adv-optm 1.1.0.dev5__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of adv-optm might be problematic. Click here for more details.
- adv_optm/__init__.py +1 -1
- adv_optm/optim/AdamW_adv.py +2 -2
- adv_optm/optim/Adopt_adv.py +2 -2
- adv_optm/optim/Prodigy_adv.py +3 -5
- adv_optm/optim/Simplified_AdEMAMix.py +1 -1
- adv_optm/util/Kourkoutas.py +10 -3
- adv_optm-1.1.1.dist-info/METADATA +275 -0
- adv_optm-1.1.1.dist-info/RECORD +20 -0
- adv_optm-1.1.0.dev5.dist-info/METADATA +0 -174
- adv_optm-1.1.0.dev5.dist-info/RECORD +0 -20
- {adv_optm-1.1.0.dev5.dist-info → adv_optm-1.1.1.dist-info}/WHEEL +0 -0
- {adv_optm-1.1.0.dev5.dist-info → adv_optm-1.1.1.dist-info}/licenses/LICENSE +0 -0
- {adv_optm-1.1.0.dev5.dist-info → adv_optm-1.1.1.dist-info}/top_level.txt +0 -0
adv_optm/__init__.py
CHANGED
adv_optm/optim/AdamW_adv.py
CHANGED
|
@@ -10,7 +10,7 @@ from ..util.Kourkoutas import KourkoutasHelper
|
|
|
10
10
|
|
|
11
11
|
class AdamW_adv(torch.optim.Optimizer):
|
|
12
12
|
"""
|
|
13
|
-
Implements
|
|
13
|
+
Implements an advanced AdamW algorithm.
|
|
14
14
|
This is an advanced version of AdamW with optional features like
|
|
15
15
|
low-rank factorization of optimizer states (SMMF), OrthoGrad, etc.
|
|
16
16
|
|
|
@@ -67,7 +67,7 @@ class AdamW_adv(torch.optim.Optimizer):
|
|
|
67
67
|
"sunspike" ratio calculation to prevent division by zero. Corresponds
|
|
68
68
|
to `ε_spike` in the paper. (default: 1e-9)
|
|
69
69
|
k_warmup_steps (int): The number of initial steps during which β₂ is held
|
|
70
|
-
at a fixed
|
|
70
|
+
at a fixed beta2 value before the
|
|
71
71
|
dynamic logic activates. (default: 0)
|
|
72
72
|
k_logging (int): if > 0 and kourkoutas_beta=True, enables periodic console
|
|
73
73
|
logging of Kourkoutas-β statistics (min, max, mean of `β₂` across layers)
|
adv_optm/optim/Adopt_adv.py
CHANGED
|
@@ -10,7 +10,7 @@ from ..util.Kourkoutas import KourkoutasHelper
|
|
|
10
10
|
|
|
11
11
|
class Adopt_adv(torch.optim.Optimizer):
|
|
12
12
|
"""
|
|
13
|
-
Implements
|
|
13
|
+
Implements an advanced ADOPT algorithm.
|
|
14
14
|
|
|
15
15
|
The ADOPT update rule modifies Adam by:
|
|
16
16
|
1. **Initialization:** The second moment `v` is initialized as `v₀ = g₀²`.
|
|
@@ -85,7 +85,7 @@ class Adopt_adv(torch.optim.Optimizer):
|
|
|
85
85
|
"sunspike" ratio calculation to prevent division by zero. Corresponds
|
|
86
86
|
to `ε_spike` in the paper. (default: 1e-9)
|
|
87
87
|
k_warmup_steps (int): The number of initial steps during which β₂ is held
|
|
88
|
-
at a fixed
|
|
88
|
+
at a fixed beta2 value before the
|
|
89
89
|
dynamic logic activates. (default: 0)
|
|
90
90
|
k_logging (int): if > 0 and kourkoutas_beta=True, enables periodic console
|
|
91
91
|
logging of Kourkoutas-β statistics (min, max, mean of `β₂` across layers)
|
adv_optm/optim/Prodigy_adv.py
CHANGED
|
@@ -14,7 +14,7 @@ from ..util.Kourkoutas import KourkoutasHelper
|
|
|
14
14
|
|
|
15
15
|
class Prodigy_adv(torch.optim.Optimizer):
|
|
16
16
|
"""
|
|
17
|
-
Implements
|
|
17
|
+
Implements an advanced Prodigy algorithm.
|
|
18
18
|
This is an advanced version of Prodigy with optional features like
|
|
19
19
|
low-rank factorization of optimizer states (SMMF), OrthoGrad, etc.
