ag2 0.10.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ag2-0.10.2.dist-info/METADATA +819 -0
- ag2-0.10.2.dist-info/RECORD +423 -0
- ag2-0.10.2.dist-info/WHEEL +4 -0
- ag2-0.10.2.dist-info/licenses/LICENSE +201 -0
- ag2-0.10.2.dist-info/licenses/NOTICE.md +19 -0
- autogen/__init__.py +88 -0
- autogen/_website/__init__.py +3 -0
- autogen/_website/generate_api_references.py +426 -0
- autogen/_website/generate_mkdocs.py +1216 -0
- autogen/_website/notebook_processor.py +475 -0
- autogen/_website/process_notebooks.py +656 -0
- autogen/_website/utils.py +413 -0
- autogen/a2a/__init__.py +36 -0
- autogen/a2a/agent_executor.py +86 -0
- autogen/a2a/client.py +357 -0
- autogen/a2a/errors.py +18 -0
- autogen/a2a/httpx_client_factory.py +79 -0
- autogen/a2a/server.py +221 -0
- autogen/a2a/utils.py +207 -0
- autogen/agentchat/__init__.py +47 -0
- autogen/agentchat/agent.py +180 -0
- autogen/agentchat/assistant_agent.py +86 -0
- autogen/agentchat/chat.py +325 -0
- autogen/agentchat/contrib/__init__.py +5 -0
- autogen/agentchat/contrib/agent_eval/README.md +7 -0
- autogen/agentchat/contrib/agent_eval/agent_eval.py +108 -0
- autogen/agentchat/contrib/agent_eval/criterion.py +43 -0
- autogen/agentchat/contrib/agent_eval/critic_agent.py +44 -0
- autogen/agentchat/contrib/agent_eval/quantifier_agent.py +39 -0
- autogen/agentchat/contrib/agent_eval/subcritic_agent.py +45 -0
- autogen/agentchat/contrib/agent_eval/task.py +42 -0
- autogen/agentchat/contrib/agent_optimizer.py +432 -0
- autogen/agentchat/contrib/capabilities/__init__.py +5 -0
- autogen/agentchat/contrib/capabilities/agent_capability.py +20 -0
- autogen/agentchat/contrib/capabilities/generate_images.py +301 -0
- autogen/agentchat/contrib/capabilities/teachability.py +393 -0
- autogen/agentchat/contrib/capabilities/text_compressors.py +66 -0
- autogen/agentchat/contrib/capabilities/tools_capability.py +22 -0
- autogen/agentchat/contrib/capabilities/transform_messages.py +93 -0
- autogen/agentchat/contrib/capabilities/transforms.py +578 -0
- autogen/agentchat/contrib/capabilities/transforms_util.py +122 -0
- autogen/agentchat/contrib/capabilities/vision_capability.py +215 -0
- autogen/agentchat/contrib/captainagent/__init__.py +9 -0
- autogen/agentchat/contrib/captainagent/agent_builder.py +790 -0
- autogen/agentchat/contrib/captainagent/captainagent.py +514 -0
- autogen/agentchat/contrib/captainagent/tool_retriever.py +334 -0
- autogen/agentchat/contrib/captainagent/tools/README.md +44 -0
- autogen/agentchat/contrib/captainagent/tools/__init__.py +5 -0
- autogen/agentchat/contrib/captainagent/tools/data_analysis/calculate_correlation.py +40 -0
- autogen/agentchat/contrib/captainagent/tools/data_analysis/calculate_skewness_and_kurtosis.py +28 -0
- autogen/agentchat/contrib/captainagent/tools/data_analysis/detect_outlier_iqr.py +28 -0
- autogen/agentchat/contrib/captainagent/tools/data_analysis/detect_outlier_zscore.py +28 -0
- autogen/agentchat/contrib/captainagent/tools/data_analysis/explore_csv.py +21 -0
- autogen/agentchat/contrib/captainagent/tools/data_analysis/shapiro_wilk_test.py +30 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/arxiv_download.py +27 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/arxiv_search.py +53 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/extract_pdf_image.py +53 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/extract_pdf_text.py +38 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/get_wikipedia_text.py +21 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/get_youtube_caption.py +34 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/image_qa.py +60 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/optical_character_recognition.py +61 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/perform_web_search.py +47 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/scrape_wikipedia_tables.py +33 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/transcribe_audio_file.py +21 -0
- autogen/agentchat/contrib/captainagent/tools/information_retrieval/youtube_download.py +35 -0
- autogen/agentchat/contrib/captainagent/tools/math/calculate_circle_area_from_diameter.py +21 -0
- autogen/agentchat/contrib/captainagent/tools/math/calculate_day_of_the_week.py +18 -0
- autogen/agentchat/contrib/captainagent/tools/math/calculate_fraction_sum.py +28 -0
- autogen/agentchat/contrib/captainagent/tools/math/calculate_matrix_power.py +31 -0
- autogen/agentchat/contrib/captainagent/tools/math/calculate_reflected_point.py +16 -0
- autogen/agentchat/contrib/captainagent/tools/math/complex_numbers_product.py +25 -0
- autogen/agentchat/contrib/captainagent/tools/math/compute_currency_conversion.py +23 -0
- autogen/agentchat/contrib/captainagent/tools/math/count_distinct_permutations.py +27 -0
- autogen/agentchat/contrib/captainagent/tools/math/evaluate_expression.py +28 -0
- autogen/agentchat/contrib/captainagent/tools/math/find_continuity_point.py +34 -0
- autogen/agentchat/contrib/captainagent/tools/math/fraction_to_mixed_numbers.py +39 -0
- autogen/agentchat/contrib/captainagent/tools/math/modular_inverse_sum.py +23 -0
- autogen/agentchat/contrib/captainagent/tools/math/simplify_mixed_numbers.py +36 -0
- autogen/agentchat/contrib/captainagent/tools/math/sum_of_digit_factorials.py +15 -0
- autogen/agentchat/contrib/captainagent/tools/math/sum_of_primes_below.py +15 -0
- autogen/agentchat/contrib/captainagent/tools/requirements.txt +10 -0
- autogen/agentchat/contrib/captainagent/tools/tool_description.tsv +34 -0
- autogen/agentchat/contrib/gpt_assistant_agent.py +526 -0
- autogen/agentchat/contrib/graph_rag/__init__.py +9 -0
- autogen/agentchat/contrib/graph_rag/document.py +29 -0
- autogen/agentchat/contrib/graph_rag/falkor_graph_query_engine.py +167 -0
- autogen/agentchat/contrib/graph_rag/falkor_graph_rag_capability.py +103 -0
- autogen/agentchat/contrib/graph_rag/graph_query_engine.py +53 -0
- autogen/agentchat/contrib/graph_rag/graph_rag_capability.py +63 -0
- autogen/agentchat/contrib/graph_rag/neo4j_graph_query_engine.py +263 -0
- autogen/agentchat/contrib/graph_rag/neo4j_graph_rag_capability.py +83 -0
- autogen/agentchat/contrib/graph_rag/neo4j_native_graph_query_engine.py +210 -0
- autogen/agentchat/contrib/graph_rag/neo4j_native_graph_rag_capability.py +93 -0
- autogen/agentchat/contrib/img_utils.py +397 -0
- autogen/agentchat/contrib/llamaindex_conversable_agent.py +117 -0
- autogen/agentchat/contrib/llava_agent.py +189 -0
- autogen/agentchat/contrib/math_user_proxy_agent.py +464 -0
- autogen/agentchat/contrib/multimodal_conversable_agent.py +125 -0
- autogen/agentchat/contrib/qdrant_retrieve_user_proxy_agent.py +325 -0
- autogen/agentchat/contrib/rag/__init__.py +10 -0
- autogen/agentchat/contrib/rag/chromadb_query_engine.py +268 -0
- autogen/agentchat/contrib/rag/llamaindex_query_engine.py +195 -0
- autogen/agentchat/contrib/rag/mongodb_query_engine.py +319 -0
- autogen/agentchat/contrib/rag/query_engine.py +76 -0
- autogen/agentchat/contrib/retrieve_assistant_agent.py +59 -0
- autogen/agentchat/contrib/retrieve_user_proxy_agent.py +704 -0
- autogen/agentchat/contrib/society_of_mind_agent.py +200 -0
- autogen/agentchat/contrib/swarm_agent.py +1404 -0
- autogen/agentchat/contrib/text_analyzer_agent.py +79 -0
- autogen/agentchat/contrib/vectordb/__init__.py +5 -0
- autogen/agentchat/contrib/vectordb/base.py +224 -0
- autogen/agentchat/contrib/vectordb/chromadb.py +316 -0
- autogen/agentchat/contrib/vectordb/couchbase.py +405 -0
- autogen/agentchat/contrib/vectordb/mongodb.py +551 -0
- autogen/agentchat/contrib/vectordb/pgvectordb.py +927 -0
- autogen/agentchat/contrib/vectordb/qdrant.py +320 -0
- autogen/agentchat/contrib/vectordb/utils.py +126 -0
- autogen/agentchat/contrib/web_surfer.py +304 -0
- autogen/agentchat/conversable_agent.py +4307 -0
- autogen/agentchat/group/__init__.py +67 -0
- autogen/agentchat/group/available_condition.py +91 -0
- autogen/agentchat/group/context_condition.py +77 -0
- autogen/agentchat/group/context_expression.py +238 -0
- autogen/agentchat/group/context_str.py +39 -0
- autogen/agentchat/group/context_variables.py +182 -0
- autogen/agentchat/group/events/transition_events.py +111 -0
- autogen/agentchat/group/group_tool_executor.py +324 -0
- autogen/agentchat/group/group_utils.py +659 -0
- autogen/agentchat/group/guardrails.py +179 -0
- autogen/agentchat/group/handoffs.py +303 -0
- autogen/agentchat/group/llm_condition.py +93 -0
- autogen/agentchat/group/multi_agent_chat.py +291 -0
- autogen/agentchat/group/on_condition.py +55 -0
- autogen/agentchat/group/on_context_condition.py +51 -0
- autogen/agentchat/group/patterns/__init__.py +18 -0
- autogen/agentchat/group/patterns/auto.py +160 -0
- autogen/agentchat/group/patterns/manual.py +177 -0
- autogen/agentchat/group/patterns/pattern.py +295 -0
- autogen/agentchat/group/patterns/random.py +106 -0
- autogen/agentchat/group/patterns/round_robin.py +117 -0
- autogen/agentchat/group/reply_result.py +24 -0
- autogen/agentchat/group/safeguards/__init__.py +21 -0
- autogen/agentchat/group/safeguards/api.py +241 -0
- autogen/agentchat/group/safeguards/enforcer.py +1158 -0
- autogen/agentchat/group/safeguards/events.py +140 -0
- autogen/agentchat/group/safeguards/validator.py +435 -0
- autogen/agentchat/group/speaker_selection_result.py +41 -0
- autogen/agentchat/group/targets/__init__.py +4 -0
- autogen/agentchat/group/targets/function_target.py +245 -0
- autogen/agentchat/group/targets/group_chat_target.py +133 -0
- autogen/agentchat/group/targets/group_manager_target.py +151 -0
- autogen/agentchat/group/targets/transition_target.py +424 -0
- autogen/agentchat/group/targets/transition_utils.py +6 -0
- autogen/agentchat/groupchat.py +1832 -0
- autogen/agentchat/realtime/__init__.py +3 -0
- autogen/agentchat/realtime/experimental/__init__.py +20 -0
- autogen/agentchat/realtime/experimental/audio_adapters/__init__.py +8 -0
- autogen/agentchat/realtime/experimental/audio_adapters/twilio_audio_adapter.py +148 -0
- autogen/agentchat/realtime/experimental/audio_adapters/websocket_audio_adapter.py +139 -0
- autogen/agentchat/realtime/experimental/audio_observer.py +42 -0
- autogen/agentchat/realtime/experimental/clients/__init__.py +15 -0
- autogen/agentchat/realtime/experimental/clients/gemini/__init__.py +7 -0
- autogen/agentchat/realtime/experimental/clients/gemini/client.py +274 -0
- autogen/agentchat/realtime/experimental/clients/oai/__init__.py +8 -0
- autogen/agentchat/realtime/experimental/clients/oai/base_client.py +220 -0
- autogen/agentchat/realtime/experimental/clients/oai/rtc_client.py +243 -0
- autogen/agentchat/realtime/experimental/clients/oai/utils.py +48 -0
- autogen/agentchat/realtime/experimental/clients/realtime_client.py +191 -0
- autogen/agentchat/realtime/experimental/function_observer.py +84 -0
- autogen/agentchat/realtime/experimental/realtime_agent.py +158 -0
- autogen/agentchat/realtime/experimental/realtime_events.py +42 -0
- autogen/agentchat/realtime/experimental/realtime_observer.py +100 -0
- autogen/agentchat/realtime/experimental/realtime_swarm.py +533 -0
- autogen/agentchat/realtime/experimental/websockets.py +21 -0
- autogen/agentchat/realtime_agent/__init__.py +21 -0
- autogen/agentchat/user_proxy_agent.py +114 -0
- autogen/agentchat/utils.py +206 -0
- autogen/agents/__init__.py +3 -0
- autogen/agents/contrib/__init__.py +10 -0
- autogen/agents/contrib/time/__init__.py +8 -0
- autogen/agents/contrib/time/time_reply_agent.py +74 -0
- autogen/agents/contrib/time/time_tool_agent.py +52 -0
- autogen/agents/experimental/__init__.py +27 -0
- autogen/agents/experimental/deep_research/__init__.py +7 -0
- autogen/agents/experimental/deep_research/deep_research.py +52 -0
- autogen/agents/experimental/discord/__init__.py +7 -0
- autogen/agents/experimental/discord/discord.py +66 -0
- autogen/agents/experimental/document_agent/__init__.py +19 -0
