aek-auto-mlbuilder 0.7.0__py3-none-any.whl → 0.8.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- aek_auto_mlbuilder/__init__.py +2 -1
- aek_auto_mlbuilder/kmeans.py +41 -0
- aek_auto_mlbuilder/knn.py +1 -1
- aek_auto_mlbuilder/naive_bayes.py +1 -1
- aek_auto_mlbuilder/random_forest.py +1 -1
- aek_auto_mlbuilder/svm.py +1 -1
- {aek_auto_mlbuilder-0.7.0.dist-info → aek_auto_mlbuilder-0.8.1.dist-info}/METADATA +1 -1
- aek_auto_mlbuilder-0.8.1.dist-info/RECORD +16 -0
- aek_auto_mlbuilder-0.7.0.dist-info/RECORD +0 -15
- {aek_auto_mlbuilder-0.7.0.dist-info → aek_auto_mlbuilder-0.8.1.dist-info}/WHEEL +0 -0
- {aek_auto_mlbuilder-0.7.0.dist-info → aek_auto_mlbuilder-0.8.1.dist-info}/licenses/LICENSE +0 -0
- {aek_auto_mlbuilder-0.7.0.dist-info → aek_auto_mlbuilder-0.8.1.dist-info}/top_level.txt +0 -0
aek_auto_mlbuilder/__init__.py
CHANGED
@@ -0,0 +1,41 @@
|
|
1
|
+
from sklearn.cluster import KMeans
|
2
|
+
from .base import BaseModel
|
3
|
+
|
4
|
+
|
5
|
+
class KMeansModel(BaseModel):
|
6
|
+
"""
|
7
|
+
K-Means clustering model (unsupervised learning)
|
8
|
+
Brute force method has been using
|
9
|
+
"""
|
10
|
+
def __init__(self, param_grid=None):
|
11
|
+
super().__init__()
|
12
|
+
self.param_grid = param_grid or {
|
13
|
+
"n_clusters": [2, 3, 4, 5, 6],
|
14
|
+
"init": ["k-means++", "random"],
|
15
|
+
"n_init": [10, 20],
|
16
|
+
"max_iter": [300, 500]
|
17
|
+
}
|
18
|
+
|
19
|
+
def train(self, X):
|
20
|
+
best_score = -float("inf")
|
21
|
+
best_model = None
|
22
|
+
|
23
|
+
for n_clusters in self.param_grid["n_clusters"]:
|
24
|
+
for init in self.param_grid["init"]:
|
25
|
+
for n_init in self.param_grid["n_init"]:
|
26
|
+
for max_iter in self.param_grid["max_iter"]:
|
27
|
+
model = KMeans(
|
28
|
+
n_clusters=n_clusters,
|
29
|
+
init=init,
|
30
|
+
n_init=n_init,
|
31
|
+
max_iter=max_iter,
|
32
|
+
random_state=42
|
33
|
+
)
|
34
|
+
model.fit(X)
|
35
|
+
score = -model.inertia_
|
36
|
+
if score > best_score:
|
37
|
+
best_score = score
|
38
|
+
best_model = model
|
39
|
+
self.best_model = best_model
|
40
|
+
self.best_score = best_score
|
41
|
+
return self.best_model
|
aek_auto_mlbuilder/knn.py
CHANGED
@@ -8,7 +8,7 @@ class KNNModel(BaseModel):
|
|
8
8
|
"""
|
9
9
|
KNN model for classification for classification or regression
|
10
10
|
Use "task" for "classification" or "regression"
|
11
|
-
Brute-force search
|
11
|
+
Brute-force search has been using
|
12
12
|
"""
|
13
13
|
def __init__(self, task="classification", param_grid=None):
|
14
14
|
super().__init__()
|
@@ -6,7 +6,7 @@ class NaiveBayesModel(BaseModel):
|
|
6
6
|
"""
|
7
7
|
Naive bayes model supporting gaussianNB, multinomialNB, bernoulliNB
|
8
8
|
use 'nb_type' param to specify the variant: gaussian, multinomial, bernoulli
|
9
|
-
brute force hyperparameter search
|
9
|
+
brute force hyperparameter search has been using
|
10
10
|
"""
|
11
11
|
def __init__(self, nb_type="gaussian", param_grid=None):
|
12
12
|
super().__init__()
|
@@ -5,7 +5,7 @@ class RandomForestModel(BaseModel):
|
|
5
5
|
"""
|
6
6
|
Random Forest model for classification or regression
|
7
7
|
Use task either "classification" or "regression"
|
8
|
-
brute force method
|
8
|
+
brute force method has been using
|
9
9
|
"""
|
10
10
|
def __init__(self, task="classification", param_grid=None):
|
11
11
|
super().__init__()
|
aek_auto_mlbuilder/svm.py
CHANGED
