ag2 0.3.2b2__py3-none-any.whl → 0.4b1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ag2 might be problematic. Click here for more details.

@@ -0,0 +1,414 @@
1
+ # Copyright (c) 2023 - 2024, Owners of https://github.com/ag2ai
2
+ #
3
+ # SPDX-License-Identifier: Apache-2.0
4
+ import json
5
+ from dataclasses import dataclass
6
+ from enum import Enum
7
+ from inspect import signature
8
+ from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
9
+
10
+ from pydantic import BaseModel
11
+
12
+ from autogen.function_utils import get_function_schema
13
+ from autogen.oai import OpenAIWrapper
14
+
15
+ from ..agent import Agent
16
+ from ..chat import ChatResult
17
+ from ..conversable_agent import ConversableAgent
18
+ from ..groupchat import GroupChat, GroupChatManager
19
+ from ..user_proxy_agent import UserProxyAgent
20
+
21
+ # Parameter name for context variables
22
+ # Use the value in functions and they will be substituted with the context variables:
23
+ # e.g. def my_function(context_variables: Dict[str, Any], my_other_parameters: Any) -> Any:
24
+ __CONTEXT_VARIABLES_PARAM_NAME__ = "context_variables"
25
+
26
+
27
+ class AfterWorkOption(Enum):
28
+ TERMINATE = "TERMINATE"
29
+ REVERT_TO_USER = "REVERT_TO_USER"
30
+ STAY = "STAY"
31
+
32
+
33
+ @dataclass
34
+ class AFTER_WORK:
35
+ agent: Union[AfterWorkOption, "SwarmAgent", str, Callable]
36
+
37
+ def __post_init__(self):
38
+ if isinstance(self.agent, str):
39
+ self.agent = AfterWorkOption(self.agent.upper())
40
+
41
+
42
+ @dataclass
43
+ class ON_CONDITION:
44
+ agent: "SwarmAgent"
45
+ condition: str = ""
46
+
47
+
48
+ def initiate_swarm_chat(
49
+ initial_agent: "SwarmAgent",
50
+ messages: Union[List[Dict[str, Any]], str],
51
+ agents: List["SwarmAgent"],
52
+ user_agent: Optional[UserProxyAgent] = None,
53
+ max_rounds: int = 20,
54
+ context_variables: Optional[Dict[str, Any]] = None,
55
+ after_work: Optional[Union[AFTER_WORK, Callable]] = AFTER_WORK(AfterWorkOption.TERMINATE),
56
+ ) -> Tuple[ChatResult, Dict[str, Any], "SwarmAgent"]:
57
+ """Initialize and run a swarm chat
58
+
59
+ Args:
60
+ initial_agent: The first receiving agent of the conversation.
61
+ messages: Initial message(s).
62
+ agents: List of swarm agents.
63
+ user_agent: Optional user proxy agent for falling back to.
64
+ max_rounds: Maximum number of conversation rounds.
65
+ context_variables: Starting context variables.
66
+ after_work: Method to handle conversation continuation when an agent doesn't select the next agent. If no agent is selected and no tool calls are output, we will use this method to determine the next agent.
67
+ Must be a AFTER_WORK instance (which is a dataclass accepting a SwarmAgent, AfterWorkOption, A str (of the AfterWorkOption)) or a callable.
68
+ AfterWorkOption:
69
+ - TERMINATE (Default): Terminate the conversation.
70
+ - REVERT_TO_USER : Revert to the user agent if a user agent is provided. If not provided, terminate the conversation.
71
+ - STAY : Stay with the last speaker.
72
+
73
+ Callable: A custom function that takes the current agent, messages, groupchat, and context_variables as arguments and returns the next agent. The function should return None to terminate.
74
+ ```python
75
+ def custom_afterwork_func(last_speaker: SwarmAgent, messages: List[Dict[str, Any]], groupchat: GroupChat, context_variables: Optional[Dict[str, Any]]) -> Optional[SwarmAgent]:
76
+ ```
77
+ Returns:
78
+ ChatResult: Conversations chat history.
79
+ Dict[str, Any]: Updated Context variables.
80
+ SwarmAgent: Last speaker.