- autogen/agents/experimental/document_agent/chroma_query_engine.py +301 -0
- autogen/agents/experimental/document_agent/docling_doc_ingest_agent.py +113 -0
- autogen/agents/experimental/document_agent/document_agent.py +643 -0
- autogen/agents/experimental/document_agent/document_conditions.py +50 -0
- autogen/agents/experimental/document_agent/document_utils.py +376 -0
- autogen/agents/experimental/document_agent/inmemory_query_engine.py +214 -0
- autogen/agents/experimental/document_agent/parser_utils.py +134 -0
- autogen/agents/experimental/document_agent/url_utils.py +417 -0
- autogen/agents/experimental/reasoning/__init__.py +7 -0
- autogen/agents/experimental/reasoning/reasoning_agent.py +1178 -0
- autogen/agents/experimental/slack/__init__.py +7 -0
- autogen/agents/experimental/slack/slack.py +73 -0
- autogen/agents/experimental/telegram/__init__.py +7 -0
- autogen/agents/experimental/telegram/telegram.py +76 -0
- autogen/agents/experimental/websurfer/__init__.py +7 -0
- autogen/agents/experimental/websurfer/websurfer.py +70 -0
- autogen/agents/experimental/wikipedia/__init__.py +7 -0
- autogen/agents/experimental/wikipedia/wikipedia.py +88 -0
- autogen/browser_utils.py +309 -0
- autogen/cache/__init__.py +10 -0
- autogen/cache/abstract_cache_base.py +71 -0
- autogen/cache/cache.py +203 -0
- autogen/cache/cache_factory.py +88 -0
- autogen/cache/cosmos_db_cache.py +144 -0
- autogen/cache/disk_cache.py +97 -0
- autogen/cache/in_memory_cache.py +54 -0
- autogen/cache/redis_cache.py +119 -0
- autogen/code_utils.py +598 -0
- autogen/coding/__init__.py +30 -0
- autogen/coding/base.py +120 -0
- autogen/coding/docker_commandline_code_executor.py +283 -0
- autogen/coding/factory.py +56 -0
- autogen/coding/func_with_reqs.py +203 -0
- autogen/coding/jupyter/__init__.py +23 -0
- autogen/coding/jupyter/base.py +36 -0
- autogen/coding/jupyter/docker_jupyter_server.py +160 -0
- autogen/coding/jupyter/embedded_ipython_code_executor.py +182 -0
- autogen/coding/jupyter/import_utils.py +82 -0
- autogen/coding/jupyter/jupyter_client.py +224 -0
- autogen/coding/jupyter/jupyter_code_executor.py +154 -0
- autogen/coding/jupyter/local_jupyter_server.py +164 -0
- autogen/coding/local_commandline_code_executor.py +341 -0
- autogen/coding/markdown_code_extractor.py +44 -0
- autogen/coding/utils.py +55 -0
- autogen/coding/yepcode_code_executor.py +197 -0
- autogen/doc_utils.py +35 -0
- autogen/environments/__init__.py +10 -0
- autogen/environments/docker_python_environment.py +365 -0
- autogen/environments/python_environment.py +125 -0
- autogen/environments/system_python_environment.py +85 -0
- autogen/environments/venv_python_environment.py +220 -0
- autogen/environments/working_directory.py +74 -0
- autogen/events/__init__.py +7 -0
- autogen/events/agent_events.py +1016 -0
- autogen/events/base_event.py +100 -0
- autogen/events/client_events.py +168 -0
- autogen/events/helpers.py +44 -0
- autogen/events/print_event.py +45 -0
- autogen/exception_utils.py +73 -0
- autogen/extensions/__init__.py +5 -0
- autogen/fast_depends/__init__.py +16 -0
- autogen/fast_depends/_compat.py +75 -0
- autogen/fast_depends/core/__init__.py +14 -0
- autogen/fast_depends/core/build.py +206 -0
- autogen/fast_depends/core/model.py +527 -0
- autogen/fast_depends/dependencies/__init__.py +15 -0
- autogen/fast_depends/dependencies/model.py +30 -0
- autogen/fast_depends/dependencies/provider.py +40 -0
- autogen/fast_depends/library/__init__.py +10 -0
- autogen/fast_depends/library/model.py +46 -0
- autogen/fast_depends/py.typed +6 -0
- autogen/fast_depends/schema.py +66 -0
- autogen/fast_depends/use.py +272 -0
- autogen/fast_depends/utils.py +177 -0
- autogen/formatting_utils.py +83 -0
- autogen/function_utils.py +13 -0
- autogen/graph_utils.py +173 -0
- autogen/import_utils.py +539 -0
- autogen/interop/__init__.py +22 -0
- autogen/interop/crewai/__init__.py +7 -0
- autogen/interop/crewai/crewai.py +88 -0
- autogen/interop/interoperability.py +71 -0
- autogen/interop/interoperable.py +46 -0
- autogen/interop/langchain/__init__.py +8 -0
- autogen/interop/langchain/langchain_chat_model_factory.py +156 -0
- autogen/interop/langchain/langchain_tool.py +78 -0
- autogen/interop/litellm/__init__.py +7 -0
- autogen/interop/litellm/litellm_config_factory.py +178 -0
- autogen/interop/pydantic_ai/__init__.py +7 -0
- autogen/interop/pydantic_ai/pydantic_ai.py +172 -0
- autogen/interop/registry.py +70 -0
- autogen/io/__init__.py +15 -0
- autogen/io/base.py +151 -0
- autogen/io/console.py +56 -0
- autogen/io/processors/__init__.py +12 -0
- autogen/io/processors/base.py +21 -0
- autogen/io/processors/console_event_processor.py +61 -0
- autogen/io/run_response.py +294 -0
- autogen/io/thread_io_stream.py +63 -0
- autogen/io/websockets.py +214 -0
- autogen/json_utils.py +42 -0
- autogen/llm_clients/MIGRATION_TO_V2.md +782 -0
- autogen/llm_clients/__init__.py +77 -0
- autogen/llm_clients/client_v2.py +122 -0
- autogen/llm_clients/models/__init__.py +55 -0
- autogen/llm_clients/models/content_blocks.py +389 -0
- autogen/llm_clients/models/unified_message.py +145 -0
- autogen/llm_clients/models/unified_response.py +83 -0
- autogen/llm_clients/openai_completions_client.py +444 -0
- autogen/llm_config/__init__.py +11 -0
- autogen/llm_config/client.py +59 -0
- autogen/llm_config/config.py +461 -0
- autogen/llm_config/entry.py +169 -0
- autogen/llm_config/types.py +37 -0
- autogen/llm_config/utils.py +223 -0
- autogen/logger/__init__.py +11 -0
- autogen/logger/base_logger.py +129 -0
- autogen/logger/file_logger.py +262 -0
- autogen/logger/logger_factory.py +42 -0
- autogen/logger/logger_utils.py +57 -0
- autogen/logger/sqlite_logger.py +524 -0
- autogen/math_utils.py +338 -0
- autogen/mcp/__init__.py +7 -0
- autogen/mcp/__main__.py +78 -0
- autogen/mcp/helpers.py +45 -0
- autogen/mcp/mcp_client.py +349 -0
- autogen/mcp/mcp_proxy/__init__.py +19 -0
- autogen/mcp/mcp_proxy/fastapi_code_generator_helpers.py +62 -0
- autogen/mcp/mcp_proxy/mcp_proxy.py +577 -0
- autogen/mcp/mcp_proxy/operation_grouping.py +166 -0
- autogen/mcp/mcp_proxy/operation_renaming.py +110 -0
- autogen/mcp/mcp_proxy/patch_fastapi_code_generator.py +98 -0
- autogen/mcp/mcp_proxy/security.py +399 -0
- autogen/mcp/mcp_proxy/security_schema_visitor.py +37 -0
- autogen/messages/__init__.py +7 -0
- autogen/messages/agent_messages.py +946 -0
- autogen/messages/base_message.py +108 -0
- autogen/messages/client_messages.py +172 -0
- autogen/messages/print_message.py +48 -0
- autogen/oai/__init__.py +61 -0
- autogen/oai/anthropic.py +1516 -0
- autogen/oai/bedrock.py +800 -0
- autogen/oai/cerebras.py +302 -0
- autogen/oai/client.py +1658 -0
- autogen/oai/client_utils.py +196 -0
- autogen/oai/cohere.py +494 -0
- autogen/oai/gemini.py +1045 -0
- autogen/oai/gemini_types.py +156 -0
- autogen/oai/groq.py +319 -0
- autogen/oai/mistral.py +311 -0
- autogen/oai/oai_models/__init__.py +23 -0
- autogen/oai/oai_models/_models.py +16 -0
- autogen/oai/oai_models/chat_completion.py +86 -0
- autogen/oai/oai_models/chat_completion_audio.py +32 -0
- autogen/oai/oai_models/chat_completion_message.py +97 -0
- autogen/oai/oai_models/chat_completion_message_tool_call.py +60 -0
- autogen/oai/oai_models/chat_completion_token_logprob.py +62 -0
- autogen/oai/oai_models/completion_usage.py +59 -0
- autogen/oai/ollama.py +657 -0
- autogen/oai/openai_responses.py +451 -0
- autogen/oai/openai_utils.py +897 -0
- autogen/oai/together.py +387 -0
- autogen/remote/__init__.py +18 -0
- autogen/remote/agent.py +199 -0
- autogen/remote/agent_service.py +197 -0
- autogen/remote/errors.py +17 -0
- autogen/remote/httpx_client_factory.py +131 -0
- autogen/remote/protocol.py +37 -0
- autogen/remote/retry.py +102 -0
- autogen/remote/runtime.py +96 -0
- autogen/retrieve_utils.py +490 -0
- autogen/runtime_logging.py +161 -0
- autogen/testing/__init__.py +12 -0
- autogen/testing/messages.py +45 -0
- autogen/testing/test_agent.py +111 -0
- autogen/token_count_utils.py +280 -0
- autogen/tools/__init__.py +20 -0
- autogen/tools/contrib/__init__.py +9 -0
- autogen/tools/contrib/time/__init__.py +7 -0
- autogen/tools/contrib/time/time.py +40 -0
- autogen/tools/dependency_injection.py +249 -0
- autogen/tools/experimental/__init__.py +54 -0
- autogen/tools/experimental/browser_use/__init__.py +7 -0
- autogen/tools/experimental/browser_use/browser_use.py +154 -0
- autogen/tools/experimental/code_execution/__init__.py +7 -0
- autogen/tools/experimental/code_execution/python_code_execution.py +86 -0
- autogen/tools/experimental/crawl4ai/__init__.py +7 -0
- autogen/tools/experimental/crawl4ai/crawl4ai.py +150 -0
- autogen/tools/experimental/deep_research/__init__.py +7 -0
- autogen/tools/experimental/deep_research/deep_research.py +329 -0
- autogen/tools/experimental/duckduckgo/__init__.py +7 -0
- autogen/tools/experimental/duckduckgo/duckduckgo_search.py +103 -0
- autogen/tools/experimental/firecrawl/__init__.py +7 -0
- autogen/tools/experimental/firecrawl/firecrawl_tool.py +836 -0
- autogen/tools/experimental/google/__init__.py +14 -0
- autogen/tools/experimental/google/authentication/__init__.py +11 -0
- autogen/tools/experimental/google/authentication/credentials_hosted_provider.py +43 -0
- autogen/tools/experimental/google/authentication/credentials_local_provider.py +91 -0
- autogen/tools/experimental/google/authentication/credentials_provider.py +35 -0
- autogen/tools/experimental/google/drive/__init__.py +9 -0
- autogen/tools/experimental/google/drive/drive_functions.py +124 -0
- autogen/tools/experimental/google/drive/toolkit.py +88 -0
- autogen/tools/experimental/google/model.py +17 -0
- autogen/tools/experimental/google/toolkit_protocol.py +19 -0
- autogen/tools/experimental/google_search/__init__.py +8 -0
- autogen/tools/experimental/google_search/google_search.py +93 -0
- autogen/tools/experimental/google_search/youtube_search.py +181 -0
- autogen/tools/experimental/messageplatform/__init__.py +17 -0
- autogen/tools/experimental/messageplatform/discord/__init__.py +7 -0
- autogen/tools/experimental/messageplatform/discord/discord.py +284 -0
- autogen/tools/experimental/messageplatform/slack/__init__.py +7 -0
- autogen/tools/experimental/messageplatform/slack/slack.py +385 -0
- autogen/tools/experimental/messageplatform/telegram/__init__.py +7 -0
- autogen/tools/experimental/messageplatform/telegram/telegram.py +271 -0
- autogen/tools/experimental/perplexity/__init__.py +7 -0
- autogen/tools/experimental/perplexity/perplexity_search.py +249 -0
- autogen/tools/experimental/reliable/__init__.py +10 -0
- autogen/tools/experimental/reliable/reliable.py +1311 -0
- autogen/tools/experimental/searxng/__init__.py +7 -0
- autogen/tools/experimental/searxng/searxng_search.py +142 -0
- autogen/tools/experimental/tavily/__init__.py +7 -0
- autogen/tools/experimental/tavily/tavily_search.py +176 -0
- autogen/tools/experimental/web_search_preview/__init__.py +7 -0
- autogen/tools/experimental/web_search_preview/web_search_preview.py +120 -0
- autogen/tools/experimental/wikipedia/__init__.py +7 -0
- autogen/tools/experimental/wikipedia/wikipedia.py +284 -0
- autogen/tools/function_utils.py +412 -0
- autogen/tools/tool.py +188 -0
- autogen/tools/toolkit.py +86 -0
- autogen/types.py +29 -0
- autogen/version.py +7 -0
- templates/client_template/main.jinja2 +72 -0
- templates/config_template/config.jinja2 +7 -0
- templates/main.jinja2 +61 -0
autogen/oai/anthropic.py
ADDED
|
@@ -0,0 +1,1516 @@
|
|
|
1
|
+
# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
|
|
2
|
+
#
|
|
3
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
4
|
+
#
|
|
5
|
+
# Portions derived from https://github.com/microsoft/autogen are under the MIT License.
|
|
6
|
+
# SPDX-License-Identifier: MIT
|
|
7
|
+
"""Create an OpenAI-compatible client for the Anthropic API.
|
|
8
|
+
|
|
9
|
+
Example usage:
|
|
10
|
+
Install the `anthropic` package by running `pip install --upgrade anthropic`.
