wikipedia("Mozilla/5.0 (merlin@example.com)", "en")
17
- page = wiki_wiki.page(title)
18
-
19
- if page.exists():
20
- return page.text
21
- else:
22
- return None
@@ -1,35 +0,0 @@
1
- # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
- #
3
- # SPDX-License-Identifier: Apache-2.0
4
- # alternative api: https://rapidapi.com/omarmhaimdat/api/youtube-v2
5
-
6
-
7
- def get_youtube_caption(videoId):
8
- """
9
- Retrieves the captions for a YouTube video.
10
-
11
- Args:
12
- videoId (str): The ID of the YouTube video.
13
-
14
- Returns:
15
- str: The captions of the YouTube video in text format.
16
-
17
- Raises:
18
- KeyError: If the RAPID_API_KEY environment variable is not set.
19
- """
20
- import os
21
-
22
- import requests
23
-
24
- RAPID_API_KEY = os.environ["RAPID_API_KEY"]
25
- video_url = f"https://www.youtube.com/watch?v={videoId}"
26
- url = "https://youtube-transcript3.p.rapidapi.com/api/transcript-with-url"
27
-
28
- querystring = {"url": video_url, "lang": "en", "flat_text": "true"}
29
-
30
- headers = {"X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "youtube-transcript3.p.rapidapi.com"}
31
-
32
- response = requests.get(url, headers=headers, params=querystring)
33
- response = response.json()
34
- print(response)
35
- return response["transcript"]