@@ -8,7 +8,7 @@ class SVMModel(BaseModel):
|
|
8
8
|
"""
|
9
9
|
support vector machine for classification and regression
|
10
10
|
use task parameter for "regression" or "classification"
|
11
|
-
brute force
|
11
|
+
brute force has been using
|
12
12
|
"""
|
13
13
|
def __init__(self, task="classification", param_grid=None):
|
14
14
|
super().__init__()
|
@@ -0,0 +1,16 @@
|
|
1
|
+
aek_auto_mlbuilder/__init__.py,sha256=1fgkK5aJ9Y-ig87L4puE4vGEjjy8oPdrZTeGo3GuI7Q,371
|
2
|
+
aek_auto_mlbuilder/base.py,sha256=GgMdAoceRjwz3i9rVQ0RAjvn5ZdRS-sAkLWjymbE8s0,385
|
3
|
+
aek_auto_mlbuilder/decision_tree.py,sha256=OImOHaREz2jWcANXVC6VKcatFJfzrtyCHJKXNA5-hoI,1606
|
4
|
+
aek_auto_mlbuilder/kmeans.py,sha256=GM1sBV0HQoTjXSVob8v9-iAvUaGhu4UVlArxCgPHTXk,1413
|
5
|
+
aek_auto_mlbuilder/knn.py,sha256=ImBpgCJHTFTC9VnPI5yt53pjY91eNxUKop2PPpELQRM,1728
|
6
|
+
aek_auto_mlbuilder/linear_regression.py,sha256=MtOSRiXDIJPd3abnz4yNT4DBtrkmvEy00Kbx4AFk4Kg,1259
|
7
|
+
aek_auto_mlbuilder/logistic_regression.py,sha256=lp9-e9p9QrqL20DmhIJaSnra1SwyMiOdTfOMlgYsNQA,1707
|
8
|
+
aek_auto_mlbuilder/naive_bayes.py,sha256=3eWeDOwUJL5BwtKH0XvhqaS2c4nnXf8EqCxvEcuqXuY,2447
|
9
|
+
aek_auto_mlbuilder/random_forest.py,sha256=HDTHh9JgxyKYfFzUeZug9-mVoNy5jQ0v7lVSigBRPR8,2024
|
10
|
+
aek_auto_mlbuilder/svm.py,sha256=mMIT30Cc2JGMVat_2IcYCGWE3M23EcunWZNWcAL2ZG0,1620
|
11
|
+
aek_auto_mlbuilder/utils.py,sha256=NcoM3b4Ng1Ogk3iKuz9DcMVwppGRqOLRp5g9jBCkWxY,190
|
12
|
+
aek_auto_mlbuilder-0.8.1.dist-info/licenses/LICENSE,sha256=eSVo2jJj9FB1xvr0zZ9U1fXkyjjnT6-WM3O4HSFKJOc,133
|
13
|
+
aek_auto_mlbuilder-0.8.1.dist-info/METADATA,sha256=mqMVQInD-zo04aubBUS4cXsQOavyxgGCljIAXw6JYlQ,1400
|
14
|
+
aek_auto_mlbuilder-0.8.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
15
|
+
aek_auto_mlbuilder-0.8.1.dist-info/top_level.txt,sha256=2ZY5rMRnVvrAH2GRGUbd6n9ey8cg_uk5iJwke0hQzFE,19
|
16
|
+
aek_auto_mlbuilder-0.8.1.dist-info/RECORD,,
|
@@ -1,15 +0,0 @@
|
|
1
|
-
aek_auto_mlbuilder/__init__.py,sha256=6EsICSbltAGNZCv928oJGIBfGAB1Wc7swLHzFXnsqfY,339
|
2
|
-
aek_auto_mlbuilder/base.py,sha256=GgMdAoceRjwz3i9rVQ0RAjvn5ZdRS-sAkLWjymbE8s0,385
|
3
|
-
aek_auto_mlbuilder/decision_tree.py,sha256=OImOHaREz2jWcANXVC6VKcatFJfzrtyCHJKXNA5-hoI,1606
|
4
|
-
aek_auto_mlbuilder/knn.py,sha256=bNADSq2Ce6stmiWoumRgJbyCmp5SjsbvtTDq3cimKAk,1722
|
5
|
-
aek_auto_mlbuilder/linear_regression.py,sha256=MtOSRiXDIJPd3abnz4yNT4DBtrkmvEy00Kbx4AFk4Kg,1259
|
6
|
-
aek_auto_mlbuilder/logistic_regression.py,sha256=lp9-e9p9QrqL20DmhIJaSnra1SwyMiOdTfOMlgYsNQA,1707
|
7
|
-
aek_auto_mlbuilder/naive_bayes.py,sha256=FfnB2SOw-4ySWdQ4kLx1wTQkbftXypwZc5koZ5WqbOA,2441
|
8
|
-
aek_auto_mlbuilder/random_forest.py,sha256=uvU4faNdoeMgzqrGJ85qchV3tRBaLFwSVKE3WPGWJ74,2018
|
9
|
-
aek_auto_mlbuilder/svm.py,sha256=_7BfwTEHFy8iF7OxxvoGSobvosKSY4tgRlEIDlV4U5M,1614
|
10
|
-
aek_auto_mlbuilder/utils.py,sha256=NcoM3b4Ng1Ogk3iKuz9DcMVwppGRqOLRp5g9jBCkWxY,190
|
11
|
-
aek_auto_mlbuilder-0.7.0.dist-info/licenses/LICENSE,sha256=eSVo2jJj9FB1xvr0zZ9U1fXkyjjnT6-WM3O4HSFKJOc,133
|
12
|
-
aek_auto_mlbuilder-0.7.0.dist-info/METADATA,sha256=Nh8czVd0Ws6TUBLeRKmejv06v4r4G7vHPPKp7VrfeJg,1400
|
13
|
-
aek_auto_mlbuilder-0.7.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
14
|
-
aek_auto_mlbuilder-0.7.0.dist-info/top_level.txt,sha256=2ZY5rMRnVvrAH2GRGUbd6n9ey8cg_uk5iJwke0hQzFE,19
|
15
|
-
aek_auto_mlbuilder-0.7.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|