|
|
11
|
+
- https://docs.anthropic.com/en/docs/quickstart-guide
|
|
12
|
+
|
|
13
|
+
```python
|
|
14
|
+
import autogen
|
|
15
|
+
|
|
16
|
+
config_list = [
|
|
17
|
+
{
|
|
18
|
+
"model": "claude-3-sonnet-20240229",
|
|
19
|
+
"api_key": os.getenv("ANTHROPIC_API_KEY"),
|
|
20
|
+
"api_type": "anthropic",
|
|
21
|
+
}
|
|
22
|
+
]
|
|
23
|
+
|
|
24
|
+
assistant = autogen.AssistantAgent("assistant", llm_config={"config_list": config_list})
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
Example usage for Anthropic Bedrock:
|
|
28
|
+
|
|
29
|
+
Install the `anthropic` package by running `pip install --upgrade anthropic`.
|
|
30
|
+
- https://docs.anthropic.com/en/docs/quickstart-guide
|
|
31
|
+
|
|
32
|
+
```python
|
|
33
|
+
import autogen
|
|
34
|
+
|
|
35
|
+
config_list = [
|
|
36
|
+
{
|
|
37
|
+
"model": "anthropic.claude-3-5-sonnet-20240620-v1:0",
|
|
38
|
+
"aws_access_key":<accessKey>,
|
|
39
|
+
"aws_secret_key":<secretKey>,
|
|
40
|
+
"aws_session_token":<sessionTok>,
|
|
41
|
+
"aws_region":"us-east-1",
|
|
42
|
+
"api_type": "anthropic",
|
|
43
|
+
}
|
|
44
|
+
]
|
|
45
|
+
|
|
46
|
+
assistant = autogen.AssistantAgent("assistant", llm_config={"config_list": config_list})
|
|
47
|
+
```
|
|
48
|
+
|
|
49
|
+
Example usage for Anthropic VertexAI:
|
|
50
|
+
|
|
51
|
+
Install the `anthropic` package by running `pip install anthropic[vertex]`.
|
|
52
|
+
- https://docs.anthropic.com/en/docs/quickstart-guide
|
|
53
|
+
|
|
54
|
+
```python
|
|
55
|
+
|
|
56
|
+
import autogen
|
|
57
|
+
config_list = [
|
|
58
|
+
{
|
|
59
|
+
"model": "claude-3-5-sonnet-20240620-v1:0",
|
|
60
|
+
"gcp_project_id": "dummy_project_id",
|
|
61
|
+
"gcp_region": "us-west-2",
|
|
62
|
+
"gcp_auth_token": "dummy_auth_token",
|
|
63
|
+
"api_type": "anthropic",
|
|
64
|
+
}
|
|
65
|
+
]
|
|
66
|
+
|
|
67
|
+
assistant = autogen.AssistantAgent("assistant", llm_config={"config_list": config_list})
|
|
68
|
+
```python
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
from __future__ import annotations
|
|
72
|
+
|
|
73
|
+
import inspect
|
|
74
|
+
import json
|
|
75
|
+
import logging
|
|
76
|
+
import os
|
|
77
|
+
import re
|
|
78
|
+
import time
|
|
79
|
+
import warnings
|
|
80
|
+
from typing import Any, Literal
|
|
81
|
+
|
|
82
|
+
from pydantic import BaseModel, Field
|
|
83
|
+
from typing_extensions import Unpack
|
|
84
|
+
|
|
85
|
+
from ..code_utils import content_str
|
|
86
|
+
from ..import_utils import optional_import_block, require_optional_import
|
|
87
|
+
from ..llm_config.entry import LLMConfigEntry, LLMConfigEntryDict
|
|
88
|
+
|
|
89
|
+
logger = logging.getLogger(__name__)
|
|
90
|
+
from .client_utils import FormatterProtocol, validate_parameter
|
|
91
|
+
from .oai_models import ChatCompletion, ChatCompletionMessage, ChatCompletionMessageToolCall, Choice, CompletionUsage
|
|
92
|
+
|
|
93
|
+
with optional_import_block():
|
|
94
|
+
from anthropic import Anthropic, AnthropicBedrock, AnthropicVertex, BadRequestError
|
|
95
|
+
from anthropic import __version__ as anthropic_version
|
|
96
|
+
from anthropic.types import Message, TextBlock, ThinkingBlock, ToolUseBlock
|
|
97
|
+
|
|
98
|
+
# Import transform_schema for structured outputs (SDK >= 0.74.1)
|
|
99
|
+
try:
|
|
100
|
+
from anthropic import transform_schema
|
|
101
|
+
except ImportError:
|
|
102
|
+
transform_schema = None # type: ignore[misc, assignment]
|
|
103
|
+
|
|
104
|
+
# Beta content block types for structured outputs (SDK >= 0.74.1)
|
|
105
|
+
try:
|
|
106
|
+
from anthropic.types.beta.structured_outputs.beta_text_block import BetaTextBlock
|
|
107
|
+
from anthropic.types.beta.structured_outputs.beta_tool_use_block import BetaToolUseBlock
|
|
108
|
+
|
|
109
|
+
BETA_BLOCKS_AVAILABLE = True
|
|
110
|
+
except ImportError:
|
|
111
|
+
# Beta blocks not available in older SDK versions
|
|
112
|
+
BetaTextBlock = None # type: ignore[misc, assignment]
|
|
113
|
+
BetaToolUseBlock = None # type: ignore[misc, assignment]
|
|
114
|
+
BETA_BLOCKS_AVAILABLE = False
|
|
115
|
+
|
|
116
|
+
TOOL_ENABLED = anthropic_version >= "0.23.1"
|
|
117
|
+
if TOOL_ENABLED:
|
|
118
|
+
pass
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
ANTHROPIC_PRICING_1k = {
|
|
122
|
+
"claude-3-7-sonnet-20250219": (0.003, 0.015),
|
|
123
|
+
"claude-3-5-sonnet-20241022": (0.003, 0.015),
|
|
124
|
+
"claude-3-5-haiku-20241022": (0.0008, 0.004),
|
|
125
|
+
"claude-3-5-sonnet-20240620": (0.003, 0.015),
|
|
126
|
+
"claude-3-sonnet-20240229": (0.003, 0.015),
|
|
127
|
+
"claude-3-opus-20240229": (0.015, 0.075),
|
|
128
|
+
"claude-3-haiku-20240307": (0.00025, 0.00125),
|
|
129
|
+
"claude-2.1": (0.008, 0.024),
|
|
130
|
+
"claude-2.0": (0.008, 0.024),
|
|
131
|
+
"claude-instant-1.2": (0.008, 0.024),
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
# Models that support native structured outputs via beta API
|
|
135
|
+
# https://docs.anthropic.com/en/docs/build-with-claude/structured-outputs
|
|
136
|
+
STRUCTURED_OUTPUT_MODELS = {
|
|
137
|
+
"claude-sonnet-4-5",
|
|
138
|
+
"claude-sonnet-4-5-20250929", # Versioned Claude Sonnet 4.5
|
|
139
|
+
"claude-3-5-sonnet-20241022",
|
|
140
|
+
"claude-3-7-sonnet-20250219",
|
|
141
|
+
"claude-opus-4-1", # Future model
|
|
142
|
+
}
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def supports_native_structured_outputs(model: str) -> bool:
|
|
146
|
+
"""Check if a Claude model supports native structured outputs (beta feature).
|
|
147
|
+
|
|
148
|
+
Native structured outputs use constrained decoding to guarantee schema compliance.
|
|
149
|
+
This is more reliable than JSON Mode which relies on prompting.
|
|
150
|
+
|
|
151
|
+
Args:
|
|
152
|
+
model: The Claude model name (e.g., "claude-sonnet-4-5")
|
|
153
|
+
|
|
154
|
+
Returns:
|
|
155
|
+
True if the model supports native structured outputs, False otherwise.
|
|
156
|
+
|
|
157
|
+
Supported models:
|
|
158
|
+
- Claude Sonnet 4.5+ (claude-sonnet-4-5, claude-sonnet-4-5-20250929, claude-3-5-sonnet-20241022+)
|
|
159
|
+
- Claude Sonnet 3.7+ (claude-3-7-sonnet-20250219+)
|
|
160
|
+
- Claude Opus 4.1+ (claude-opus-4-1+)
|
|
161
|
+
|
|
162
|
+
NOT supported (will use JSON Mode fallback):
|
|
163
|
+
- Claude Sonnet 4.0 (claude-sonnet-4-20250514) - older version
|
|
164
|
+
- Claude 3 Haiku models
|
|
165
|
+
- Claude 2.x models
|
|
166
|
+
|
|
167
|
+
Example:
|
|
168
|
+
>>> supports_native_structured_outputs("claude-sonnet-4-5")
|
|
169
|
+
True
|
|
170
|
+
>>> supports_native_structured_outputs("claude-sonnet-4-20250514")
|
|
171
|
+
False # Claude Sonnet 4.0 doesn't support it
|
|
172
|
+
>>> supports_native_structured_outputs("claude-3-haiku-20240307")
|
|
173
|
+
False
|
|
174
|
+
"""
|
|
175
|
+
# Exact match for known models
|
|
176
|
+
if model in STRUCTURED_OUTPUT_MODELS:
|
|
177
|
+
return True
|
|
178
|
+
|
|
179
|
+
# Pattern matching for versioned models
|
|
180
|
+
# Support future Sonnet 3.5+ and 3.7+ versions
|
|
181
|
+
if model.startswith(("claude-3-5-sonnet-", "claude-3-7-sonnet-")):
|
|
182
|
+
return True
|
|
183
|
+
|
|
184
|
+
# Support future Sonnet 4.5+ versions (NOT Sonnet 4.0)
|
|
185
|
+
if model.startswith("claude-sonnet-4-5"):
|
|
186
|
+
return True
|
|
187
|
+
|
|
188
|
+
# Support future Opus 4.x versions
|
|
189
|
+
if model.startswith("claude-opus-4"):
|
|
190
|
+
return True
|
|
191
|
+
|
|
192
|
+
return False
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def has_beta_messages_api() -> bool:
|
|
196
|
+
"""Check if the current Anthropic SDK version supports beta.messages API.
|
|
197
|
+
|
|
198
|
+
The beta.messages API is required for native structured outputs.
|
|
199
|
+
This function performs runtime detection of SDK capabilities.
|
|
200
|
+
|
|
201
|
+
Returns:
|
|
202
|
+
True if beta.messages.parse() is available, False otherwise.
|
|
203
|
+
|
|
204
|
+
Example:
|
|
205
|
+
>>> has_beta_messages_api()
|
|
206
|
+
True # If anthropic>=0.39.0 is installed
|
|
207
|
+
"""
|
|
208
|
+
try:
|
|
209
|
+
from anthropic.resources.beta.messages import Messages
|
|
210
|
+
|
|
211
|
+
return hasattr(Messages, "parse")
|
|
212
|
+
except ImportError:
|
|
213
|
+
return False
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def validate_structured_outputs_version() -> None:
|
|
217
|
+
"""Validate that the Anthropic SDK version supports structured outputs beta.
|
|
218
|
+
|
|
219
|
+
The structured-outputs-2025-11-13 beta header requires anthropic>=0.74.1.
|
|
220
|
+
|
|
221
|
+
Raises:
|
|
222
|
+
ImportError: If the Anthropic SDK version is too old
|
|
223
|
+
|
|
224
|
+
Example:
|
|
225
|
+
>>> validate_structured_outputs_version() # Raises if version < 0.74.1
|
|
226
|
+
"""
|
|
227
|
+
try:
|
|
228
|
+
from packaging import version
|
|
229
|
+
|
|
230
|
+
min_version = "0.74.1"
|
|
231
|
+
current_version = anthropic_version # Use module-level import
|
|
232
|
+
|
|
233
|
+
if version.parse(current_version) < version.parse(min_version):
|
|
234
|
+
raise ImportError(
|
|
235
|
+
f"Anthropic structured outputs require anthropic>={min_version}, "
|
|
236
|
+
f"but found version {current_version}. "
|
|
237
|
+
f"Please upgrade: pip install --upgrade 'anthropic>={min_version}'"
|
|
238
|
+
)
|
|
239
|
+
except ImportError as e:
|
|
240
|
+
if "anthropic" in str(e) or "version" in str(e).lower():
|
|
241
|
+
raise
|
|
242
|
+
# If packaging is not available, try manual version comparison
|
|
243
|
+
current_version = anthropic_version # Use module-level import
|
|
244
|
+
|
|
245
|
+
# Simple version comparison (works for major.minor.patch format)
|
|
246
|
+
current_parts = [int(x) for x in anthropic_version.split(".")[:3]]
|
|
247
|
+
min_parts = [0, 74, 1]
|
|
248
|
+
|
|
249
|
+
if current_parts < min_parts:
|
|
250
|
+
raise ImportError(
|
|
251
|
+
f"Anthropic structured outputs require anthropic>=0.74.1, "
|
|
252
|
+
f"but found version {anthropic_version}. "
|
|
253
|
+
f"Please upgrade: pip install --upgrade 'anthropic>=0.74.1'"
|
|
254
|
+
)
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
def _is_text_block(content: Any) -> bool:
|
|
258
|
+
"""Check if a content block is a text block (legacy or beta version).
|
|
259
|
+
|
|
260
|
+
Args:
|
|
261
|
+
content: Content block to check
|
|
262
|
+
|
|
263
|
+
Returns:
|
|
264
|
+
True if content is a TextBlock or BetaTextBlock
|
|
265
|
+
"""
|
|
266
|
+
if type(content) == TextBlock:
|
|
267
|
+
return True
|
|
268
|
+
if BETA_BLOCKS_AVAILABLE and type(content) == BetaTextBlock:
|
|
269
|
+
return True
|
|
270
|
+
return False
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
def _is_tool_use_block(content: Any) -> bool:
|
|
274
|
+
"""Check if a content block is a tool use block (legacy or beta version).