81
+ """
82
+ assert isinstance(initial_agent, SwarmAgent), "initial_agent must be a SwarmAgent"
83
+ assert all(isinstance(agent, SwarmAgent) for agent in agents), "agents must be a list of SwarmAgents"
84
+
85
+ context_variables = context_variables or {}
86
+ if isinstance(messages, str):
87
+ messages = [{"role": "user", "content": messages}]
88
+
89
+ swarm_agent_names = [agent.name for agent in agents]
90
+
91
+ tool_execution = SwarmAgent(
92
+ name="Tool_Execution",
93
+ system_message="Tool Execution",
94
+ )
95
+ tool_execution._set_to_tool_execution(context_variables=context_variables)
96
+
97
+ # Update tool execution agent with all the functions from all the agents
98
+ for agent in agents:
99
+ tool_execution._function_map.update(agent._function_map)
100
+
101
+ INIT_AGENT_USED = False
102
+
103
+ def swarm_transition(last_speaker: SwarmAgent, groupchat: GroupChat):
104
+ """Swarm transition function to determine the next agent in the conversation"""
105
+ nonlocal INIT_AGENT_USED
106
+ if not INIT_AGENT_USED:
107
+ INIT_AGENT_USED = True
108
+ return initial_agent
109
+
110
+ if "tool_calls" in groupchat.messages[-1]:
111
+ return tool_execution
112
+ if tool_execution._next_agent is not None:
113
+ next_agent = tool_execution._next_agent
114
+ tool_execution._next_agent = None
115
+ return next_agent
116
+
117
+ # get the last swarm agent
118
+ last_swarm_speaker = None
119
+ for message in reversed(groupchat.messages):
120
+ if "name" in message and message["name"] in swarm_agent_names:
121
+ agent = groupchat.agent_by_name(name=message["name"])
122
+ if isinstance(agent, SwarmAgent):
123
+ last_swarm_speaker = agent
124
+ break
125
+ if last_swarm_speaker is None:
126
+ raise ValueError("No swarm agent found in the message history")
127
+
128
+ # If the user last spoke, return to the agent prior
129
+ if (user_agent and last_speaker == user_agent) or groupchat.messages[-1]["role"] == "tool":
130
+ return last_swarm_speaker
131
+
132
+ # No agent selected via hand-offs (tool calls)
133
+ # Assume the work is Done
134
+ # override if agent-level after_work is defined, else use the global after_work
135
+ tmp_after_work = last_swarm_speaker.after_work if last_swarm_speaker.after_work is not None else after_work
136
+ if isinstance(tmp_after_work, AFTER_WORK):
137
+ tmp_after_work = tmp_after_work.agent
138
+
139
+ if isinstance(tmp_after_work, SwarmAgent):
140
+ return tmp_after_work
141
+ elif isinstance(tmp_after_work, AfterWorkOption):
142
+ if tmp_after_work == AfterWorkOption.TERMINATE or (
143
+ user_agent is None and tmp_after_work == AfterWorkOption.REVERT_TO_USER
144
+ ):
145
+ return None
146
+ elif tmp_after_work == AfterWorkOption.REVERT_TO_USER:
147
+ return user_agent
148
+ elif tmp_after_work == AfterWorkOption.STAY:
149
+ return last_speaker
150
+ elif isinstance(tmp_after_work, Callable):
151
+ return tmp_after_work(last_speaker, groupchat.messages, groupchat, context_variables)
152
+ else:
153
+ raise ValueError("Invalid After Work condition")
154
+
155
+ # If there's only one message and there's no identified swarm agent
156
+ # Start with a user proxy agent, creating one if they haven't passed one in
157
+ if len(messages) == 1 and "name" not in messages[0] and not user_agent:
158
+ temp_user_proxy = [UserProxyAgent(name="_User")]
159
+ else:
160
+ temp_user_proxy = []
161
+
162
+ groupchat = GroupChat(
163
+ agents=[tool_execution] + agents + ([user_agent] if user_agent is not None else temp_user_proxy),
164
+ messages=[], # Set to empty. We will resume the conversation with the messages
165
+ max_round=max_rounds,
166
+ speaker_selection_method=swarm_transition,
167
+ )
168
+ manager = GroupChatManager(groupchat)
169