|
|
20
20
|
|
|
@@ -103,7 +103,7 @@ class Prodigy_adv(torch.optim.Optimizer):
|
|
|
103
103
|
"sunspike" ratio calculation to prevent division by zero. Corresponds
|
|
104
104
|
to `ε_spike` in the paper. (default: 1e-9)
|
|
105
105
|
k_warmup_steps (int): The number of initial steps during which β₂ is held
|
|
106
|
-
at a fixed
|
|
106
|
+
at a fixed beta2 value before the
|
|
107
107
|
dynamic logic activates. (default: 0)
|
|
108
108
|
k_logging (int): if > 0 and kourkoutas_beta=True, enables periodic console
|
|
109
109
|
logging of Kourkoutas-β statistics (min, max, mean of `β₂` across layers)
|
|
@@ -311,10 +311,8 @@ class Prodigy_adv(torch.optim.Optimizer):
|
|
|
311
311
|
self.kourkoutas_helper.accumulate_gradient_sq_norm(p, grad)
|
|
312
312
|
# Get the dynamic beta2 calculated in prepare_step()
|
|
313
313
|
beta2 = self.kourkoutas_helper.get_beta2(p, group, current_step)
|
|
314
|
-
beta3 = math.sqrt(beta2)
|
|
315
314
|
else:
|
|
316
315
|
beta2 = self.beta2_default
|
|
317
|
-
beta3 = self.beta3
|
|
318
316
|
|
|
319
317
|
if self.use_AdEMAMix:
|
|
320
318
|
beta3_ema = group['beta3_ema']
|
|
@@ -451,7 +449,7 @@ class Prodigy_adv(torch.optim.Optimizer):
|
|
|
451
449
|
self.d_numerator += (self.d / d0) * self.dlr * torch.dot(grad_flat[::slice_p], p0.data - p_flat[::slice_p]).item()
|
|
452
450
|
|
|
453
451
|
alpha = ((self.d / d0) * self.d) if safeguard_warmup else ((self.d / d0) * self.dlr)
|
|
454
|
-
s.mul_(beta3).add_(grad_flat[::slice_p], alpha=alpha)
|
|
452
|
+
s.mul_(self.beta3).add_(grad_flat[::slice_p], alpha=alpha)
|
|
455
453
|
self.d_denom += s.abs().sum().item()
|
|
456
454
|
|
|
457
455
|
del s, p0, grad_flat, p_flat, alpha
|
|
@@ -61,7 +61,7 @@ class Simplified_AdEMAMix(torch.optim.Optimizer):
|
|
|
61
61
|
"sunspike" ratio calculation to prevent division by zero. Corresponds
|
|
62
62
|
to `ε_spike` in the paper. (default: 1e-9)
|
|
63
63
|
k_warmup_steps (int): The number of initial steps during which β₂ is held
|
|
64
|
-
at a fixed
|
|
64
|
+
at a fixed beta2 value before the
|
|
65
65
|
dynamic logic activates. (default: 0)
|
|
66
66
|
k_logging (int): if > 0 and kourkoutas_beta=True, enables periodic console
|
|
67
67
|
logging of Kourkoutas-β statistics (min, max, mean of `β₂` across layers)
|
adv_optm/util/Kourkoutas.py
CHANGED
|
@@ -32,9 +32,16 @@ class KourkoutasHelper:
|
|
|
32
32
|
if self._layer_info_built:
|
|
33
33
|
return
|
|
34
34
|
|
|
35
|
-
if
|
|
36
|
-
|
|
37
|
-
|
|
35
|
+
if hasattr(self.optimizer, 'layer_key_fn') and self.optimizer.layer_key_fn is not None:
|
|
36
|
+
# A custom key function was provided by the user. We will use it.
|
|
37
|
+
pass
|
|
38
|
+
else:
|
|
39
|
+
# No key function was provided. Default to coarse, shape-based bucketing.
|
|
40
|
+
self.optimizer.layer_key_fn = lambda p: \
|
|
41
|
+
(id(p),) if p.dim() == 2 and 1 <= p.shape[0] <= 10 and p.shape[1] in {768, 1280, 4096} \
|
|
42
|
+
else tuple(p.shape)
|
|
43
|
+
# This ensures that we won't mix embeddings with tokens (1 to 10)
|
|
44
|
+
# TODO find a better way to safeguard the embeddings
|
|
38
45
|
|
|
39
46
|
for group in self.optimizer.param_groups:
|
|
40
47
|
for p in group['params']:
|
|
@@ -0,0 +1,275 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: adv_optm
|
|
3
|
+
Version: 1.1.1
|
|
4
|
+
Summary: A family of highly efficient, lightweight yet powerful optimizers.
|
|
5
|
+
Home-page: https://github.com/Koratahiu/Advanced_Optimizers
|
|
6
|
+
Author: Koratahiu
|
|
7
|
+
Author-email: hiuhonor@gmail.com
|
|
8
|
+
License: Apache 2.0
|
|
9
|
+
Keywords: llm,fine-tuning,memory-efficient,low-rank,compression,pytorch,optimizer,adam
|
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
|
11
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
14
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
15
|
+
Requires-Python: >=3.8
|
|
16
|
+
Description-Content-Type: text/markdown
|
|
17
|
+
License-File: LICENSE
|
|
18
|
+
Requires-Dist: torch>=2.0
|
|
19
|
+
Dynamic: author
|
|
20
|
+
Dynamic: author-email
|
|
21
|
+
Dynamic: classifier
|
|
22
|
+
Dynamic: description
|
|
23
|
+
Dynamic: description-content-type
|
|
24
|
+
Dynamic: home-page
|
|
25
|
+
Dynamic: keywords
|
|
26
|
+
Dynamic: license
|
|
27
|
+
Dynamic: license-file
|
|
28
|
+
Dynamic: requires-dist
|
|
29
|
+
Dynamic: requires-python
|
|
30
|
+
Dynamic: summary
|
|
31
|
+
|
|
32
|
+
# Advanced Optimizers (AIO)
|
|
33
|
+
|
|
34
|
+
A comprehensive, all-in-one collection of optimization algorithms for deep learning, designed for **maximum efficiency**, **minimal memory footprint**, and **superior performance** across diverse model architectures and training scenarios.