|
|
275
|
+
|
|
276
|
+
Args:
|
|
277
|
+
content: Content block to check
|
|
278
|
+
|
|
279
|
+
Returns:
|
|
280
|
+
True if content is a ToolUseBlock or BetaToolUseBlock
|
|
281
|
+
"""
|
|
282
|
+
content_type = type(content)
|
|
283
|
+
content_type_name = content_type.__name__
|
|
284
|
+
|
|
285
|
+
if content_type == ToolUseBlock:
|
|
286
|
+
return True
|
|
287
|
+
if BETA_BLOCKS_AVAILABLE and content_type == BetaToolUseBlock:
|
|
288
|
+
return True
|
|
289
|
+
|
|
290
|
+
# Fallback: check by name if type comparison fails
|
|
291
|
+
if content_type_name in ("ToolUseBlock", "BetaToolUseBlock"):
|
|
292
|
+
return True
|
|
293
|
+
|
|
294
|
+
return False
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
def _is_thinking_block(content: Any) -> bool:
|
|
298
|
+
"""Check if a content block is a thinking block (extended thinking).
|
|
299
|
+
|
|
300
|
+
Args:
|
|
301
|
+
content: Content block to check
|
|
302
|
+
|
|
303
|
+
Returns:
|
|
304
|
+
True if content is a ThinkingBlock
|
|
305
|
+
"""
|
|
306
|
+
content_type = type(content)
|
|
307
|
+
content_type_name = content_type.__name__
|
|
308
|
+
|
|
309
|
+
if content_type == ThinkingBlock:
|
|
310
|
+
return True
|
|
311
|
+
|
|
312
|
+
# Fallback: check by name if type comparison fails
|
|
313
|
+
if content_type_name == "ThinkingBlock":
|
|
314
|
+
return True
|
|
315
|
+
|
|
316
|
+
return False
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
def transform_schema_for_anthropic(schema: dict[str, Any]) -> dict[str, Any]:
|
|
320
|
+
"""Transform JSON schema to be compatible with Anthropic's structured outputs.
|
|
321
|
+
|
|
322
|
+
Anthropic's structured outputs don't support certain JSON Schema features:
|
|
323
|
+
- Numerical constraints (minimum, maximum, multipleOf)
|
|
324
|
+
- String length constraints (minLength, maxLength, pattern with backreferences)
|
|
325
|
+
- Recursive schemas ($ref loops)
|
|
326
|
+
- Complex regex patterns
|
|
327
|
+
|
|
328
|
+
This function removes unsupported constraints while preserving the core structure.
|
|
329
|
+
|
|
330
|
+
Args:
|
|
331
|
+
schema: A JSON schema dict (typically from Pydantic model_json_schema())
|
|
332
|
+
|
|
333
|
+
Returns:
|
|
334
|
+
Transformed schema compatible with Anthropic's requirements
|
|
335
|
+
|
|
336
|
+
Example:
|
|
337
|
+
>>> schema = {"type": "object", "properties": {"age": {"type": "integer", "minimum": 0, "maximum": 150}}}
|
|
338
|
+
>>> transformed = transform_schema_for_anthropic(schema)
|
|
339
|
+
>>> "minimum" in transformed["properties"]["age"]
|
|
340
|
+
False
|
|
341
|
+
"""
|
|
342
|
+
import copy
|
|
343
|
+
|
|
344
|
+
transformed = copy.deepcopy(schema)
|
|
345
|
+
|
|
346
|
+
def remove_unsupported_constraints(obj: Any) -> None:
|
|
347
|
+
"""Recursively remove unsupported constraints from schema."""
|
|
348
|
+
if isinstance(obj, dict):
|
|
349
|
+
# Remove numerical constraints
|
|
350
|
+
obj.pop("minimum", None)
|
|
351
|
+
obj.pop("maximum", None)
|
|
352
|
+
obj.pop("multipleOf", None)
|
|
353
|
+
|
|
354
|
+
# Remove string length constraints
|
|
355
|
+
obj.pop("minLength", None)
|
|
356
|
+
obj.pop("maxLength", None)
|
|
357
|
+
|
|
358
|
+
# Remove array length constraints
|
|
359
|
+
obj.pop("minItems", None)
|
|
360
|
+
obj.pop("maxItems", None)
|
|
361
|
+
|
|
362
|
+
# Add additionalProperties: false for ALL objects (Anthropic requirement)
|
|
363
|
+
if obj.get("type") == "object" and "additionalProperties" not in obj:
|
|
364
|
+
obj["additionalProperties"] = False
|
|
365
|
+
|
|
366
|
+
# Recurse into nested objects
|
|
367
|
+
for value in obj.values():
|
|
368
|
+
remove_unsupported_constraints(value)
|
|
369
|
+
elif isinstance(obj, list):
|
|
370
|
+
for item in obj:
|
|
371
|
+
remove_unsupported_constraints(item)
|
|
372
|
+
|
|
373
|
+
# Remove constraints from entire schema
|
|
374
|
+
remove_unsupported_constraints(transformed)
|
|
375
|
+
|
|
376
|
+
return transformed
|
|
377
|
+
|
|
378
|
+
|
|
379
|
+
class AnthropicEntryDict(LLMConfigEntryDict, total=False):
|
|
380
|
+
api_type: Literal["anthropic"]
|
|
381
|
+
timeout: int | None
|
|
382
|
+
stop_sequences: list[str] | None
|
|
383
|
+
stream: bool
|
|
384
|
+
price: list[float] | None
|
|
385
|
+
tool_choice: dict | None
|
|
386
|
+
thinking: dict | None
|
|
387
|
+
gcp_project_id: str | None
|
|
388
|
+
gcp_region: str | None
|
|
389
|
+
gcp_auth_token: str | None
|
|
390
|
+
|
|
391
|
+
|
|
392
|
+
class AnthropicLLMConfigEntry(LLMConfigEntry):
|
|
393
|
+
api_type: Literal["anthropic"] = "anthropic"
|
|
394
|
+
|
|
395
|
+
# Basic options
|
|
396
|
+
max_tokens: int = Field(default=4096, ge=1)
|
|
397
|
+
temperature: float | None = Field(default=None, ge=0.0, le=1.0)
|
|
398
|
+
top_p: float | None = Field(default=None, ge=0.0, le=1.0)
|
|
399
|
+
|
|
400
|
+
# Anthropic-specific options
|
|
401
|
+
timeout: int | None = Field(default=None, ge=1)
|
|
402
|
+
top_k: int | None = Field(default=None, ge=1)
|
|
403
|
+
stop_sequences: list[str] | None = None
|
|
404
|
+
stream: bool = False
|
|
405
|
+
price: list[float] | None = Field(default=None, min_length=2, max_length=2)
|
|
406
|
+
tool_choice: dict | None = None
|
|
407
|
+
thinking: dict | None = None
|
|
408
|
+
|
|
409
|
+
gcp_project_id: str | None = None
|
|
410
|
+
gcp_region: str | None = None
|
|
411
|
+
gcp_auth_token: str | None = None
|
|
412
|
+
|
|
413
|
+
def create_client(self):
|
|
414
|
+
raise NotImplementedError("AnthropicLLMConfigEntry.create_client is not implemented.")
|
|
415
|
+
|
|
416
|
+
|
|
417
|
+
@require_optional_import("anthropic", "anthropic")
|
|
418
|
+
class AnthropicClient:
|
|
419
|
+
RESPONSE_USAGE_KEYS: list[str] = ["prompt_tokens", "completion_tokens", "total_tokens", "cost", "model"]
|
|
420
|
+
|
|
421
|
+
def __init__(self, **kwargs: Unpack[AnthropicEntryDict]):
|
|
422
|
+
"""Initialize the Anthropic API client.
|
|
423
|
+
|
|
424
|
+
Args:
|
|
425
|
+
**kwargs: The configuration parameters for the client.
|
|
426
|
+
"""
|
|
427
|
+
self._api_key = kwargs.get("api_key") or os.getenv("ANTHROPIC_API_KEY")
|
|
428
|
+
self._aws_access_key = kwargs.get("aws_access_key") or os.getenv("AWS_ACCESS_KEY")
|
|
429
|
+
self._aws_secret_key = kwargs.get("aws_secret_key") or os.getenv("AWS_SECRET_KEY")
|
|
430
|
+
self._aws_session_token = kwargs.get("aws_session_token")
|
|
431
|
+
self._aws_region = kwargs.get("aws_region") or os.getenv("AWS_REGION")
|
|
432
|
+
self._gcp_project_id = kwargs.get("gcp_project_id")
|
|
433
|
+
self._gcp_region = kwargs.get("gcp_region") or os.getenv("GCP_REGION")
|
|
434
|
+
self._gcp_auth_token = kwargs.get("gcp_auth_token")
|
|
435
|
+
self._base_url = kwargs.get("base_url")
|
|
436
|
+
|
|
437
|
+
if self._api_key is None:
|
|
438
|
+
if self._aws_region:
|
|
439
|
+
if self._aws_access_key is None or self._aws_secret_key is None:
|
|
440
|
+
raise ValueError("API key or AWS credentials are required to use the Anthropic API.")
|
|
441
|
+
elif self._gcp_region:
|
|
442
|
+
if self._gcp_project_id is None or self._gcp_region is None:
|
|
443
|
+
raise ValueError("API key or GCP credentials are required to use the Anthropic API.")
|
|
444
|
+
else:
|
|
445
|
+
raise ValueError("API key or AWS credentials or GCP credentials are required to use the Anthropic API.")
|
|
446
|
+
|
|
447
|
+
if self._api_key is not None:
|
|
448
|
+
client_kwargs = {"api_key": self._api_key}
|
|
449
|
+
if self._base_url:
|
|
450
|
+
client_kwargs["base_url"] = self._base_url
|
|
451
|
+
self._client = Anthropic(**client_kwargs)
|
|
452
|
+
elif self._gcp_region is not None:
|
|
453
|
+
kw = {}
|
|
454
|
+
for p in inspect.signature(AnthropicVertex).parameters:
|
|
455
|
+
if hasattr(self, f"_gcp_{p}"):
|
|
456
|
+
kw[p] = getattr(self, f"_gcp_{p}")
|
|
457
|
+
if self._base_url:
|
|
458
|
+
kw["base_url"] = self._base_url
|
|
459
|
+
self._client = AnthropicVertex(**kw)
|
|
460
|
+
else:
|
|
461
|
+
client_kwargs = {
|
|
462
|
+
"aws_access_key": self._aws_access_key,
|
|
463
|
+
"aws_secret_key": self._aws_secret_key,
|
|
464
|
+
"aws_session_token": self._aws_session_token,
|
|
465
|
+
"aws_region": self._aws_region,
|
|
466
|
+
}
|
|
467
|
+
if self._base_url:
|
|
468
|
+
client_kwargs["base_url"] = self._base_url
|
|
469
|
+
self._client = AnthropicBedrock(**client_kwargs)
|
|
470
|
+
|
|
471
|
+
self._last_tooluse_status = {}
|
|
472
|
+
|
|
473
|
+
# Store the response format, if provided (for structured outputs)
|
|
474
|
+
self._response_format: type[BaseModel] | dict | None = kwargs.get("response_format")
|
|
475
|
+
|
|
476
|
+
def load_config(self, params: dict[str, Any]):
|
|
477
|
+
"""Load the configuration for the Anthropic API client."""
|
|
478
|
+
anthropic_params = {}
|
|
479
|
+
|
|
480
|
+
anthropic_params["model"] = params.get("model")
|
|
481
|
+
assert anthropic_params["model"], "Please provide a `model` in the config_list to use the Anthropic API."
|
|
482
|
+
|
|
483
|
+
anthropic_params["temperature"] = validate_parameter(
|
|
484
|
+
params, "temperature", (float, int), False, 1.0, (0.0, 1.0), None
|
|
485
|
+
)
|
|
486
|
+
anthropic_params["max_tokens"] = validate_parameter(params, "max_tokens", int, False, 4096, (1, None), None)
|
|
487
|
+
anthropic_params["timeout"] = validate_parameter(params, "timeout", int, True, None, (1, None), None)
|
|
488
|
+
anthropic_params["top_k"] = validate_parameter(params, "top_k", int, True, None, (1, None), None)
|
|
489
|
+
anthropic_params["top_p"] = validate_parameter(params, "top_p", (float, int), True, None, (0.0, 1.0), None)
|
|
490
|
+
anthropic_params["stop_sequences"] = validate_parameter(params, "stop_sequences", list, True, None, None, None)
|
|
491
|
+
anthropic_params["stream"] = validate_parameter(params, "stream", bool, False, False, None, None)
|
|
492
|
+
if "thinking" in params:
|
|
493
|
+
anthropic_params["thinking"] = params["thinking"]
|
|
494
|
+
|
|
495
|
+
if anthropic_params["stream"]:
|
|
496
|
+
warnings.warn(
|
|
497
|
+
"Streaming is not currently supported, streaming will be disabled.",
|
|
498
|
+
UserWarning,
|
|
499
|
+
)
|
|
500
|
+
anthropic_params["stream"] = False
|
|
501
|
+
|
|
502
|
+
# Note the Anthropic API supports "tool" for tool_choice but you must specify the tool name so we will ignore that here
|
|
503
|
+
# Dictionary, see options here: https://docs.anthropic.com/en/docs/build-with-claude/tool-use/overview#controlling-claudes-output
|
|
504
|
+
# type = auto, any, tool, none | name = the name of the tool if type=tool
|
|
505
|
+
anthropic_params["tool_choice"] = validate_parameter(params, "tool_choice", dict, True, None, None, None)
|
|
506
|
+
|
|
507
|
+
return anthropic_params
|
|
508
|
+
|
|
509
|
+
def _remove_none_params(self, params: dict[str, Any]) -> None:
|
|
510
|
+
"""Remove parameters with None values from the params dict.
|
|
511
|
+
|
|
512
|
+
Anthropic API doesn't accept None values, so we remove them before making requests.
|
|
513
|
+
This method modifies the params dict in-place.
