aek-auto-mlbuilder 0.4.0__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -3,4 +3,6 @@ from .utils import split_data
3
3
  from .linear_regression import LinearRegressor
4
4
  from .logistic_regression import LogisticClassifier
5
5
  from .decision_tree import DecisionTreeModel
6
- from. knn import KNNModel
6
+ from .knn import KNNModel
7
+ from .random_forest import RandomForestModel
8
+ from .svm import SVMModel
@@ -0,0 +1,50 @@
1
+ from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
2
+ from .base import BaseModel
3
+
4
+ class RandomForestModel(BaseModel):
5
+ """
6
+ Random Forest model for classification or regression
7
+ Use task either "classification" or "regression"
8
+ brute force method is using
9
+ """
10
+ def __init__(self, task="classification", param_grid=None):
11
+ super().__init__()
12
+ self.task = task
13
+ self.param_grid = param_grid or {
14
+ "n_estimators": [50, 100, 200],
15
+ "max_depth": [None, 5, 10],
16
+ "min_samples_split": [2, 5],
17
+ "min_samples_leaf": [1, 2]
18
+ }
19
+ def train(self, X, y):
20
+ best_score = -float("inf")
21
+ best_model = None
22
+
23
+ if self.task.lower() == "classification":
24
+ ModelClass = RandomForestClassifier
25
+ elif self.task.lower() == "regression":
26
+ ModelClass = RandomForestRegressor
27
+ else:
28
+ raise ValueError("task must be 'classification' or 'regression'")
29
+
30
+ for n_estimators in self.param_grid["n_estimators"]:
31
+ for max_depth in self.param_grid["max_depth"]:
32
+ for min_samples_split in self.param_grid["min_samples_split"]:
33
+ for min_samples_leaf in self.param_grid["min_samples_leaf"]:
34
+ model = ModelClass(
35
+ n_estimators=n_estimators,
36
+ max_depth=max_depth,
37
+ min_samples_split=min_samples_split,
38
+ min_samples_leaf=min_samples_leaf,
39
+ random_state=42,
40
+ n_jobs=-1
41
+ )
42
+ model.fit(X, y)
43
+ score = model.score(X, y)
44
+ if score > best_score:
45
+ best_score = score
46
+ best_model = model
47
+ self.best_model = best_model
48
+ self.best_score = best_score
49
+ return self.best_model
50
+
@@ -0,0 +1,47 @@
1
+ from sklearn.svm import SVC, SVR
2
+ from sklearn.preprocessing import StandardScaler
3
+ from sklearn.pipeline import make_pipeline
4
+ from .base import BaseModel
5
+
6
+
7
+ class SVMModel(BaseModel):
8
+ """
9
+ support vector machine for classification and regression
10
+ use task parameter for "regression" or "classification"
11
+ brute force is using
12
+ """
13
+ def __init__(self, task="classification", param_grid=None):
14
+ super().__init__()
15
+ self.task = task
16
+ self.param_grid = param_grid or {
17
+ "C": [0.1, 1, 10],
18
+ "kernel": ["linear", "rbf"],
19
+ "gamma": ["scale", "auto"]
20
+ }
21
+
22
+ def train(self, X, y):
23
+ best_score = -float("inf")
24
+ best_model = None
25
+
26