+ clear_history = True
170
+
171
+ if len(messages) > 1:
172
+ last_agent, last_message = manager.resume(messages=messages)
173
+ clear_history = False
174
+ else:
175
+ last_message = messages[0]
176
+
177
+ if "name" in last_message:
178
+ if "name" in swarm_agent_names:
179
+ # If there's a name in the message and it's a swarm agent, use that
180
+ last_agent = groupchat.agent_by_name(name=last_message["name"])
181
+ else:
182
+ raise ValueError(f"Invalid swarm agent name in last message: {last_message['name']}")
183
+ else:
184
+ # No name, so we're using the user proxy to start the conversation
185
+ if user_agent:
186
+ last_agent = user_agent
187
+ else:
188
+ # If no user agent passed in, use our temporary user proxy
189
+ last_agent = temp_user_proxy[0]
190
+
191
+ chat_result = last_agent.initiate_chat(
192
+ manager,
193
+ message=last_message,
194
+ clear_history=clear_history,
195
+ )
196
+
197
+ # Clear the temporary user proxy's name from messages
198
+ if len(temp_user_proxy) == 1:
199
+ for message in chat_result.chat_history:
200
+ if "name" in message and message["name"] == "_User":
201
+ # delete the name key from the message
202
+ del message["name"]
203
+
204
+ return chat_result, context_variables, manager.last_speaker
205
+
206
+
207
+ class SwarmResult(BaseModel):
208
+ """
209
+ Encapsulates the possible return values for a swarm agent function.
210
+
211
+ Args:
212
+ values (str): The result values as a string.
213
+ agent (SwarmAgent): The swarm agent instance, if applicable.
214
+ context_variables (dict): A dictionary of context variables.
215
+ """
216
+
217
+ values: str = ""
218
+ agent: Optional["SwarmAgent"] = None
219
+ context_variables: Dict[str, Any] = {}
220
+
221
+ class Config: # Add this inner class
222
+ arbitrary_types_allowed = True
223
+
224
+ def __str__(self):
225
+ return self.values
226
+
227
+
228
+ class SwarmAgent(ConversableAgent):
229
+ """Swarm agent for participating in a swarm.
230
+
231
+ SwarmAgent is a subclass of ConversableAgent.
232
+
233
+ Additional args:
234
+ functions (List[Callable]): A list of functions to register with the agent.
235
+ """
236
+
237
+ def __init__(
238
+ self,
239
+ name: str,
240
+ system_message: Optional[str] = "You are a helpful AI Assistant.",
241
+ llm_config: Optional[Union[Dict, Literal[False]]] = None,
242
+ functions: Union[List[Callable], Callable] = None,
243
+ is_termination_msg: Optional[Callable[[Dict], bool]] = None,
244
+ max_consecutive_auto_reply: Optional[int] = None,
245
+ human_input_mode: Literal["ALWAYS", "NEVER", "TERMINATE"] = "NEVER",
246
+ description: Optional[str] = None,
247
+ code_execution_config=False,
248
+ **kwargs,
249
+ ) -> None:
250
+ super().__init__(
251
+ name,
252
+ system_message,
253
+ is_termination_msg,
254
+ max_consecutive_auto_reply,
255
+ human_input_mode,
256
+ llm_config=llm_config,
257
+ description=description,
258
+ code_execution_config=code_execution_config,
259
+ **kwargs,
260
+ )
261
+
262
+ if isinstance(functions, list):
263
+ self.add_functions(functions)
264
+ elif isinstance(functions, Callable):
265
+ self.add_single_function(functions)
266
+
267
+ self.after_work = None
268
+
269
+ # use in the tool execution agent to transfer to the next agent
270
+ self._context_variables = {}
271
+ self._next_agent = None
272
+
273
+ def _set_to_tool_execution(self, context_variables: Optional[Dict[str, Any]] = None):
274
+ """Set to a special instance of SwarmAgent that is responsible for executing tool calls from other swarm agents.
275
+ This agent will be used internally and should not be visible to the user.
276
+
277
+ It will execute the tool calls and update the context_variables and next_agent accordingly.