|
|
514
|
+
|
|
515
|
+
Args:
|
|
516
|
+
params: Dictionary of API parameters
|
|
517
|
+
"""
|
|
518
|
+
keys_to_remove = [key for key, value in params.items() if value is None]
|
|
519
|
+
for key in keys_to_remove:
|
|
520
|
+
del params[key]
|
|
521
|
+
|
|
522
|
+
def _prepare_anthropic_params(
|
|
523
|
+
self, params: dict[str, Any], anthropic_messages: list[dict[str, Any]]
|
|
524
|
+
) -> dict[str, Any]:
|
|
525
|
+
"""Prepare parameters for Anthropic API call.
|
|
526
|
+
|
|
527
|
+
Consolidates common parameter preparation logic used across all create methods:
|
|
528
|
+
- Loads base configuration
|
|
529
|
+
- Converts tools format if needed
|
|
530
|
+
- Assigns messages, system, and tools
|
|
531
|
+
- Removes None values
|
|
532
|
+
|
|
533
|
+
Args:
|
|
534
|
+
params: Original request parameters
|
|
535
|
+
anthropic_messages: Converted messages in Anthropic format
|
|
536
|
+
|
|
537
|
+
Returns:
|
|
538
|
+
Dictionary of Anthropic API parameters ready for use
|
|
539
|
+
"""
|
|
540
|
+
# Load base configuration
|
|
541
|
+
anthropic_params = self.load_config(params)
|
|
542
|
+
|
|
543
|
+
# Convert tools to functions if needed (make a copy to avoid modifying original)
|
|
544
|
+
params_copy = params.copy()
|
|
545
|
+
if "functions" in params_copy:
|
|
546
|
+
tools_configs = params_copy.pop("functions")
|
|
547
|
+
tools_configs = [self.openai_func_to_anthropic(tool) for tool in tools_configs]
|
|
548
|
+
params_copy["tools"] = tools_configs
|
|
549
|
+
|
|
550
|
+
# Assign messages and optional parameters
|
|
551
|
+
anthropic_params["messages"] = anthropic_messages
|
|
552
|
+
if "system" in params_copy:
|
|
553
|
+
anthropic_params["system"] = params_copy["system"]
|
|
554
|
+
if "tools" in params_copy:
|
|
555
|
+
anthropic_params["tools"] = params_copy["tools"]
|
|
556
|
+
|
|
557
|
+
# Remove None values
|
|
558
|
+
self._remove_none_params(anthropic_params)
|
|
559
|
+
|
|
560
|
+
return anthropic_params
|
|
561
|
+
|
|
562
|
+
def _process_response_content(
|
|
563
|
+
self, response: Message, is_native_structured_output: bool = False
|
|
564
|
+
) -> tuple[str, list[ChatCompletionMessageToolCall] | None, str]:
|
|
565
|
+
"""Process Anthropic response content into OpenAI-compatible format.
|
|
566
|
+
|
|
567
|
+
Extracts tool calls, text content, and determines finish reason from the response.
|
|
568
|
+
Handles both standard and native structured output responses.
|
|
569
|
+
|
|
570
|
+
Args:
|
|
571
|
+
response: Anthropic Message response object
|
|
572
|
+
is_native_structured_output: Whether this is a native structured output response
|
|
573
|
+
|
|
574
|
+
Returns:
|
|
575
|
+
Tuple of (message_text, tool_calls, finish_reason)
|
|
576
|
+
"""
|
|
577
|
+
tool_calls: list[ChatCompletionMessageToolCall] = []
|
|
578
|
+
message_text = ""
|
|
579
|
+
finish_reason = "stop"
|
|
580
|
+
|
|
581
|
+
if response is None:
|
|
582
|
+
return message_text, None, finish_reason
|
|
583
|
+
|
|
584
|
+
# Determine finish reason
|
|
585
|
+
if response.stop_reason == "tool_use":
|
|
586
|
+
finish_reason = "tool_calls"
|
|
587
|
+
|
|
588
|
+
# Process all content blocks
|
|
589
|
+
thinking_content = ""
|
|
590
|
+
text_content = ""
|
|
591
|
+
|
|
592
|
+
for content in response.content:
|
|
593
|
+
# Extract tool calls (handles both ToolUseBlock and BetaToolUseBlock)
|
|
594
|
+
if _is_tool_use_block(content):
|
|
595
|
+
tool_calls.append(
|
|
596
|
+
ChatCompletionMessageToolCall(
|
|
597
|
+
id=content.id,
|
|
598
|
+
function={"name": content.name, "arguments": json.dumps(content.input)},
|
|
599
|
+
type="function",
|
|
600
|
+
)
|
|
601
|
+
)
|
|
602
|
+
# Extract thinking content (extended thinking feature)
|
|
603
|
+
elif _is_thinking_block(content):
|
|
604
|
+
if thinking_content:
|
|
605
|
+
thinking_content += "\n\n"
|
|
606
|
+
thinking_content += content.thinking
|
|
607
|
+
# Extract text content (handles both TextBlock and BetaTextBlock)
|
|
608
|
+
elif _is_text_block(content):
|
|
609
|
+
# For native structured output, prefer parsed_output from parse() if available
|
|
610
|
+
# Otherwise use the text content from the BetaTextBlock (from create() with dict schema)
|
|
611
|
+
if (
|
|
612
|
+
is_native_structured_output
|
|
613
|
+
and hasattr(response, "parsed_output")
|
|
614
|
+
and response.parsed_output is not None
|
|
615
|
+
):
|
|
616
|
+
parsed_response = response.parsed_output
|
|
617
|
+
text_content = (
|
|
618
|
+
parsed_response.model_dump_json()
|
|
619
|
+
if hasattr(parsed_response, "model_dump_json")
|
|
620
|
+
else str(parsed_response)
|
|
621
|
+
)
|
|
622
|
+
else:
|
|
623
|
+
# Use text content from BetaTextBlock (when using create() with dict schema)
|
|
624
|
+
# or regular TextBlock (non-SO responses)
|
|
625
|
+
if text_content:
|
|
626
|
+
text_content += "\n\n"
|
|
627
|
+
text_content += content.text
|
|
628
|
+
|
|
629
|
+
# Combine thinking and text content
|
|
630
|
+
if thinking_content and text_content:
|
|
631
|
+
message_text = f"[Thinking]\n{thinking_content}\n\n{text_content}"
|
|
632
|
+
elif thinking_content:
|
|
633
|
+
message_text = f"[Thinking]\n{thinking_content}"
|
|
634
|
+
elif text_content:
|
|
635
|
+
message_text = text_content
|
|
636
|
+
|
|
637
|
+
# Fallback: If using native SO parse() and no text was found in content blocks,
|
|
638
|
+
# extract from parsed_output directly (if it's not None)
|
|
639
|
+
if (
|
|
640
|
+
not message_text
|
|
641
|
+
and is_native_structured_output
|
|
642
|
+
and hasattr(response, "parsed_output")
|
|
643
|
+
and response.parsed_output is not None
|
|
644
|
+
):
|
|
645
|
+
parsed_response = response.parsed_output
|
|
646
|
+
message_text = (
|
|
647
|
+
parsed_response.model_dump_json()
|
|
648
|
+
if hasattr(parsed_response, "model_dump_json")
|
|
649
|
+
else str(parsed_response)
|
|
650
|
+
)
|
|
651
|
+
|
|
652
|
+
return message_text, tool_calls if tool_calls else None, finish_reason
|
|
653
|
+
|
|
654
|
+
def _log_structured_output_fallback(
|
|
655
|
+
self,
|
|
656
|
+
exception: Exception,
|
|
657
|
+
model: str | None,
|
|
658
|
+
response_format: Any,
|
|
659
|
+
params: dict[str, Any],
|
|
660
|
+
) -> None:
|
|
661
|
+
"""Log detailed error information when native structured output fails and we fallback to JSON Mode.
|
|
662
|
+
|
|
663
|
+
Consolidates error logging logic used in the create() method when native structured
|
|
664
|
+
output encounters errors and needs to fall back to JSON Mode.
|
|
665
|
+
|
|
666
|
+
Args:
|
|
667
|
+
exception: The exception that triggered the fallback
|
|
668
|
+
model: Model name/identifier
|
|
669
|
+
response_format: Response format specification (Pydantic model or dict)
|
|
670
|
+
params: Original request parameters
|
|
671
|
+
"""
|
|
672
|
+
# Build error details dictionary
|
|
673
|
+
error_details = {
|
|
674
|
+
"model": model,
|
|
675
|
+
"response_format": str(
|
|
676
|
+
type(response_format).__name__ if isinstance(response_format, type) else type(response_format)
|
|
677
|
+
),
|
|
678
|
+
"error_type": type(exception).__name__,
|
|
679
|
+
"error_message": str(exception),
|
|
680
|
+
}
|
|
681
|
+
|
|
682
|
+
# Add BadRequestError-specific details if available
|
|
683
|
+
if isinstance(exception, BadRequestError):
|
|
684
|
+
if hasattr(exception, "status_code"):
|
|
685
|
+
error_details["status_code"] = exception.status_code
|
|
686
|
+
if hasattr(exception, "response"):
|
|
687
|
+
error_details["response_body"] = str(
|
|
688
|
+
exception.response.text if hasattr(exception.response, "text") else exception.response
|
|
689
|
+
)
|
|
690
|
+
if hasattr(exception, "body"):
|
|
691
|
+
error_details["error_body"] = str(exception.body)
|
|
692
|
+
|
|
693
|
+
# Log sanitized params (remove sensitive data like API keys, message content)
|
|
694
|
+
sanitized_params = {
|
|
695
|
+
"model": params.get("model"),
|
|
696
|
+
"max_tokens": params.get("max_tokens"),
|
|
697
|
+
"temperature": params.get("temperature"),
|
|
698
|
+
"has_tools": "tools" in params,
|
|
699
|
+
"num_messages": len(params.get("messages", [])),
|
|
700
|
+
}
|
|
701
|
+
error_details["params"] = sanitized_params
|
|
702
|
+
|
|
703
|
+
# Log warning with full error context
|
|
704
|
+
logger.warning(
|
|
705
|
+
f"Native structured output failed for {model}. Error: {error_details}. Falling back to JSON Mode."
|
|
706
|
+
)
|
|
707
|
+
|
|
708
|
+
def cost(self, response) -> float:
|
|
709
|
+
"""Calculate the cost of the completion using the Anthropic pricing."""
|
|
710
|
+
return response.cost
|
|
711
|
+
|
|
712
|
+
@property
|
|
713
|
+
def api_key(self):
|
|
714
|
+
return self._api_key
|
|
715
|
+
|
|
716
|
+
@property
|
|
717
|
+
def aws_access_key(self):
|
|
718
|
+
return self._aws_access_key
|
|
719
|
+
|
|
720
|
+
@property
|
|
721
|
+
def aws_secret_key(self):
|
|
722
|
+
return self._aws_secret_key
|
|
723
|
+
|
|
724
|
+
@property
|
|
725
|
+
def aws_session_token(self):
|
|
726
|
+
return self._aws_session_token
|
|
727
|
+
|
|
728
|
+
@property
|
|
729
|
+
def aws_region(self):
|
|
730
|
+
return self._aws_region
|
|
731
|
+
|
|
732
|
+
@property
|
|
733
|
+
def gcp_project_id(self):
|
|
734
|
+
return self._gcp_project_id
|
|
735
|
+
|
|
736
|
+
@property
|
|
737
|
+
def gcp_region(self):
|
|
738
|
+
return self._gcp_region
|
|
739
|
+
|
|
740
|
+
@property
|
|
741
|
+
def gcp_auth_token(self):
|
|
742
|
+
return self._gcp_auth_token
|
|
743
|
+
|
|
744
|
+
def create(self, params: dict[str, Any]) -> ChatCompletion:
|
|
745
|
+
"""Creates a completion using the Anthropic API.
|
|
746
|
+
|
|
747
|
+
Automatically selects the best structured output method:
|
|
748
|
+
- Native structured outputs for Claude Sonnet 4.5+ (guaranteed schema compliance)
|
|
749
|
+
- JSON Mode for older models (prompt-based with <json_response> tags)
|
|
750
|
+
- Standard completion for requests without response_format
|
|
751
|
+
|
|
752
|
+
Args:
|
|
753
|
+
params: Request parameters including model, messages, and optional response_format
|
|
754
|
+
|
|
755
|
+
Returns:
|
|
756
|
+
ChatCompletion object compatible with OpenAI format
|
|
757
|
+
"""
|
|
758
|
+
model = params.get("model")
|
|
759
|
+
response_format = params.get("response_format") or self._response_format
|
|
760
|
+
|
|
761
|
+
# Route to appropriate implementation based on model and response_format
|
|
762
|
+
if response_format:
|
|
763
|
+
self._response_format = response_format
|
|
764
|
+
params["response_format"] = response_format # Ensure response_format is in params for methods
|
|
765
|
+
|
|
766
|
+
# Try native structured outputs if model supports it
|
|
767
|
+
if supports_native_structured_outputs(model) and has_beta_messages_api():
|
|
768
|
+
try:
|
|
769
|
+
return self._create_with_native_structured_output(params)
|
|
770
|
+
except (BadRequestError, AttributeError, ValueError) as e:
|
|
771
|
+
# Fallback to JSON Mode if native API not supported or schema invalid
|
|
772
|
+
# BadRequestError: Model doesn't support output_format
|
|
773
|
+
# AttributeError: SDK doesn't have beta API
|
|
774
|
+
# ValueError: Invalid schema format
|
|
775
|
+
self._log_structured_output_fallback(e, model, response_format, params)
|
|
776
|
+
return self._create_with_json_mode(params)
|
|
777
|
+
else:
|
|
778
|
+
# Use JSON Mode for older models or when beta API unavailable
|
|
779
|
+
return self._create_with_json_mode(params)
|
|
780
|
+
else:
|
|
781
|
+
# Standard completion without structured outputs
|
|
782
|
+
return self._create_standard(params)
|
|
783
|
+
|
|
784
|
+
def _create_standard(self, params: dict[str, Any]) -> ChatCompletion:
|
|
785
|
+
"""Create a standard completion without structured outputs."""