|
|
35
|
+
|
|
36
|
+
[](https://pypi.org/project/adv_optm/)
|
|
37
|
+
|
|
38
|
+
---
|
|
39
|
+
|
|
40
|
+
## 📦 Installation
|
|
41
|
+
|
|
42
|
+
```bash
|
|
43
|
+
pip install adv_optm
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
---
|
|
47
|
+
|
|
48
|
+
## 🧠 Core Innovations
|
|
49
|
+
|
|
50
|
+
This library integrates multiple state-of-the-art optimization techniques validated through extensive research and practical training, with **1-bit compression for optimizer states**:
|
|
51
|
+
|
|
52
|
+
### **Memory-Efficient Optimization (SMMF-inspired)**
|
|
53
|
+
- **Paper**: [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
|
|
54
|
+
- **Approach**: Uses rank-1 non-negative matrix factorization with reconstruction cycle (factor → reconstruct → update → factor)
|
|
55
|
+
- **Innovation**:
|
|
56
|
+
- First moment split into **1-bit sign + absolute value**
|
|
57
|
+
- Final storage: **four factored vectors + one 1-bit sign state**
|
|
58
|
+
- Preserves Adam-like update quality with drastically reduced memory
|
|
59
|
+
|
|
60
|
+
---
|
|
61
|
+
|
|
62
|
+
## ⚡ Performance Characteristics
|
|
63
|
+
|
|
64
|
+
### Memory Efficiency (SDXL Model – 6.5GB)
|
|
65
|
+
| Optimizer | Memory Usage | Description |
|
|
66
|
+
|-----------|--------------|-------------|
|
|
67
|
+
| `Adopt_Factored` | 328 MB | 4 small vectors + 1-bit state |
|
|
68
|
+
| `Adopt_Factored + AdEMAMix` | 625 MB | 6 small vectors + two 1-bit states |
|
|
69
|
+
| `Simplified_AdEMAMix` | 328 MB | Same as standard factored (no extra state) |
|
|
70
|
+
|
|
71
|
+
### Speed Comparison (SDXL, Batch Size 4)
|
|
72
|
+
| Optimizer | Speed | Notes |
|
|
73
|
+
|-----------|-------|-------|
|
|
74
|
+
| `Adafactor` | ~8.5s/it | Baseline |
|
|
75
|
+
| `Adopt_Factored` | ~10s/it | +18% overhead from compression |
|
|
76
|
+
| `Adopt_Factored + AdEMAMix` | ~12s/it | +41% overhead (3 factored states) |
|
|
77
|
+
|
|
78
|
+
---
|
|
79
|
+
|
|
80
|
+
## 🧪 Available Optimizers
|
|
81
|
+
|
|
82
|
+
### Standard Optimizers (All support `factored=True/False`)
|
|
83
|
+
| Optimizer | Description | Best For |
|
|
84
|
+
|-----------|-------------|----------|
|
|
85
|
+
| `Adam_Adv` | Advanced Adam implementation | General purpose |
|
|
86
|
+
| `Adopt_Adv` | Adam-variant with independent beta2 | Stable training for small batch size regimes |
|
|
87
|
+
| `Prodigy_Adv` | Prodigy with D-Adaptation | Adam with automatic LR tuning |
|
|
88
|
+
| `Simplified_AdEMAMix` | Adam variant with accumulator momentum | Small/large batch training when tuned correctly |
|
|
89
|
+
| `Lion_Adv` | Advanced Lion implementation | Memory-constrained environments |
|
|
90
|
+
| `Prodigy_Lion_Adv` | Prodigy + Lion combination | Lion with automatic LR tuning |
|
|
91
|
+
|
|
92
|
+
---
|
|
93
|
+
|
|
94
|
+
## ⚙️ Feature Matrix
|
|
95
|
+
|
|
96
|
+
| Feature | Adam_Adv | Adopt_Adv | Prodigy_Adv | Simplified_AdEMAMix | Lion_Adv |
|
|
97
|
+
|---------|----------|-----------|-------------|---------------------|----------|
|
|
98
|
+
| Factored | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
99
|
+
| AdEMAMix | ✓ | ✓ | ✓ | ✗ | ✗ |
|
|
100
|
+
| Simplified_AdEMAMix | ✗ | ✓ | ✓ | ✓ | ✗ |
|
|
101
|
+
| OrthoGrad | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
102
|
+
| Grams | ✓ | ✓ | ✓ | ✗ | ✗ |
|
|
103
|
+
| Cautious | ✓ | ✓ | ✓ | ✗ | ✓ |
|
|
104
|
+
| atan2 | ✓ | ✓ | ✓ | ✗ | ✗ |
|
|
105
|
+
| Stochastic Rounding | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
106
|
+
| Fused Backward Pass | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
107
|
+
| **Kourkoutas-β** | ✓ | ✓ | ✓ | ✓ | ✗ |
|
|
108
|
+
|
|
109
|
+
---
|
|
110
|
+
|
|
111
|
+
## 🛠️ Comprehensive Feature Guide
|
|
112
|
+
|
|
113
|
+
### A. Universal Safe Features
|
|
114
|
+
*These features work with all optimizers and are generally safe to enable.*
|
|
115
|
+
|
|
116
|
+
| Feature | Description | Recommended Usage | Performance Impact | Theoretical Basis | Compatibility |
|
|
117
|
+
|--------|-------------|-------------------|--------------------|-------------------|--------------|
|
|
118
|
+
| **Fused Back Pass** | Fuses backward pass; gradients used immediately and memory freed on-the-fly | Memory-constrained environments | Reduces peak memory | Memory optimization | All optimizers |