278
+ """
279
+ self._next_agent = None
280
+ self._context_variables = context_variables or {}
281
+ self._reply_func_list.clear()
282
+ self.register_reply([Agent, None], SwarmAgent.generate_swarm_tool_reply)
283
+
284
+ def __str__(self):
285
+ return f"SwarmAgent --> {self.name}"
286
+
287
+ def register_hand_off(
288
+ self,
289
+ hand_to: Union[List[Union[ON_CONDITION, AFTER_WORK]], ON_CONDITION, AFTER_WORK],
290
+ ):
291
+ """Register a function to hand off to another agent.
292
+
293
+ Args:
294
+ hand_to: A list of ON_CONDITIONs and an, optional, AFTER_WORK condition
295
+
296
+ Hand off template:
297
+ def transfer_to_agent_name() -> SwarmAgent:
298
+ return agent_name
299
+ 1. register the function with the agent
300
+ 2. register the schema with the agent, description set to the condition
301
+ """
302
+ if isinstance(hand_to, (ON_CONDITION, AFTER_WORK)):
303
+ hand_to = [hand_to]
304
+
305
+ for transit in hand_to:
306
+ if isinstance(transit, AFTER_WORK):
307
+ self.after_work = transit
308
+ elif isinstance(transit, ON_CONDITION):
309
+
310
+ # Create closure with current loop transit value
311
+ # to ensure the condition matches the one in the loop
312
+ def make_transfer_function(current_transit):
313
+ def transfer_to_agent() -> "SwarmAgent":
314
+ return current_transit.agent
315
+
316
+ return transfer_to_agent
317
+
318
+ transfer_func = make_transfer_function(transit)
319
+ self.add_single_function(transfer_func, f"transfer_to_{transit.agent.name}", transit.condition)
320
+ else:
321
+ raise ValueError("Invalid hand off condition, must be either ON_CONDITION or AFTER_WORK")
322
+
323
+ def generate_swarm_tool_reply(
324
+ self,
325
+ messages: Optional[List[Dict]] = None,
326
+ sender: Optional[Agent] = None,
327
+ config: Optional[OpenAIWrapper] = None,
328
+ ) -> Tuple[bool, dict]:
329
+ """Pre-processes and generates tool call replies.
330
+
331
+ This function:
332
+ 1. Adds context_variables back to the tool call for the function, if necessary.
333
+ 2. Generates the tool calls reply.
334
+ 3. Updates context_variables and next_agent based on the tool call response."""
335
+
336
+ if config is None:
337
+ config = self
338
+ if messages is None:
339
+ messages = self._oai_messages[sender]
340
+
341
+ message = messages[-1]
342
+ if "tool_calls" in message:
343
+ # 1. add context_variables to the tool call arguments
344
+ for tool_call in message["tool_calls"]:
345
+ if tool_call["type"] == "function":
346
+ function_name = tool_call["function"]["name"]
347
+
348
+ # Check if this function exists in our function map
349
+ if function_name in self._function_map:
350
+ func = self._function_map[function_name] # Get the original function
351
+
352
+ # Check if function has context_variables parameter
353
+ sig = signature(func)
354
+ if __CONTEXT_VARIABLES_PARAM_NAME__ in sig.parameters:
355
+ current_args = json.loads(tool_call["function"]["arguments"])
356
+ current_args[__CONTEXT_VARIABLES_PARAM_NAME__] = self._context_variables
357
+ # Update the tool call with new arguments
358
+ tool_call["function"]["arguments"] = json.dumps(current_args)
359
+
360
+ # 2. generate tool calls reply
361
+ _, tool_message = self.generate_tool_calls_reply([message])
362
+
363
+ # 3. update context_variables and next_agent, convert content to string
364
+ for tool_response in tool_message["tool_responses"]:
365
+ content = tool_response.get("content")
366
+ if isinstance(content, SwarmResult):
367
+ if content.context_variables != {}:
368
+ self._context_variables.update(content.context_variables)
369
+ if content.agent is not None:
370
+ self._next_agent = content.agent
371
+ elif isinstance(content, Agent):
372
+ self._next_agent = content
373
+ tool_response["content"] = str(tool_response["content"])
374
+
375
+ return True, tool_message
376
+ return False, None
377
+
378
+ def add_single_function(self, func: Callable, name=None, description=""):
379
+ if name:
380
+ func._name = name
381
+ else:
382
+ func._name = func.__name__
383
+
384
+ if description:
385
+ func._description = description
386
+ else:
387