|
|
786
|
+
# Convert tools to functions format if needed
|
|
787
|
+
if "tools" in params:
|
|
788
|
+
converted_functions = self.convert_tools_to_functions(params["tools"])
|
|
789
|
+
params["functions"] = params.get("functions", []) + converted_functions
|
|
790
|
+
|
|
791
|
+
# Convert AG2 messages to Anthropic messages
|
|
792
|
+
anthropic_messages = oai_messages_to_anthropic_messages(params)
|
|
793
|
+
|
|
794
|
+
# Prepare Anthropic API parameters using helper (handles tool conversion, None removal, etc.)
|
|
795
|
+
anthropic_params = self._prepare_anthropic_params(params, anthropic_messages)
|
|
796
|
+
|
|
797
|
+
# Check if any tools use strict mode (requires beta API)
|
|
798
|
+
has_strict_tools = any(tool.get("strict") for tool in anthropic_params.get("tools", []))
|
|
799
|
+
|
|
800
|
+
if has_strict_tools:
|
|
801
|
+
# Validate SDK version supports structured outputs beta
|
|
802
|
+
validate_structured_outputs_version()
|
|
803
|
+
# Use beta API for strict tools
|
|
804
|
+
anthropic_params["betas"] = ["structured-outputs-2025-11-13"]
|
|
805
|
+
response = self._client.beta.messages.create(**anthropic_params)
|
|
806
|
+
else:
|
|
807
|
+
# Standard API for legacy tools
|
|
808
|
+
response = self._client.messages.create(**anthropic_params)
|
|
809
|
+
|
|
810
|
+
# Process response content using helper (extracts tool calls, text, finish reason)
|
|
811
|
+
message_text, tool_calls, anthropic_finish = self._process_response_content(response)
|
|
812
|
+
|
|
813
|
+
# Build and return ChatCompletion
|
|
814
|
+
return self._build_chat_completion(response, message_text, tool_calls, anthropic_finish, anthropic_params)
|
|
815
|
+
|
|
816
|
+
def _create_with_native_structured_output(self, params: dict[str, Any]) -> ChatCompletion:
|
|
817
|
+
"""Create completion using native structured outputs (beta API).
|
|
818
|
+
|
|
819
|
+
This method uses Anthropic's beta structured outputs feature for guaranteed
|
|
820
|
+
schema compliance via constrained decoding.
|
|
821
|
+
|
|
822
|
+
Args:
|
|
823
|
+
params: Request parameters
|
|
824
|
+
|
|
825
|
+
Returns:
|
|
826
|
+
ChatCompletion with structured JSON output
|
|
827
|
+
|
|
828
|
+
Raises:
|
|
829
|
+
AttributeError: If SDK doesn't support beta API
|
|
830
|
+
Exception: If native structured output fails
|
|
831
|
+
"""
|
|
832
|
+
# Check if Anthropic's transform_schema is available
|
|
833
|
+
if transform_schema is None:
|
|
834
|
+
raise ImportError("Anthropic transform_schema not available. Please upgrade to anthropic>=0.74.1")
|
|
835
|
+
|
|
836
|
+
# Get schema from response_format and transform it using Anthropic's function
|
|
837
|
+
if isinstance(self._response_format, type) and issubclass(self._response_format, BaseModel):
|
|
838
|
+
# For Pydantic models, use Anthropic's transform_schema directly
|
|
839
|
+
transformed_schema = transform_schema(self._response_format)
|
|
840
|
+
elif isinstance(self._response_format, dict):
|
|
841
|
+
# For dict schemas, use as-is (already in correct format)
|
|
842
|
+
schema = self._response_format
|
|
843
|
+
# Still apply our transformation for additionalProperties
|
|
844
|
+
transformed_schema = transform_schema_for_anthropic(schema)
|
|
845
|
+
else:
|
|
846
|
+
raise ValueError(f"Invalid response format: {self._response_format}")
|
|
847
|
+
|
|
848
|
+
# Convert AG2 messages to Anthropic messages
|
|
849
|
+
anthropic_messages = oai_messages_to_anthropic_messages(params)
|
|
850
|
+
|
|
851
|
+
# Prepare Anthropic API parameters using helper
|
|
852
|
+
anthropic_params = self._prepare_anthropic_params(params, anthropic_messages)
|
|
853
|
+
|
|
854
|
+
# Validate SDK version supports structured outputs beta
|
|
855
|
+
validate_structured_outputs_version()
|
|
856
|
+
|
|
857
|
+
# Add native structured output parameters
|
|
858
|
+
anthropic_params["betas"] = ["structured-outputs-2025-11-13"]
|
|
859
|
+
|
|
860
|
+
# Use beta API
|
|
861
|
+
if not hasattr(self._client, "beta"):
|
|
862
|
+
raise AttributeError(
|
|
863
|
+
"Anthropic SDK does not support beta.messages API. Please upgrade to anthropic>=0.39.0"
|
|
864
|
+
)
|
|
865
|
+
|
|
866
|
+
# When both tools and structured output are configured, must use create() (not parse())
|
|
867
|
+
# parse() doesn't support tools, so we convert Pydantic models to dict schemas
|
|
868
|
+
has_tools = "tools" in anthropic_params and anthropic_params["tools"]
|
|
869
|
+
|
|
870
|
+
if has_tools or isinstance(self._response_format, dict):
|
|
871
|
+
# Use create() with output_format for:
|
|
872
|
+
# 1. Dict schemas (always)
|
|
873
|
+
# 2. Pydantic models when tools are present (parse() doesn't support tools)
|
|
874
|
+
anthropic_params["output_format"] = {
|
|
875
|
+
"type": "json_schema",
|
|
876
|
+
"schema": transformed_schema,
|
|
877
|
+
}
|
|
878
|
+
response = self._client.beta.messages.create(**anthropic_params)
|
|
879
|
+
else:
|
|
880
|
+
# Pydantic model without tools - use parse() for automatic validation
|
|
881
|
+
# parse() provides parsed_output attribute for direct model access
|
|
882
|
+
anthropic_params["output_format"] = self._response_format
|
|
883
|
+
response = self._client.beta.messages.parse(**anthropic_params)
|
|
884
|
+
|
|
885
|
+
# Process response content using helper (extracts tool calls, text, finish reason)
|
|
886
|
+
# Pass is_native_structured_output=True to handle parsed_output correctly
|
|
887
|
+
message_text, tool_calls, anthropic_finish = self._process_response_content(
|
|
888
|
+
response, is_native_structured_output=True
|
|
889
|
+
)
|
|
890
|
+
|
|
891
|
+
# Build and return ChatCompletion
|
|
892
|
+
return self._build_chat_completion(response, message_text, tool_calls, anthropic_finish, anthropic_params)
|
|
893
|
+
|
|
894
|
+
def _create_with_json_mode(self, params: dict[str, Any]) -> ChatCompletion:
|
|
895
|
+
"""Create completion using legacy JSON Mode with <json_response> tags.
|
|
896
|
+
|
|
897
|
+
This method uses prompt-based structured outputs for older Claude models
|
|
898
|
+
that don't support native structured outputs.
|
|
899
|
+
|
|
900
|
+
Args:
|
|
901
|
+
params: Request parameters
|
|
902
|
+
|
|
903
|
+
Returns:
|
|
904
|
+
ChatCompletion with JSON output extracted from tags
|
|
905
|
+
"""
|
|
906
|
+
# Convert tools to functions format if needed
|
|
907
|
+
if "tools" in params:
|
|
908
|
+
converted_functions = self.convert_tools_to_functions(params["tools"])
|
|
909
|
+
params["functions"] = params.get("functions", []) + converted_functions
|
|
910
|
+
|
|
911
|
+
# Add response format instructions to system message before message conversion
|
|
912
|
+
self._add_response_format_to_system(params)
|
|
913
|
+
|
|
914
|
+
# Convert AG2 messages to Anthropic messages
|
|
915
|
+
anthropic_messages = oai_messages_to_anthropic_messages(params)
|
|
916
|
+
|
|
917
|
+
# Prepare Anthropic API parameters using helper
|
|
918
|
+
anthropic_params = self._prepare_anthropic_params(params, anthropic_messages)
|
|
919
|
+
|
|
920
|
+
# Call Anthropic API
|
|
921
|
+
response = self._client.messages.create(**anthropic_params)
|
|
922
|
+
|
|
923
|
+
# Extract JSON from <json_response> tags
|
|
924
|
+
parsed_response = self._extract_json_response(response)
|
|
925
|
+
# Keep as JSON - FormatterProtocol formatting will be applied in message_retrieval()
|
|
926
|
+
message_text = (
|
|
927
|
+
parsed_response.model_dump_json() if hasattr(parsed_response, "model_dump_json") else str(parsed_response)
|
|
928
|
+
)
|
|
929
|
+
|
|
930
|
+
# Build and return ChatCompletion
|
|
931
|
+
return self._build_chat_completion(
|
|
932
|
+
response, message_text, tool_calls=None, finish_reason="stop", anthropic_params=anthropic_params
|
|
933
|
+
)
|
|
934
|
+
|
|
935
|
+
def _build_chat_completion(
|
|
936
|
+
self,
|
|
937
|
+
response: Message,
|
|
938
|
+
message_text: str,
|
|
939
|
+
tool_calls: list[ChatCompletionMessageToolCall] | None,
|
|
940
|
+
finish_reason: str,
|
|
941
|
+
anthropic_params: dict[str, Any],
|
|
942
|
+
) -> ChatCompletion:
|
|
943
|
+
"""Build OpenAI-compatible ChatCompletion from Anthropic response.
|
|
944
|
+
|
|
945
|
+
Args:
|
|
946
|
+
response: Anthropic Message response
|
|
947
|
+
message_text: Processed message content
|
|
948
|
+
tool_calls: List of tool calls if any
|
|
949
|
+
finish_reason: Completion finish reason
|
|
950
|
+
anthropic_params: Original request parameters
|
|
951
|
+
|
|
952
|
+
Returns:
|
|
953
|
+
ChatCompletion object
|
|
954
|
+
"""
|
|
955
|
+
# Calculate token usage
|
|
956
|
+
prompt_tokens = response.usage.input_tokens
|
|
957
|
+
completion_tokens = response.usage.output_tokens
|
|
958
|
+
|
|
959
|
+
# Build message
|
|
960
|
+
message = ChatCompletionMessage(
|
|
961
|
+
role="assistant",
|
|
962
|
+
content=message_text,
|
|
963
|
+
function_call=None,
|
|
964
|
+
tool_calls=tool_calls,
|
|
965
|
+
)
|
|
966
|
+
|
|
967
|
+
choices = [Choice(finish_reason=finish_reason, index=0, message=message)]
|
|
968
|
+
|
|
969
|
+
# Build and return ChatCompletion
|
|
970
|
+
return ChatCompletion(
|
|
971
|
+
id=response.id,
|
|
972
|
+
model=anthropic_params["model"],
|
|
973
|
+
created=int(time.time()),
|
|
974
|
+
object="chat.completion",
|
|
975
|
+
choices=choices,
|
|
976
|
+
usage=CompletionUsage(
|
|
977
|
+
prompt_tokens=prompt_tokens,
|
|
978
|
+
completion_tokens=completion_tokens,
|
|
979
|
+
total_tokens=prompt_tokens + completion_tokens,
|
|
980
|
+
),
|
|
981
|
+
cost=_calculate_cost(prompt_tokens, completion_tokens, anthropic_params["model"]),
|
|
982
|
+
)
|
|
983
|
+
|
|
984
|
+
def message_retrieval(self, response) -> list[str] | list[ChatCompletionMessage]:
|
|
985
|
+
"""Retrieve and return a list of strings or a list of Choice.Message from the response.
|
|
986
|
+
|
|
987
|
+
This method handles structured outputs with FormatterProtocol:
|
|
988
|
+
- If tool/function calls present: returns full message objects
|
|
989
|
+
- If structured output with format(): applies custom formatting
|
|
990
|
+
- Otherwise: returns content as-is
|
|
991
|
+
|
|
992
|
+
NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object,
|
|
993
|
+
since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used.
|
|
994
|
+
"""
|
|
995
|
+
choices = response.choices
|
|
996
|
+
|
|
997
|
+
def _format_content(content: str | list[dict[str, Any]] | None) -> str:
|
|
998
|
+
"""Format content using FormatterProtocol if available."""
|
|
999
|
+
normalized_content = content_str(content) # type: ignore [arg-type]
|
|
1000
|
+
# If response_format implements FormatterProtocol (has format() method), use it
|
|
1001
|
+
if isinstance(self._response_format, FormatterProtocol):
|
|
1002
|
+
try:
|
|
1003
|
+
return self._response_format.model_validate_json(normalized_content).format() # type: ignore [union-attr]
|
|
1004
|
+
except Exception:
|
|
1005
|
+
# If parsing fails (e.g., content is error message), return as-is
|
|
1006
|
+
return normalized_content
|
|
1007
|
+
else:
|
|
1008
|
+
return normalized_content
|
|
1009
|
+
|
|
1010
|
+
# Handle tool/function calls - return full message object
|
|
1011
|
+
if TOOL_ENABLED:
|
|
1012
|
+
return [ # type: ignore [return-value]
|
|
1013
|
+
(choice.message if choice.message.tool_calls is not None else _format_content(choice.message.content))
|
|
1014
|
+
for choice in choices
|
|
1015
|
+
]
|
|
1016
|
+
else:
|
|
1017
|
+
return [_format_content(choice.message.content) for choice in choices] # type: ignore [return-value]
|
|
1018
|
+
|
|
1019
|
+
@staticmethod
|
|
1020
|
+
def openai_func_to_anthropic(openai_func: dict) -> dict:
|
|
1021
|
+
res = openai_func.copy()
|
|
1022
|
+
res["input_schema"] = res.pop("parameters")
|
|
1023
|
+
|
|
1024
|
+
# Preserve strict field if present (for Anthropic structured outputs)
|
|
1025
|
+
# strict=True enables guaranteed schema validation for tool inputs
|
|
1026
|
+
if "strict" in openai_func:
|
|
1027
|
+
res["strict"] = openai_func["strict"]
|
|
1028
|
+
# Transform schema to add required additionalProperties: false for all objects
|
|
1029
|
+
# Anthropic requires this for strict tools
|
|
1030
|
+
res["input_schema"] = transform_schema_for_anthropic(res["input_schema"])
|
|
1031
|
+
|
|
1032
|
+
return res
|
|
1033
|
+
|
|
1034
|
+
@staticmethod
|
|
1035
|
+
def get_usage(response: ChatCompletion) -> dict:
|
|
1036
|
+
"""Get the usage of tokens and their cost information."""