|
|
119
|
+
| **Stochastic Rounding** | Replaces nearest rounding with stochastic rounding to preserve small gradient updates in BF16 | BF16 training | Minimal overhead (<5%) | [Revisiting BFloat16 Training](https://arxiv.org/abs/2010.06192) | All optimizers |
|
|
120
|
+
| **OrthoGrad** | Removes gradient component parallel to weights to reduce overfitting | Full fine-tuning without weight decay | +33% time overhead (BS=4); less at larger BS | [Grokking at Edge](https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability) | All optimizers |
|
|
121
|
+
| **Factored** | Memory-efficient optimization via rank-1 1-bit factorization of optimizer states | Large models / memory-limited hardware | Adds compression overhead | [SMMF](https://arxiv.org/abs/2412.08894) | All optimizers |
|
|
122
|
+
|
|
123
|
+
### B. Individual Features
|
|
124
|
+
|
|
125
|
+
| Feature | Description | Recommended Usage | Performance Impact | Theoretical Basis | Compatibility |
|
|
126
|
+
|--------|-------------|-------------------|--------------------|-------------------|--------------|
|
|
127
|
+
| **Cautious** | Only applies update if gradient direction aligns with momentum direction | Accelerating convergence | No overhead | [C-Optim](https://github.com/kyleliang919/C-Optim) | Adam/Adopt/Prodigy/Lion |
|
|
128
|
+
| **Grams** | Update direction derived purely from current gradient | When Cautious is insufficient | No overhead | [Grams](https://github.com/Gunale0926/Grams) | Adam/Adopt/Prodigy |
|
|
129
|
+
| **AdEMAMix** | Dual EMA system that retains relevance of gradients over tens of thousands of steps | Long training runs, especially where model forgetting is a concern | +1 state memory | [AdEMAMix](https://arxiv.org/abs/2409.03137) | Adam/Adopt/Prodigy |
|
|
130
|
+
| **Simplified_AdEMAMix** | Accumulator-based momentum, single EMA variant of AdEMAMix | All scenarios when tuned correctly | No overhead | [Connections](https://arxiv.org/abs/2502.02431) | Adam/Adopt/Prodigy |
|
|
131
|
+
| **atan2** | Robust epsilon replacement with built-in gradient clipping | Use for stable bounded updates (or for Adopt as it needs that) | No overhead | [Adam-atan2](https://github.com/lucidrains/adam-atan2-pytorch) | Adam/Adopt/Prodigy |
|
|
132
|
+
| **Kourkoutas-β** | Layer-wise adaptive β₂ based on gradient “sunspike” ratio | Noisy/small/large-batch/high-LR training | No overhead | [Kourkoutas-β]() | Adam/Adopt/Prodigy/Simplified_AdEMAMix |
|
|
133
|
+
|
|
134
|
+
> **Note**: If both **Cautious** and **Grams** are enabled, **Grams takes precedence** and Cautious is disabled.
|
|
135
|
+
|
|
136
|
+
---
|
|
137
|
+
|
|
138
|
+
## 🔍 Feature Deep Dives
|
|
139
|
+
|
|
140
|
+
### AdEMAMix
|
|
141
|
+
|
|
142
|
+
- Adds a **slow-decaying second EMA** (`beta3`) that retains gradient memory over tens of thousands of steps.
|
|
143
|
+
- Particularly effective for **small batch sizes**, where Adam’s standard first moment is nearly useless.
|
|
144
|
+
- **Reference**: [AdaMeM: Memory Efficient Momentum for Adafactor](https://openreview.net/forum?id=fZqMVTz7K5)
|
|
145
|
+
|
|
146
|
+
#### Tunable Hyperparameters
|
|
147
|
+
| Parameter | Default | Tuning Guide |
|
|
148
|
+
|-----------|---------|--------------|
|
|
149
|
+
| `beta3` | 0.9999 | • Runs >120k steps: **0.9999**<br>• Runs ≤120k steps: **0.999** |
|
|
150
|
+
| `alpha` | 5 | • Reduce to **2–3** if diverging<br>• Increase to strengthen long-term memory |
|
|
151
|
+
|
|
152
|
+
> ✅ **Pro Tip**: Set `beta1=0` in Adam/Adopt/Prodigy to skip standard EMA entirely and rely solely on AdEMAMix’s slow EMA, ideal for small-batch regimes.
|
|
153
|
+
|
|
154
|
+
---
|
|
155
|
+
|
|
156
|
+
### Simplified_AdEMAMix
|
|
157
|
+
|
|
158
|
+
- Introduced in [Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD Variants (arXiv:2502.02431)](https://arxiv.org/abs/2502.02431).
|
|
159
|
+
- Replaces Adam’s first moment with a **gradient accumulator**, combining the stability of long memory with responsiveness to recent gradients.
|
|
160
|
+
- **Key insight**: Classical momentum **does not accelerate** in noisy (small-batch) regimes; this accumulator do.