+ # Use function's docstring, strip whitespace, fall back to empty string
388
+ func._description = (func.__doc__ or "").strip()
389
+
390
+ f = get_function_schema(func, name=func._name, description=func._description)
391
+
392
+ # Remove context_variables parameter from function schema
393
+ f_no_context = f.copy()
394
+ if __CONTEXT_VARIABLES_PARAM_NAME__ in f_no_context["function"]["parameters"]["properties"]:
395
+ del f_no_context["function"]["parameters"]["properties"][__CONTEXT_VARIABLES_PARAM_NAME__]
396
+ if "required" in f_no_context["function"]["parameters"]:
397
+ required = f_no_context["function"]["parameters"]["required"]
398
+ f_no_context["function"]["parameters"]["required"] = [
399
+ param for param in required if param != __CONTEXT_VARIABLES_PARAM_NAME__
400
+ ]
401
+ # If required list is empty, remove it
402
+ if not f_no_context["function"]["parameters"]["required"]:
403
+ del f_no_context["function"]["parameters"]["required"]
404
+
405
+ self.update_tool_signature(f_no_context, is_remove=False)
406
+ self.register_function({func._name: func})
407
+
408
+ def add_functions(self, func_list: List[Callable]):
409
+ for func in func_list:
410
+ self.add_single_function(func)
411
+
412
+
413
+ # Forward references for SwarmAgent in SwarmResult
414
+ SwarmResult.update_forward_refs()
@@ -0,0 +1,114 @@
1
+ import importlib.util
2
+ import inspect
3
+ import os
4
+ from textwrap import dedent, indent
5
+
6
+ import pandas as pd
7
+ from sentence_transformers import SentenceTransformer, util
8
+
9
+ from autogen import AssistantAgent, UserProxyAgent
10
+ from autogen.coding import LocalCommandLineCodeExecutor
11
+
12
+
13
+ class ToolBuilder:
14
+ TOOL_USING_PROMPT = """# Functions
15
+ You have access to the following functions. They can be accessed from the module called 'functions' by their function names.
16
+ For example, if there is a function called `foo` you could import it by writing `from functions import foo`
17
+ {functions}
18
+ """
19
+
20
+ def __init__(self, corpus_path, retriever="all-mpnet-base-v2"):
21
+
22
+ self.df = pd.read_csv(corpus_path, sep="\t")
23
+ document_list = self.df["document_content"].tolist()
24
+
25
+ self.model = SentenceTransformer(retriever)
26
+ self.embeddings = self.model.encode(document_list)
27
+
28
+ def retrieve(self, query, top_k=3):
29
+ # Encode the query using the Sentence Transformer model
30
+ query_embedding = self.model.encode([query])
31
+
32
+ hits = util.semantic_search(query_embedding, self.embeddings, top_k=top_k)
33
+
34
+ results = []
35
+ for hit in hits[0]:
36
+ results.append(self.df.iloc[hit["corpus_id"], 1])
37
+ return results
38
+
39
+ def bind(self, agent: AssistantAgent, functions: str):
40
+ """Binds the function to the agent so that agent is aware of it."""
41
+ sys_message = agent.system_message
42
+ sys_message += self.TOOL_USING_PROMPT.format(functions=functions)
43
+ agent.update_system_message(sys_message)
44
+ return
45
+
46
+ def bind_user_proxy(self, agent: UserProxyAgent, tool_root: str):
47
+ """
48
+ Updates user proxy agent with a executor so that code executor can successfully execute function-related code.
49
+ Returns an updated user proxy.
50
+ """
51
+ # Find all the functions in the tool root
52
+ functions = find_callables(tool_root)
53
+
54
+ code_execution_config = agent._code_execution_config
55
+ executor = LocalCommandLineCodeExecutor(
56
+ timeout=code_execution_config.get("timeout", 180),
57
+ work_dir=code_execution_config.get("work_dir", "coding"),
58
+ functions=functions,
59
+ )
60
+ code_execution_config = {
61
+ "executor": executor,
62
+ "last_n_messages": code_execution_config.get("last_n_messages", 1),
63
+ }
64
+ updated_user_proxy = UserProxyAgent(
65
+ name=agent.name,
66
+ is_termination_msg=agent._is_termination_msg,
67
+ code_execution_config=code_execution_config,
68
+ human_input_mode="NEVER",
69
+ default_auto_reply=agent._default_auto_reply,
70
+ )
71
+ return updated_user_proxy
72
+
73
+
74
+ def get_full_tool_description(py_file):
75
+ """
76
+ Retrieves the function signature for a given Python file.