|
|
1037
|
+
return {
|
|
1038
|
+
"prompt_tokens": response.usage.prompt_tokens if response.usage is not None else 0,
|
|
1039
|
+
"completion_tokens": response.usage.completion_tokens if response.usage is not None else 0,
|
|
1040
|
+
"total_tokens": response.usage.total_tokens if response.usage is not None else 0,
|
|
1041
|
+
"cost": response.cost if hasattr(response, "cost") else 0.0,
|
|
1042
|
+
"model": response.model,
|
|
1043
|
+
}
|
|
1044
|
+
|
|
1045
|
+
@staticmethod
|
|
1046
|
+
def convert_tools_to_functions(tools: list) -> list:
|
|
1047
|
+
"""Convert tool definitions into Anthropic-compatible functions,
|
|
1048
|
+
updating nested $ref paths in property schemas.
|
|
1049
|
+
|
|
1050
|
+
Args:
|
|
1051
|
+
tools (list): List of tool definitions.
|
|
1052
|
+
|
|
1053
|
+
Returns:
|
|
1054
|
+
list: List of functions with updated $ref paths.
|
|
1055
|
+
"""
|
|
1056
|
+
|
|
1057
|
+
def update_refs(obj, defs_keys, prop_name):
|
|
1058
|
+
"""Recursively update $ref values that start with "#/$defs/"."""
|
|
1059
|
+
if isinstance(obj, dict):
|
|
1060
|
+
for key, value in obj.items():
|
|
1061
|
+
if key == "$ref" and isinstance(value, str) and value.startswith("#/$defs/"):
|
|
1062
|
+
ref_key = value[len("#/$defs/") :]
|
|
1063
|
+
if ref_key in defs_keys:
|
|
1064
|
+
obj[key] = f"#/properties/{prop_name}/$defs/{ref_key}"
|
|
1065
|
+
else:
|
|
1066
|
+
update_refs(value, defs_keys, prop_name)
|
|
1067
|
+
elif isinstance(obj, list):
|
|
1068
|
+
for item in obj:
|
|
1069
|
+
update_refs(item, defs_keys, prop_name)
|
|
1070
|
+
|
|
1071
|
+
functions = []
|
|
1072
|
+
for tool in tools:
|
|
1073
|
+
if tool.get("type") == "function" and "function" in tool:
|
|
1074
|
+
function = tool["function"]
|
|
1075
|
+
parameters = function.get("parameters", {})
|
|
1076
|
+
properties = parameters.get("properties", {})
|
|
1077
|
+
for prop_name, prop_schema in properties.items():
|
|
1078
|
+
if "$defs" in prop_schema:
|
|
1079
|
+
defs_keys = set(prop_schema["$defs"].keys())
|
|
1080
|
+
update_refs(prop_schema, defs_keys, prop_name)
|
|
1081
|
+
functions.append(function)
|
|
1082
|
+
return functions
|
|
1083
|
+
|
|
1084
|
+
def _resolve_schema_refs(self, schema: dict[str, Any], defs: dict[str, Any]) -> dict[str, Any]:
|
|
1085
|
+
"""Recursively resolve $ref references in a JSON schema.
|
|
1086
|
+
|
|
1087
|
+
Args:
|
|
1088
|
+
schema: The schema to resolve
|
|
1089
|
+
defs: The definitions dict from $defs
|
|
1090
|
+
|
|
1091
|
+
Returns:
|
|
1092
|
+
Schema with all $ref references resolved inline
|
|
1093
|
+
"""
|
|
1094
|
+
if isinstance(schema, dict):
|
|
1095
|
+
if "$ref" in schema:
|
|
1096
|
+
# Extract the reference name (e.g., "#/$defs/Step" -> "Step")
|
|
1097
|
+
ref_name = schema["$ref"].split("/")[-1]
|
|
1098
|
+
# Replace with the actual definition
|
|
1099
|
+
return self._resolve_schema_refs(defs[ref_name].copy(), defs)
|
|
1100
|
+
else:
|
|
1101
|
+
# Recursively resolve all nested schemas
|
|
1102
|
+
return {k: self._resolve_schema_refs(v, defs) for k, v in schema.items()}
|
|
1103
|
+
elif isinstance(schema, list):
|
|
1104
|
+
return [self._resolve_schema_refs(item, defs) for item in schema]
|
|
1105
|
+
else:
|
|
1106
|
+
return schema
|
|
1107
|
+
|
|
1108
|
+
def _add_response_format_to_system(self, params: dict[str, Any]):
|
|
1109
|
+
"""Add prompt that will generate properly formatted JSON for structured outputs to system parameter.
|
|
1110
|
+
|
|
1111
|
+
Based on Anthropic's JSON Mode cookbook, we ask the LLM to put the JSON within <json_response> tags.
|
|
1112
|
+
|
|
1113
|
+
Args:
|
|
1114
|
+
params (dict): The client parameters
|
|
1115
|
+
"""
|
|
1116
|
+
# Get the schema of the Pydantic model
|
|
1117
|
+
if isinstance(self._response_format, dict):
|
|
1118
|
+
schema = self._response_format
|
|
1119
|
+
else:
|
|
1120
|
+
# Use mode='serialization' and ref_template='{model}' to get a flatter, more LLM-friendly schema
|
|
1121
|
+
schema = self._response_format.model_json_schema(mode="serialization", ref_template="{model}")
|
|
1122
|
+
|
|
1123
|
+
# Resolve $ref references for simpler schema
|
|
1124
|
+
if "$defs" in schema:
|
|
1125
|
+
defs = schema.pop("$defs")
|
|
1126
|
+
schema = self._resolve_schema_refs(schema, defs)
|
|
1127
|
+
|
|
1128
|
+
# Add instructions for JSON formatting
|
|
1129
|
+
# Generate an example based on the actual schema
|
|
1130
|
+
def generate_example(schema_dict: dict[str, Any]) -> dict[str, Any]:
|
|
1131
|
+
"""Generate example data from schema."""
|
|
1132
|
+
example = {}
|
|
1133
|
+
properties = schema_dict.get("properties", {})
|
|
1134
|
+
for prop_name, prop_schema in properties.items():
|
|
1135
|
+
prop_type = prop_schema.get("type", "string")
|
|
1136
|
+
if prop_type == "string":
|
|
1137
|
+
example[prop_name] = f"example {prop_name}"
|
|
1138
|
+
elif prop_type == "integer":
|
|
1139
|
+
example[prop_name] = 42
|
|
1140
|
+
elif prop_type == "number":
|
|
1141
|
+
example[prop_name] = 42.0
|
|
1142
|
+
elif prop_type == "boolean":
|
|
1143
|
+
example[prop_name] = True
|
|
1144
|
+
elif prop_type == "array":
|
|
1145
|
+
items_schema = prop_schema.get("items", {})
|
|
1146
|
+
items_type = items_schema.get("type", "string")
|
|
1147
|
+
if items_type == "string":
|
|
1148
|
+
example[prop_name] = ["item1", "item2"]
|
|
1149
|
+
elif items_type == "object":
|
|
1150
|
+
example[prop_name] = [generate_example(items_schema)]
|
|
1151
|
+
else:
|
|
1152
|
+
example[prop_name] = []
|
|
1153
|
+
elif prop_type == "object":
|
|
1154
|
+
example[prop_name] = generate_example(prop_schema)
|
|
1155
|
+
else:
|
|
1156
|
+
example[prop_name] = f"example {prop_name}"
|
|
1157
|
+
return example
|
|
1158
|
+
|
|
1159
|
+
example_data = generate_example(schema)
|
|
1160
|
+
example_json = json.dumps(example_data, indent=2)
|
|
1161
|
+
|
|
1162
|
+
format_content = f"""You must respond with a valid JSON object that matches this structure (do NOT return the schema itself):
|
|
1163
|
+
{json.dumps(schema, indent=2)}
|
|
1164
|
+
|
|
1165
|
+
IMPORTANT: Put your actual response data (not the schema) inside <json_response> tags.
|
|
1166
|
+
|
|
1167
|
+
Correct example format:
|
|
1168
|
+
<json_response>
|
|
1169
|
+
{example_json}
|
|
1170
|
+
</json_response>
|
|
1171
|
+
|
|
1172
|
+
WRONG: Do not return the schema definition itself.
|
|
1173
|
+
|
|
1174
|
+
Your JSON must:
|
|
1175
|
+
1. Match the schema structure above
|
|
1176
|
+
2. Contain actual data values, not schema descriptions
|
|
1177
|
+
3. Be valid, parseable JSON"""
|
|
1178
|
+
|
|
1179
|
+
# Add formatting to system message (create one if it doesn't exist)
|
|
1180
|
+
if "system" in params:
|
|
1181
|
+
params["system"] = params["system"] + "\n\n" + format_content
|
|
1182
|
+
else:
|
|
1183
|
+
params["system"] = format_content
|
|
1184
|
+
|
|
1185
|
+
def _extract_json_response(self, response: Message) -> Any:
|
|
1186
|
+
"""Extract and validate JSON response from the output for structured outputs.
|
|
1187
|
+
|
|
1188
|
+
Args:
|
|
1189
|
+
response (Message): The response from the API.
|
|
1190
|
+
|
|
1191
|
+
Returns:
|
|
1192
|
+
Any: The parsed JSON response.
|
|
1193
|
+
"""
|
|
1194
|
+
if not self._response_format:
|
|
1195
|
+
return response
|
|
1196
|
+
|
|
1197
|
+
# Extract content from response - check both thinking and text blocks
|
|
1198
|
+
content = ""
|
|
1199
|
+
if response.content:
|
|
1200
|
+
for block in response.content:
|
|
1201
|
+
if _is_thinking_block(block):
|
|
1202
|
+
content = block.thinking
|
|
1203
|
+
break
|
|
1204
|
+
elif _is_text_block(block):
|
|
1205
|
+
content = block.text
|
|
1206
|
+
break
|
|
1207
|
+
|
|
1208
|
+
# Try to extract JSON from tags first
|
|
1209
|
+
json_match = re.search(r"<json_response>(.*?)</json_response>", content, re.DOTALL)
|
|
1210
|
+
if json_match:
|
|
1211
|
+
json_str = json_match.group(1).strip()
|
|
1212
|
+
else:
|
|
1213
|
+
# Fallback to finding first JSON object
|
|
1214
|
+
json_start = content.find("{")
|
|
1215
|
+
json_end = content.rfind("}")
|
|
1216
|
+
if json_start == -1 or json_end == -1:
|
|
1217
|
+
raise ValueError("No valid JSON found in response for Structured Output.")
|
|
1218
|
+
json_str = content[json_start : json_end + 1]
|
|
1219
|
+
|
|
1220
|
+
try:
|
|
1221
|
+
# Parse JSON and validate against the Pydantic model if Pydantic model was provided
|
|
1222
|
+
json_data = json.loads(json_str)
|
|
1223
|
+
if isinstance(self._response_format, dict):
|
|
1224
|
+
return json_str
|
|
1225
|
+
else:
|
|
1226
|
+
return self._response_format.model_validate(json_data)
|
|
1227
|
+
|
|
1228
|
+
except Exception as e:
|
|
1229
|
+
raise ValueError(f"Failed to parse response as valid JSON matching the schema for Structured Output: {e!s}")
|
|
1230
|
+
|
|
1231
|
+
|
|
1232
|
+
def _format_json_response(response: Any) -> str:
|
|
1233
|
+
"""Formats the JSON response for structured outputs using the format method if it exists."""
|
|
1234
|
+
if isinstance(response, str):
|
|
1235
|
+
return response
|
|
1236
|
+
elif isinstance(response, FormatterProtocol):
|
|
1237
|
+
return response.format()
|
|
1238
|
+
else:
|
|
1239
|
+
return response.model_dump_json()
|
|
1240
|
+
|
|
1241
|
+
|
|
1242
|
+
def process_image_content(content_item: dict[str, Any]) -> dict[str, Any]:
|
|
1243
|
+
"""Process an OpenAI image content item into Claude format."""
|
|
1244
|
+
if content_item["type"] != "image_url":
|
|
1245
|
+
return content_item
|
|
1246
|
+
|
|
1247
|
+
url = content_item["image_url"]["url"]
|
|
1248
|
+
try:
|
|
1249
|
+
# Handle data URLs
|
|
1250
|
+
if url.startswith("data:"):
|
|
1251
|
+
data_url_pattern = r"data:image/([a-zA-Z]+);base64,(.+)"
|
|
1252
|
+
match = re.match(data_url_pattern, url)
|
|
1253
|
+
if match:
|
|
1254
|
+
media_type, base64_data = match.groups()
|
|
1255
|
+
return {
|
|
1256
|
+
"type": "image",
|
|
1257
|
+
"source": {"type": "base64", "media_type": f"image/{media_type}", "data": base64_data},
|
|
1258
|
+
}
|
|
1259
|
+
|
|
1260
|
+
else:
|
|
1261
|
+
print("Error processing image.")
|
|
1262
|
+
# Return original content if image processing fails
|
|
1263
|
+
return content_item
|
|
1264
|
+
|
|
1265
|
+
except Exception as e:
|
|
1266
|
+
print(f"Error processing image image: {e}")
|
|
1267
|
+
# Return original content if image processing fails
|
|
1268
|
+
return content_item
|
|
1269
|
+
|
|
1270
|
+
|
|
1271
|
+
def process_message_content(message: dict[str, Any]) -> str | list[dict[str, Any]]:
|
|
1272
|
+
"""Process message content, handling both string and list formats with images."""