|
|
161
|
+
|
|
162
|
+
#### Tunable Hyperparameters
|
|
163
|
+
| Parameter | Default | Tuning Guide |
|
|
164
|
+
|----------|---------|--------------|
|
|
165
|
+
| `beta1` | 0.99 | Controls accumulator memory length:<br>• Small BS: **0.99–0.9999**<br>• Large BS: **0.9** |
|
|
166
|
+
| `Grad α` | 100 | Most critical parameter:<br>• Inversely scales with batch size<br>• **100–10** for small BS (≤32)<br>• **1–0.1** for large BS (≥512) |
|
|
167
|
+
|
|
168
|
+
> ⚠️ **Critical**: Requires **~100x smaller learning rate** than AdamW (e.g., 1e-6 vs 1e-4).
|
|
169
|
+
> For `Prodigy_Adv`, set `initial_d` to:
|
|
170
|
+
> - **LoRA**: `1e-8`
|
|
171
|
+
> - **Full FT**: `1e-10`
|
|
172
|
+
> - **Embedding**: `1e-7`
|
|
173
|
+
|
|
174
|
+
> ⚠️ **Incompatible** with: **Cautious**, **Grams**, **atan2**, and standard gradient clipping.
|
|
175
|
+
|
|
176
|
+
#### Performance Validation
|
|
177
|
+
|
|
178
|
+
**Small Batch Training (SDXL, BS=2, 1.8K steps)**
|
|
179
|
+

|
|
180
|
+
|
|
181
|
+
- **🟢 Prodigy_Adv** (beta1=0.9, d0=1e-5): Final LR = 2.9e-4
|
|
182
|
+
- **🔵 Prodigy_Adv + Simplified_AdEMAMix** (beta1=0.99, α=100, d0=1e-7): Final LR = 5.8e-6
|
|
183
|
+
|
|
184
|
+
**Results**:
|
|
185
|
+
- Faster convergence and higher final performance with Simplified_AdEMAMix
|
|
186
|
+
- D-Adaptation automatically compensates for aggressive updates
|
|
187
|
+
- Generated samples show **significantly better quality**
|
|
188
|
+
|
|
189
|
+
---
|
|
190
|
+
|
|
191
|
+
### atan2
|
|
192
|
+
|
|
193
|
+
- Replaces `eps` in Adam-family optimizers with a **scale-invariant**, bounded update rule.
|
|
194
|
+
- Automatically clips updates to **[-2, 2]**, preventing destabilizing jumps.
|
|
195
|
+
- **Highly recommended** for `Adopt_Adv`, which is prone to instability without clipping.
|
|
196
|
+
|
|
197
|
+
---
|
|
198
|
+
|
|
199
|
+
### **Kourkoutas-β**
|
|
200
|
+
|
|
201
|
+
**Kourkoutas-β** introduces a **sunspike-driven, layer-wise adaptive second-moment decay (β₂)** as an optional enhancement for `Adam_Adv`, `Adopt_Adv`, `Prodigy_Adv`, and `Simplified_AdEMAMix`.
|
|
202
|
+
|
|
203
|
+
Instead of using a fixed β₂ (e.g., 0.999 or 0.95), it **dynamically modulates β₂ per layer** based on a bounded *sunspike ratio*:
|
|
204
|
+
|
|
205
|
+
- **During gradient bursts** → β₂ ↓ toward `Lower β₂` → faster reaction
|
|
206
|
+
- **During calm phases** → β₂ ↑ toward `The Selected β₂` → stronger smoothing
|
|
207
|
+
|
|
208
|
+
This is especially effective for **noisy training, small batch sizes, and high learning rates**, where gradient norms shift abruptly due to noise or aggressive LR schedules.
|
|
209
|
+
|
|
210
|
+
#### Pros/Cons
|
|
211
|
+
|
|
212
|
+
| **Category** | **Details** |
|
|
213
|
+
|--------------|-------------|
|
|
214
|
+
| ✅ **Pros** | • **Layer-wise adaptation** blends benefits of high β₂ (strong smoothing) and low β₂ (fast reaction).<br>• **Robust to sudden loss landscape shifts**, reacts quickly during gradient bursts, smooths during calm phases.<br>• **High tolerance to aggressive learning rates**. |
|
|
215
|
+
| ⚠️ **Cons** | • **Potentially unstable at the start of training** due to unreliable early gradient norms; mitigated by using `K-β Warmup Steps`. |
|
|
216
|
+
|
|
217
|
+
> 💡 **Best Practice**: Set `K_warmup_steps` equal to your standard LR warmup steps. During warmup, the optimizer uses the static `beta2`; adaptation begins only after warmup ends.
|
|
218
|
+
|
|
219
|
+
> 🔍 **Debugging Aid**: Enable `K_Logging` to monitor (min, max, mean) of dynamic β₂ values across layers every *N* steps.
|
|
220
|
+
|
|
221
|
+
#### 📊 Performance Validation
|
|
222
|
+
|
|
223
|
+
**ADAMW_ADV - full SDXL finetuning (aggressive LR: 3e-5) (BS=4, 2.5K steps)**
|
|
224
|
+
<img width="1460" height="382" alt="image" src="https://github.com/user-attachments/assets/007f278a-fbac-4f3d-9cc7-274c3b959cdd" />
|
|
225
|
+
|
|
226
|
+
- 🟣 Fixed `beta2=0.999`
|
|
227
|
+
- 🟠 Auto K-beta
|
|
228
|
+
|
|
229
|
+
**Observations:**
|
|
230
|
+
- K-beta is clearly better and more robust/stable for high LRs.