77
+ """
78
+ with open(py_file, "r") as f:
79
+ code = f.read()
80
+ exec(code)
81
+ function_name = os.path.splitext(os.path.basename(py_file))[0]
82
+ if function_name in locals():
83
+ func = locals()[function_name]
84
+ content = f"def {func.__name__}{inspect.signature(func)}:\n"
85
+ docstring = func.__doc__
86
+
87
+ if docstring:
88
+ docstring = dedent(docstring)
89
+ docstring = '"""' + docstring + '"""'
90
+ docstring = indent(docstring, " ")
91
+ content += docstring + "\n"
92
+ return content
93
+ else:
94
+ raise ValueError(f"Function {function_name} not found in {py_file}")
95
+
96
+
97
+ def find_callables(directory):
98
+ """
99
+ Find all callable objects defined in Python files within the specified directory.
100
+ """
101
+ callables = []
102
+ for root, dirs, files in os.walk(directory):
103
+ for file in files:
104
+ if file.endswith(".py"):
105
+ module_name = os.path.splitext(file)[0]
106
+ module_path = os.path.join(root, file)
107
+ spec = importlib.util.spec_from_file_location(module_name, module_path)
108
+ module = importlib.util.module_from_spec(spec)
109
+ spec.loader.exec_module(module)
110
+ for name, value in module.__dict__.items():
111
+ if callable(value) and name == module_name:
112
+ callables.append(value)
113
+ break
114
+ return callables
@@ -164,7 +164,7 @@ class ConversableAgent(LLMAgent):
164
164
  except TypeError as e:
165
165
  raise TypeError(
166
166
  "Please implement __deepcopy__ method for each value class in llm_config to support deepcopy."
167
- " Refer to the docs for more details: https://ag2ai.github.io/autogen/docs/topics/llm_configuration#adding-http-client-in-llm_config-for-proxy"
167
+ " Refer to the docs for more details: https://ag2ai.github.io/ag2/docs/topics/llm_configuration#adding-http-client-in-llm_config-for-proxy"
168
168
  ) from e
169
169
 
170
170
  self._validate_llm_config(llm_config)
@@ -659,6 +659,9 @@ class ConversableAgent(LLMAgent):
659
659
 
660
660
  if message.get("role") in ["function", "tool"]:
661
661
  oai_message["role"] = message.get("role")
662
+ if "tool_responses" in oai_message:
663
+ for tool_response in oai_message["tool_responses"]:
664
+ tool_response["content"] = str(tool_response["content"])
662
665
  elif "override_role" in message:
663
666
  # If we have a direction to override the role then set the
664
667
  # role accordingly. Used to customise the role for the
@@ -791,15 +794,16 @@ class ConversableAgent(LLMAgent):
791
794
  "Message can't be converted into a valid ChatCompletion message. Either content or function_call must be provided."
792
795
  )
793
796
 
794
- def _print_received_message(self, message: Union[Dict, str], sender: Agent):
797
+ def _print_received_message(self, message: Union[Dict, str], sender: Agent, skip_head: bool = False):
795
798
  iostream = IOStream.get_default()
796
799
  # print the message received
797
- iostream.print(colored(sender.name, "yellow"), "(to", f"{self.name}):\n", flush=True)
800
+ if not skip_head:
801
+ iostream.print(colored(sender.name, "yellow"), "(to", f"{self.name}):\n", flush=True)
798
802
  message = self._message_to_dict(message)
799
803
 
800
804
  if message.get("tool_responses"): # Handle tool multi-call responses
801
805
  for tool_response in message["tool_responses"]:
802
- self._print_received_message(tool_response, sender)
806
+ self._print_received_message(tool_response, sender, skip_head=True)
803
807
  if message.get("role") == "tool":
804
808
  return # If role is tool, then content is just a concatenation of all tool_responses
805
809
 
@@ -2288,7 +2292,7 @@ class ConversableAgent(LLMAgent):
2288
2292
  result.append(char)
2289
2293
  return "".join(result)
2290
2294
 
2291
- def execute_function(self, func_call, verbose: bool = False) -> Tuple[bool, Dict[str, str]]:
2295
+ def execute_function(self, func_call, verbose: bool = False) -> Tuple[bool, Dict[str, Any]]:
2292
2296
  """Execute a function call and return the result.