|
|
1273
|
+
content = message.get("content", "")
|
|
1274
|
+
|
|
1275
|
+
# Handle empty content
|
|
1276
|
+
if content == "":
|
|
1277
|
+
return content
|
|
1278
|
+
|
|
1279
|
+
# If content is already a string, return as is
|
|
1280
|
+
if isinstance(content, str):
|
|
1281
|
+
return content
|
|
1282
|
+
|
|
1283
|
+
# Handle list content (mixed text and images)
|
|
1284
|
+
if isinstance(content, list):
|
|
1285
|
+
processed_content = []
|
|
1286
|
+
for item in content:
|
|
1287
|
+
if item["type"] == "text":
|
|
1288
|
+
processed_content.append({"type": "text", "text": item["text"]})
|
|
1289
|
+
elif item["type"] == "image_url":
|
|
1290
|
+
processed_content.append(process_image_content(item))
|
|
1291
|
+
return processed_content
|
|
1292
|
+
|
|
1293
|
+
return content
|
|
1294
|
+
|
|
1295
|
+
|
|
1296
|
+
def _extract_system_message(message: dict[str, Any], params: dict[str, Any]) -> None:
|
|
1297
|
+
"""Extract system message content and add to params['system'].
|
|
1298
|
+
|
|
1299
|
+
System messages are handled specially in Anthropic API - they're passed as a separate
|
|
1300
|
+
'system' parameter rather than in the messages list.
|
|
1301
|
+
|
|
1302
|
+
Args:
|
|
1303
|
+
message: Message dict with role='system'
|
|
1304
|
+
params: Params dict to update with system content (modified in place)
|
|
1305
|
+
"""
|
|
1306
|
+
content = process_message_content(message)
|
|
1307
|
+
if isinstance(content, list):
|
|
1308
|
+
# For system messages with images, concatenate only the text portions
|
|
1309
|
+
text_content = " ".join(item.get("text", "") for item in content if item.get("type") == "text")
|
|
1310
|
+
params["system"] = params.get("system", "") + (" " if "system" in params else "") + text_content
|
|
1311
|
+
else:
|
|
1312
|
+
params["system"] = params.get("system", "") + ("\n" if "system" in params else "") + content
|
|
1313
|
+
|
|
1314
|
+
|
|
1315
|
+
def _convert_tool_call_message(
|
|
1316
|
+
message: dict[str, Any],
|
|
1317
|
+
has_tools: bool,
|
|
1318
|
+
expected_role: str,
|
|
1319
|
+
user_continue_message: dict[str, str],
|
|
1320
|
+
processed_messages: list[dict[str, Any]],
|
|
1321
|
+
) -> tuple[int, int | None]:
|
|
1322
|
+
"""Convert OpenAI tool_calls format to Anthropic ToolUseBlock format.
|
|
1323
|
+
|
|
1324
|
+
Args:
|
|
1325
|
+
message: Message dict containing 'tool_calls'
|
|
1326
|
+
has_tools: Whether tools parameter is present in request
|
|
1327
|
+
expected_role: Expected role based on message alternation ("user" or "assistant")
|
|
1328
|
+
user_continue_message: Standard continue message for role alternation
|
|
1329
|
+
processed_messages: List to append converted messages to (modified in place)
|
|
1330
|
+
|
|
1331
|
+
Returns:
|
|
1332
|
+
Tuple of (tool_use_messages_count, last_tool_use_index)
|
|
1333
|
+
- tool_use_messages_count: Number of tool use messages added (0 or count)
|
|
1334
|
+
- last_tool_use_index: Index of last tool use message, or None if not using tools
|
|
1335
|
+
"""
|
|
1336
|
+
# Map the tool call options to Anthropic's ToolUseBlock
|
|
1337
|
+
tool_uses = []
|
|
1338
|
+
tool_names = []
|
|
1339
|
+
tool_use_count = 0
|
|
1340
|
+
|
|
1341
|
+
for tool_call in message["tool_calls"]:
|
|
1342
|
+
tool_uses.append(
|
|
1343
|
+
ToolUseBlock(
|
|
1344
|
+
type="tool_use",
|
|
1345
|
+
id=tool_call["id"],
|
|
1346
|
+
name=tool_call["function"]["name"],
|
|
1347
|
+
input=json.loads(tool_call["function"]["arguments"]),
|
|
1348
|
+
)
|
|
1349
|
+
)
|
|
1350
|
+
if has_tools:
|
|
1351
|
+
tool_use_count += 1
|
|
1352
|
+
tool_names.append(tool_call["function"]["name"])
|
|
1353
|
+
|
|
1354
|
+
# Ensure role alternation: if we expect user, insert user continue message
|
|
1355
|
+
if expected_role == "user":
|
|
1356
|
+
processed_messages.append(user_continue_message)
|
|
1357
|
+
|
|
1358
|
+
# Add tool use message (format depends on whether tools are enabled)
|
|
1359
|
+
if has_tools:
|
|
1360
|
+
processed_messages.append({"role": "assistant", "content": tool_uses})
|
|
1361
|
+
last_tool_use_index = len(processed_messages) - 1
|
|
1362
|
+
return tool_use_count, last_tool_use_index
|
|
1363
|
+
else:
|
|
1364
|
+
# Not using tools, so put in a plain text message
|
|
1365
|
+
processed_messages.append({
|
|
1366
|
+
"role": "assistant",
|
|
1367
|
+
"content": f"Some internal function(s) that could be used: [{', '.join(tool_names)}]",
|
|
1368
|
+
})
|
|
1369
|
+
return 0, None
|
|
1370
|
+
|
|
1371
|
+
|
|
1372
|
+
def _convert_tool_result_message(
|
|
1373
|
+
message: dict[str, Any],
|
|
1374
|
+
has_tools: bool,
|
|
1375
|
+
expected_role: str,
|
|
1376
|
+
assistant_continue_message: dict[str, str],
|
|
1377
|
+
processed_messages: list[dict[str, Any]],
|
|
1378
|
+
last_tool_result_index: int,
|
|
1379
|
+
) -> tuple[int, int]:
|
|
1380
|
+
"""Convert OpenAI tool result format to Anthropic tool_result format.
|
|
1381
|
+
|
|
1382
|
+
Args:
|
|
1383
|
+
message: Message dict containing 'tool_call_id'
|
|
1384
|
+
has_tools: Whether tools parameter is present in request
|
|
1385
|
+
expected_role: Expected role based on message alternation ("user" or "assistant")
|
|
1386
|
+
assistant_continue_message: Standard continue message for role alternation
|
|
1387
|
+
processed_messages: List to append converted messages to (modified in place)
|
|
1388
|
+
last_tool_result_index: Index of last tool result message (-1 if none)
|
|
1389
|
+
|
|
1390
|
+
Returns:
|
|
1391
|
+
Tuple of (tool_result_messages_count, updated_last_tool_result_index)
|
|
1392
|
+
- tool_result_messages_count: 1 if tool result added, 0 otherwise
|
|
1393
|
+
- updated_last_tool_result_index: New index of last tool result message
|
|
1394
|
+
"""
|
|
1395
|
+
if has_tools:
|
|
1396
|
+
# Map the tool usage call to tool_result for Anthropic
|
|
1397
|
+
tool_result = {
|
|
1398
|
+
"type": "tool_result",
|
|
1399
|
+
"tool_use_id": message["tool_call_id"],
|
|
1400
|
+
"content": message["content"],
|
|
1401
|
+
}
|
|
1402
|
+
|
|
1403
|
+
# If the previous message also had a tool_result, add it to that
|
|
1404
|
+
# Otherwise append a new message
|
|
1405
|
+
if last_tool_result_index == len(processed_messages) - 1:
|
|
1406
|
+
processed_messages[-1]["content"].append(tool_result)
|
|
1407
|
+
else:
|
|
1408
|
+
if expected_role == "assistant":
|
|
1409
|
+
# Insert an extra assistant message as we will append a user message
|
|
1410
|
+
processed_messages.append(assistant_continue_message)
|
|
1411
|
+
|
|
1412
|
+
processed_messages.append({"role": "user", "content": [tool_result]})
|
|
1413
|
+
last_tool_result_index = len(processed_messages) - 1
|
|
1414
|
+
|
|
1415
|
+
return 1, last_tool_result_index
|
|
1416
|
+
else:
|
|
1417
|
+
# Not using tools, so put in a plain text message
|
|
1418
|
+
processed_messages.append({
|
|
1419
|
+
"role": "user",
|
|
1420
|
+
"content": f"Running the function returned: {message['content']}",
|
|
1421
|
+
})
|
|
1422
|
+
return 0, last_tool_result_index
|
|
1423
|
+
|
|
1424
|
+
|
|
1425
|
+
@require_optional_import("anthropic", "anthropic")
|
|
1426
|
+
def oai_messages_to_anthropic_messages(params: dict[str, Any]) -> list[dict[str, Any]]:
|
|
1427
|
+
"""Convert messages from OAI format to Anthropic format.
|
|
1428
|
+
We correct for any specific role orders and types, etc.
|
|
1429
|
+
"""
|
|
1430
|
+
# Track whether we have tools passed in. If not, tool use / result messages should be converted to text messages.
|
|
1431
|
+
# Anthropic requires a tools parameter with the tools listed, if there are other messages with tool use or tool results.
|
|
1432
|
+
# This can occur when we don't need tool calling, such as for group chat speaker selection.
|
|
1433
|
+
has_tools = "tools" in params
|
|
1434
|
+
|
|
1435
|
+
# Convert messages to Anthropic compliant format
|
|
1436
|
+
processed_messages = []
|
|
1437
|
+
|
|
1438
|
+
# Used to interweave user messages to ensure user/assistant alternating
|
|
1439
|
+
user_continue_message = {"content": "Please continue.", "role": "user"}
|
|
1440
|
+
assistant_continue_message = {"content": "Please continue.", "role": "assistant"}
|
|
1441
|
+
|
|
1442
|
+
tool_use_messages = 0
|
|
1443
|
+
tool_result_messages = 0
|
|
1444
|
+
last_tool_use_index = -1
|
|
1445
|
+
last_tool_result_index = -1
|
|
1446
|
+
for message in params["messages"]:
|
|
1447
|
+
if message["role"] == "system":
|
|
1448
|
+
_extract_system_message(message, params)
|
|
1449
|
+
else:
|
|
1450
|
+
# New messages will be added here, manage role alternations
|
|
1451
|
+
expected_role = "user" if len(processed_messages) % 2 == 0 else "assistant"
|
|
1452
|
+
|
|
1453
|
+
if "tool_calls" in message:
|
|
1454
|
+
# Convert OpenAI tool_calls to Anthropic ToolUseBlock format
|
|
1455
|
+
count, index = _convert_tool_call_message(
|
|
1456
|
+
message, has_tools, expected_role, user_continue_message, processed_messages
|
|
1457
|
+
)
|
|
1458
|
+
tool_use_messages += count
|
|
1459
|
+
if index is not None:
|
|
1460
|
+
last_tool_use_index = index
|
|
1461
|
+
elif "tool_call_id" in message:
|
|
1462
|
+
# Convert OpenAI tool result to Anthropic tool_result format
|
|
1463
|
+
count, last_tool_result_index = _convert_tool_result_message(
|
|
1464
|
+
message,
|
|
1465
|
+
has_tools,
|
|
1466
|
+
expected_role,
|
|
1467
|
+
assistant_continue_message,
|
|
1468
|
+
processed_messages,
|
|
1469
|
+
last_tool_result_index,
|
|
1470
|
+
)
|
|
1471
|
+
tool_result_messages += count
|
|
1472
|
+
elif message["content"] == "":
|
|
1473
|
+
# Ignoring empty messages
|
|
1474
|
+
pass
|
|
1475
|
+
else:
|
|
1476
|
+
if expected_role != message["role"]:
|
|
1477
|
+
# Inserting the alternating continue message
|
|
1478
|
+
processed_messages.append(
|
|
1479
|
+
user_continue_message if expected_role == "user" else assistant_continue_message
|
|
1480
|
+
)
|
|
1481
|
+
# Process messages for images
|
|
1482
|
+
processed_content = process_message_content(message)
|
|
1483
|
+
processed_message = message.copy()
|
|
1484
|
+
processed_message["content"] = processed_content
|
|
1485
|
+
processed_messages.append(processed_message)
|
|
1486
|
+
|
|
1487
|
+
# We'll replace the last tool_use if there's no tool_result (occurs if we finish the conversation before running the function)
|
|
1488
|
+
if has_tools and tool_use_messages != tool_result_messages:
|
|
1489
|
+
processed_messages[last_tool_use_index] = assistant_continue_message
|
|
1490
|
+
|
|
1491
|
+
# name is not a valid field on messages
|
|
1492
|
+
for message in processed_messages:
|
|
1493
|
+
if "name" in message:
|
|
1494
|
+
message.pop("name", None)
|
|
1495
|
+
|
|
1496
|
+
# Note: When using reflection_with_llm we may end up with an "assistant" message as the last message and that may cause a blank response
|
|
1497
|
+
# So, if the last role is not user, add a 'user' continue message at the end
|
|
1498
|
+
if processed_messages[-1]["role"] != "user":
|
|
1499
|
+
processed_messages.append(user_continue_message)
|
|
1500
|
+
|
|
1501
|
+
return processed_messages
|
|
1502
|
+
|
|
1503
|
+
|
|
1504
|
+
def _calculate_cost(input_tokens: int, output_tokens: int, model: str) -> float:
|
|
1505
|
+
"""Calculate the cost of the completion using the Anthropic pricing."""
|
|
1506
|
+
total = 0.0
|
|
1507
|
+
|
|
1508
|
+
if model in ANTHROPIC_PRICING_1k:
|
|
1509
|
+
input_cost_per_1k, output_cost_per_1k = ANTHROPIC_PRICING_1k[model]
|
|
1510
|
+
input_cost = (input_tokens / 1000) * input_cost_per_1k
|
|
1511
|
+
output_cost = (output_tokens / 1000) * output_cost_per_1k
|
|
1512
|
+
total = input_cost + output_cost
|
|
1513
|
+
else:
|
|
1514
|
+
warnings.warn(f"Cost calculation not available for model {model}", UserWarning)
|
|
1515
|
+
|
|
1516
|
+
return total
|