|
|
231
|
+
|
|
232
|
+
> 📚 **Reference**:
|
|
233
|
+
> - Paper: [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
|
|
234
|
+
> - Code: [kbeta](https://github.com/sck-at-ucy/kbeta)
|
|
235
|
+
|
|
236
|
+
---
|
|
237
|
+
|
|
238
|
+
## Recommended Preset (Tested on LoRA/FT/Embedding)
|
|
239
|
+
|
|
240
|
+
```yaml
|
|
241
|
+
Learning Rate: 1
|
|
242
|
+
optimizer: PRODIGY_Adv
|
|
243
|
+
settings:
|
|
244
|
+
- beta1: 0.99 # Controls momentum decay, ~100-step effective memory. Adjust to 0.999 (1000 steps) or 0.9999 (10000 steps) based on training length and stability needs.
|
|
245
|
+
- beta2: 0.999
|
|
246
|
+
- kourkoutas_beta: True # For Kourkoutas-β
|
|
247
|
+
- K-β Warmup Steps: 50 # Or 100, 200, depending on your run
|
|
248
|
+
- Simplified_AdEMAMix: True
|
|
249
|
+
- Grad α: 100
|
|
250
|
+
- OrthoGrad: True
|
|
251
|
+
- weight_decay: 0.0
|
|
252
|
+
- initial_d:
|
|
253
|
+
• LoRA: 1e-8
|
|
254
|
+
• Full fine-tune: 1e-10
|
|
255
|
+
• Embedding: 1e-7
|
|
256
|
+
- d_coef: 1
|
|
257
|
+
- d_limiter: True # To stablizie Prodigy with Simplified_AdEMAMix
|
|
258
|
+
- factored: False # Can be true or false, quality should not degrade due to Simplified_AdEMAMix’s high tolerance to 1-bit factorization.
|
|
259
|
+
```
|
|
260
|
+
|
|
261
|
+
> ✅ **Why it works**:
|
|
262
|
+
> - `Kourkoutas-β` handles beta2 values
|
|
263
|
+
> - `Simplified_AdEMAMix` ensures responsiveness in small-batch noise
|
|
264
|
+
> - `OrthoGrad` prevents overfitting without weight decay
|
|
265
|
+
|
|
266
|
+
---
|
|
267
|
+
|
|
268
|
+
## 📚 References
|
|
269
|
+
|
|
270
|
+
1. [Revisiting BFloat16 Training](https://arxiv.org/abs/2010.06192)
|
|
271
|
+
2. [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
|
|
272
|
+
3. [The AdEMAMix Optimizer](https://arxiv.org/abs/2409.03137)
|
|
273
|
+
4. [Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD](https://arxiv.org/abs/2502.02431)
|
|
274
|
+
5. [AdaMeM: Memory Efficient Momentum for Adafactor](https://openreview.net/forum?id=fZqMVTz7K5)
|
|
275
|
+
6. [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
adv_optm/__init__.py,sha256=TL9XFW3kQQ2Xrxl6UULMftBzNvg7uTIcxMRD0vTttPk,306
|
|
2
|
+
adv_optm/optim/AdamW_adv.py,sha256=ddEUVOif1gfZPgEJNrEGZ2wnha4MPMWw5ppPd8acQ3o,17457
|
|
3
|
+
adv_optm/optim/Adopt_adv.py,sha256=fhH3hS9K6z5Blxc7NFfzpCrUGbl9EQnwLPmKDxBC1zg,21415
|
|
4
|
+
adv_optm/optim/Lion_Prodigy_adv.py,sha256=aJ9orEEw0QYbrDzn1be0SHvOBlIkLwWG9RpWFuNMskM,13163
|
|
5
|
+
adv_optm/optim/Lion_adv.py,sha256=aGNAplZlyXYgVllYcV_s4bK8iC4fv6EizFoWIMNLdBc,8299
|
|
6
|
+
adv_optm/optim/Prodigy_adv.py,sha256=nD59cAWOJJCjZdIiuD5hD9MWO5sTjPQSvq-3dwGTcEM,25875
|
|
7
|
+
adv_optm/optim/Simplified_AdEMAMix.py,sha256=gPjMhKulzmAeO42foe-d7xW0AcB50vKFYsvHgxbD3uc,12949
|
|
8
|
+
adv_optm/optim/__init__.py,sha256=pcP865H2j1tut2VfTUhzQh7V8TF_tzPjqFnjMfFed2k,382
|
|
9
|
+
adv_optm/util/BF16_Stochastic_Rounding.py,sha256=Q5H0BcogmE4atP65dLoI21HKSf50lRdsBDfeF6v9Tbg,1548
|
|
10
|
+
adv_optm/util/Effective_Shape.py,sha256=TBvIk1V8IuTbbBsxuekJA4e_v8JlR5Nujtut8RTWAm4,318
|
|
11
|
+
adv_optm/util/Kourkoutas.py,sha256=woyJfX7l4eieeg0pC5XrILBLvwECwbD3a6ou1K6qjKU,8706
|
|
12
|
+
adv_optm/util/NNMF.py,sha256=yRf5IP5Sjq0Uf0DxN0Q8NxEGSdD-f1ULziLVDOjY8K4,639
|
|
13
|
+
adv_optm/util/One_Bit_Boolean.py,sha256=Wat49esdwohuN-OHOFMW8D0aOQgV9cP5Rl8z6yfmpos,1068
|
|
14
|
+
adv_optm/util/OrthoGrad.py,sha256=NzInuBQGy_Ja__M1R9XbvqVaQ0fhGbtGgFE9YON7B3I,707
|
|
15
|
+
adv_optm/util/__init__.py,sha256=qoyIF0jcLjs_vSEcsv36clw5LFNBEbifyXrrVxMH-G4,349
|
|
16
|
+
adv_optm-1.1.1.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
17
|
+
adv_optm-1.1.1.dist-info/METADATA,sha256=F30-DuFinS-633wznIM27NBGU5asYpnKdiExchOFPcI,14019
|
|
18
|
+
adv_optm-1.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
19
|
+
adv_optm-1.1.1.dist-info/top_level.txt,sha256=iNfBIIzu-lPrQ7jyC56WBCcbkRwitM2nJ15-MRQ_6fg,9
|
|
20
|
+
adv_optm-1.1.1.dist-info/RECORD,,
|
|
@@ -1,174 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: adv_optm
|
|
3
|
-
Version: 1.1.0.dev5
|
|
4
|
-
Summary: A family of highly efficient, lightweight yet powerful optimizers.