+ if self.task.lower() == "classification":
27
+ ModelClass = SVC
28
+ elif self.task.lower() == "regression":
29
+ ModelClass = SVR
30
+ else:
31
+ raise ValueError("task must be either classification or regression")
32
+
33
+ for C in self.param_grid["C"]:
34
+ for kernel in self.param_grid["kernel"]:
35
+ for gamma in self.param_grid["gamma"]:
36
+ model = make_pipeline(
37
+ StandardScaler(),
38
+ ModelClass(C=C, kernel=kernel, gamma=gamma)
39
+ )
40
+ model.fit(X, y)
41
+ score = model.score(X, y)
42
+ if score > best_score:
43
+ best_score = score
44
+ best_model = model
45
+ self.best_model = best_model
46
+ self.best_score = best_score
47
+ return self.best_model
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aek-auto-mlbuilder
3
- Version: 0.4.0
3
+ Version: 0.6.0
4
4
  Summary: Automatic ML model builder in Python
5
5
  Home-page: https://github.com/alpemre8/aek-auto-mlbuilder
6
6
  Author: Alp Emre Karaahmet
@@ -1,12 +1,14 @@
1
- aek_auto_mlbuilder/__init__.py,sha256=qB67FHc_lJeKMQltNz087hseQUeIvd15njtNrGAqXRk,227
1
+ aek_auto_mlbuilder/__init__.py,sha256=MNRFS2qzHSmCsl7a3l5XUaifAYF4kSuj9dquRdv3ciY,298
2
2
  aek_auto_mlbuilder/base.py,sha256=GgMdAoceRjwz3i9rVQ0RAjvn5ZdRS-sAkLWjymbE8s0,385
3
3
  aek_auto_mlbuilder/decision_tree.py,sha256=OImOHaREz2jWcANXVC6VKcatFJfzrtyCHJKXNA5-hoI,1606
4
4
  aek_auto_mlbuilder/knn.py,sha256=bNADSq2Ce6stmiWoumRgJbyCmp5SjsbvtTDq3cimKAk,1722
5
5
  aek_auto_mlbuilder/linear_regression.py,sha256=MtOSRiXDIJPd3abnz4yNT4DBtrkmvEy00Kbx4AFk4Kg,1259
6
6
  aek_auto_mlbuilder/logistic_regression.py,sha256=lp9-e9p9QrqL20DmhIJaSnra1SwyMiOdTfOMlgYsNQA,1707
7
+ aek_auto_mlbuilder/random_forest.py,sha256=uvU4faNdoeMgzqrGJ85qchV3tRBaLFwSVKE3WPGWJ74,2018
8
+ aek_auto_mlbuilder/svm.py,sha256=_7BfwTEHFy8iF7OxxvoGSobvosKSY4tgRlEIDlV4U5M,1614
7
9
  aek_auto_mlbuilder/utils.py,sha256=NcoM3b4Ng1Ogk3iKuz9DcMVwppGRqOLRp5g9jBCkWxY,190
8
- aek_auto_mlbuilder-0.4.0.dist-info/licenses/LICENSE,sha256=eSVo2jJj9FB1xvr0zZ9U1fXkyjjnT6-WM3O4HSFKJOc,133
9
- aek_auto_mlbuilder-0.4.0.dist-info/METADATA,sha256=dNYzCfMNcAIpg0CVk5CE2BxjoWn3TYhhb3D5NNxhhPc,1400
10
- aek_auto_mlbuilder-0.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
11
- aek_auto_mlbuilder-0.4.0.dist-info/top_level.txt,sha256=2ZY5rMRnVvrAH2GRGUbd6n9ey8cg_uk5iJwke0hQzFE,19
12
- aek_auto_mlbuilder-0.4.0.dist-info/RECORD,,
10
+ aek_auto_mlbuilder-0.6.0.dist-info/licenses/LICENSE,sha256=eSVo2jJj9FB1xvr0zZ9U1fXkyjjnT6-WM3O4HSFKJOc,133
11
+ aek_auto_mlbuilder-0.6.0.dist-info/METADATA,sha256=etjCA-t5wRXMpT1w1R9Qd2Ba8G-TLoZIu2VZ6LgChow,1400
12
+ aek_auto_mlbuilder-0.6.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
13
+ aek_auto_mlbuilder-0.6.0.dist-info/top_level.txt,sha256=2ZY5rMRnVvrAH2GRGUbd6n9ey8cg_uk5iJwke0hQzFE,19
14
+ aek_auto_mlbuilder-0.6.0.dist-info/RECORD,,