2293
2297
 
2294
2298
  Override this function to modify the way to execute function and tool calls.
@@ -2342,7 +2346,7 @@ class ConversableAgent(LLMAgent):
2342
2346
  return is_exec_success, {
2343
2347
  "name": func_name,
2344
2348
  "role": "function",
2345
- "content": str(content),
2349
+ "content": content,
2346
2350
  }
2347
2351
 
2348
2352
  async def a_execute_function(self, func_call):
@@ -2397,7 +2401,7 @@ class ConversableAgent(LLMAgent):
2397
2401
  return is_exec_success, {
2398
2402
  "name": func_name,
2399
2403
  "role": "function",
2400
- "content": str(content),
2404
+ "content": content,
2401
2405
  }
2402
2406
 
2403
2407
  def generate_init_message(self, message: Union[Dict, str, None], **kwargs) -> Union[str, Dict]:
@@ -294,6 +294,8 @@ class GroupChat:
294
294
  # if the role is tool, it is OK to modify the name
295
295
  if message["role"] != "function":
296
296
  message["name"] = speaker.name
297
+ if not isinstance(message["content"], str) and not isinstance(message["content"], list):
298
+ message["content"] = str(message["content"])
297
299
  message["content"] = content_str(message["content"])
298
300
  self.messages.append(message)
299
301
 
autogen/oai/completion.py CHANGED
@@ -742,7 +742,7 @@ class Completion(openai_Completion):
742
742
  E.g., `prompt="Complete the following sentence: {prefix}, context={"prefix": "Today I feel"}`.
743
743
  The actual prompt will be:
744
744
  "Complete the following sentence: Today I feel".
745
- More examples can be found at [templating](https://ag2ai.github.io/autogen/docs/Use-Cases/enhanced_inference#templating).
745
+ More examples can be found at [templating](https://ag2ai.github.io/ag2/docs/Use-Cases/enhanced_inference#templating).
746
746
  use_cache (bool, Optional): Whether to use cached responses.
747
747
  config_list (List, Optional): List of configurations for the completion to try.
748
748
  The first one that does not raise an error will be used.
@@ -804,7 +804,7 @@ class Completion(openai_Completion):
804
804
  logger.warning(
805
805
  "Completion.create is deprecated in autogen, pyautogen v0.2 and openai>=1. "
806
806
  "The new openai requires initiating a client for inference. "
807
- "Please refer to https://ag2ai.github.io/autogen/docs/Use-Cases/enhanced_inference#api-unification"
807
+ "Please refer to https://ag2ai.github.io/ag2/docs/Use-Cases/enhanced_inference#api-unification"
808
808
  )
809
809
  if ERROR:
810
810
  raise ERROR
autogen/oai/gemini.py CHANGED
@@ -171,7 +171,7 @@ class GeminiClient:
171
171
  raise ValueError(
172
172
  "Please provide a model name for the Gemini Client. "
173
173
  "You can configure it in the OAI Config List file. "
174
- "See this [LLM configuration tutorial](https://ag2ai.github.io/autogen/docs/topics/llm_configuration/) for more details."
174
+ "See this [LLM configuration tutorial](https://ag2ai.github.io/ag2/docs/topics/llm_configuration/) for more details."
175
175
  )
176
176
 
177
177
  params.get("api_type", "google") # not used
autogen/version.py CHANGED
@@ -4,4 +4,4 @@
4
4
  #
5
5
  # Portions derived from https://github.com/microsoft/autogen are under the MIT License.
6
6
  # SPDX-License-Identifier: MIT
7
- __version__ = "0.3.2b2"
7
+ __version__ = "0.4b1"
File without changes
File without changes
File without changes