|
|
5
|
-
Home-page: https://github.com/Koratahiu/Advanced_Optimizers
|
|
6
|
-
Author: Koratahiu
|
|
7
|
-
Author-email: hiuhonor@gmail.com
|
|
8
|
-
License: Apache 2.0
|
|
9
|
-
Keywords: llm,fine-tuning,memory-efficient,low-rank,compression,pytorch,optimizer,adam
|
|
10
|
-
Classifier: Programming Language :: Python :: 3
|
|
11
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
|
12
|
-
Classifier: Operating System :: OS Independent
|
|
13
|
-
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
14
|
-
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
15
|
-
Requires-Python: >=3.8
|
|
16
|
-
Description-Content-Type: text/markdown
|
|
17
|
-
License-File: LICENSE
|
|
18
|
-
Requires-Dist: torch>=2.0
|
|
19
|
-
Dynamic: author
|
|
20
|
-
Dynamic: author-email
|
|
21
|
-
Dynamic: classifier
|
|
22
|
-
Dynamic: description
|
|
23
|
-
Dynamic: description-content-type
|
|
24
|
-
Dynamic: home-page
|
|
25
|
-
Dynamic: keywords
|
|
26
|
-
Dynamic: license
|
|
27
|
-
Dynamic: license-file
|
|
28
|
-
Dynamic: requires-dist
|
|
29
|
-
Dynamic: requires-python
|
|
30
|
-
Dynamic: summary
|
|
31
|
-
|
|
32
|
-
# Advanced Optimizers (AIO)
|
|
33
|
-
|
|
34
|
-
A comprehensive, all-in-one collection of optimization algorithms for deep learning, designed for maximum efficiency, minimal memory footprint, and superior performance across diverse model architectures and training scenarios.
|
|
35
|
-
|
|
36
|
-
[](https://pypi.org/project/adv_optm/)
|
|
37
|
-
|
|
38
|
-
---
|
|
39
|
-
|
|
40
|
-
## 📦 Installation
|
|
41
|
-
|
|
42
|
-
```bash
|
|
43
|
-
pip install adv_optm
|
|
44
|
-
```
|
|
45
|
-
|
|
46
|
-
---
|
|
47
|
-
|
|
48
|
-
## 🧠 Core Innovations
|
|
49
|
-
|
|
50
|
-
This library integrates multiple state-of-the-art optimization techniques validated through extensive research and practical training, with 1-bit compression for optimizer states:
|
|
51
|
-
|
|
52
|
-
### **Memory-Efficient Optimization (SMMF-inspired)**
|
|
53
|
-
- **Paper**: [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
|
|
54
|
-
- **Approach**: Uses rank-1 non-negative matrix factorization with reconstruction cycle (factor → reconstruct → update → factor)
|
|
55
|
-
- **Innovation**:
|
|
56
|
-
- First moment split into **1-bit sign + absolute value**
|
|
57
|
-
- Final storage: **four factored vectors + one 1-bit sign state**
|
|
58
|
-
- Preserves Adam-like update quality with drastically reduced memory
|
|
59
|
-
|
|
60
|
-
---
|
|
61
|
-
|
|
62
|
-
## ⚡ Performance Characteristics
|
|
63
|
-
|
|
64
|
-
### Memory Efficiency (SDXL Model - 6.5GB)
|
|
65
|
-
| Optimizer | Memory Usage | Description |
|
|
66
|
-
|-----------|--------------|-------------|
|
|
67
|
-
| `Adopt_Factored` | 328 MB | 4 small vectors + 1-bit state |
|
|
68
|
-
| `Adopt_Factored + AdEMAMix` | 625 MB | 6 small vectors + two 1-bit states |
|
|
69
|
-
| `Simplified_AdEMAMix` | 328 MB | Same as standard factored (no extra state) |
|
|
70
|
-
|
|
71
|
-
### Speed Comparison (SDXL, Batch Size 4)
|
|
72
|
-
| Optimizer | Speed | Notes |
|
|
73
|
-
|-----------|-------|-------|
|
|
74
|
-
| `Adafactor` | ~8.5s/it | Baseline |
|
|
75
|
-
| `Adopt_Factored` | ~10s/it | +18% overhead from compression |
|
|
76
|
-
| `Adopt_Factored + AdEMAMix` | ~12s/it | +41% overhead (3 factored states) |
|
|
77
|
-
|
|
78
|
-
---
|
|
79
|
-
|
|
80
|
-
## 🧪 Available Optimizers
|
|
81
|
-
|
|
82
|
-
### Standard Optimizers (All support `factored=True/False`)
|
|
83
|
-
| Optimizer | Description | Best For |
|
|
84
|
-
|-----------|-------------|----------|
|
|
85
|
-
| `Adam_Adv` | Advanced Adam implementation | General purpose |
|
|
86
|
-
| `Adopt_Adv` | Adam-variant with independent beta2 | Stable training for small batch size regimes |
|
|
87
|
-
| `Prodigy_Adv` | Prodigy with D-Adaptation | Adam with automatic LR tuning |
|
|
88
|
-
| `Simplified_AdEMAMix` | Adam variant with accumulator momentum | Small/large batch training when tuned correctly |
|
|
89
|
-
| `Lion_Adv` | Advanced Lion implementation | Memory-constrained environments |
|
|
90
|
-
| `Prodigy_Lion_Adv` | Prodigy + Lion combination | Lion with automatic LR tuning |
|
|
91
|
-
|
|
92
|
-
### Feature Matrix
|
|
93
|
-
| Feature | Adam_Adv | Adopt_Adv | Prodigy_Adv | Simplified_AdEMAMix | Lion_Adv |
|
|
94
|
-
|---------|----------|-----------|-------------|---------------------|----------|
|
|
95
|
-
| Factored | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
96
|
-
| AdEMAMix | ✓ | ✓ | ✓ | ✗ | ✗ |
|
|
97
|
-
| Simplified_AdEMAMix | ✗ | ✗ | ✓ | ✓ | ✗ |
|
|
98
|
-
| OrthoGrad | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
99
|
-
| Grams | ✓ | ✓ | ✓ | ✗ | ✗ |
|
|
100
|
-
| Cautious | ✓ | ✓ | ✓ | ✗ | ✓ |
|
|
101
|
-
| atan2 | ✓ | ✓ | ✓ | ✗ | ✗ |
|
|
102
|
-
| Stochastic Rounding | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
103
|
-
| Fused Backward Pass | ✓ | ✓ | ✓ | ✓ | ✓ |
|
|
104
|
-
|
|
105
|
-
---
|
|
106
|
-
|
|
107
|
-
## ⚙️ Key Features & Parameters
|
|
108
|
-
|
|
109
|
-
### Comprehensive Feature Guide
|
|
110
|
-
|
|
111
|
-
| Feature | Description | Recommended Usage | Performance Impact | Theoretical Basis | Compatibility |
|
|
112
|
-
|---------|-------------|-------------------|--------------------|-------------------|--------------|
|
|
113
|
-
| **Factored** | Memory-efficient optimization using rank-1 factorization | Enable for large models (>1B params) or limited VRAM | +12-41% time overhead, 1-bit memory usage | [SMMF](https://arxiv.org/abs/2412.08894) | All optimizers |
|
|
114
|
-
| **AdEMAMix** | Dual EMA system for momentum | Use for long training runs (10k+ steps) | +1 state memory. | [AdEMAMix](https://arxiv.org/abs/2409.03137) | Adam/Adopt/Prodigy |
|
|
115
|
-
| **Simplified_AdEMAMix** | Accumulator-based momentum | Small batch training (≤32) | Same memory as standard, no extra overhead | [Schedule-Free Connections](https://arxiv.org/abs/2502.02431) | Adam/Prodigy |
|
|
116
|
-
| **OrthoGrad** | Removes gradient component parallel to weights | Full finetuning without weight decay | +33% time overhead, no memory impact | [Grokking at Edge](https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability) | All optimizers |
|
|
117
|
-
| **Stochastic Rounding** | Improves precision for BF16 training | BF16 training | Minimal overhead (<5%) | [Revisiting BFloat16 Training](https://arxiv.org/abs/2010.06192) | All optimizers |
|
|
118
|
-
| **atan2** | Robust eps replacement + built-in clipping | Use with Adopt or unstable training | No overhead | [Adam-atan2](https://github.com/lucidrains/adam-atan2-pytorch) | Adam/Adopt/prodigy |
|
|
119
|
-
| **Cautious** | Update only when the direction align with the gradients | should faster the convergence | No overhead | [C-Optim](https://github.com/kyleliang919/C-Optim) | Adam/Adopt/prodigy |
|
|
120
|
-
| **Grams** | Update direction from the gradients | should have a stronger effect than cautious | No overhead | [Grams](https://github.com/Gunale0926/Grams) | Adam/Adopt/prodigy |
|
|
121
|
-
|
|
122
|
-
---
|
|
123
|
-
|
|
124
|
-
## Simplified_AdEMAMix Parameters
|
|
125
|
-
Simplified_AdEMAMix replaces standard momentum with an accumulator for better small-large batch performance.
|
|
126
|
-
|
|
127
|
-
| Parameter | Recommended Values | Description |
|
|
128
|
-
|-----------|---------------------|-------------|
|
|
129
|
-
| `beta1` | 0.9 (large BS), 0.99-0.9999 (small BS) | Determines memory length of accumulator |
|
|
130
|
-
| `alpha` | 100-10 (small BS), 1-0 (large BS) | Gradient smoothing factor |
|
|
131
|
-
|
|
132
|
-
**Alpha Tuning Guide**:
|
|
133
|
-
| Batch Size | Recommended α | Rationale |
|
|
134
|
-
|------------|---------------|-----------|
|
|
135
|
-
| Small (≤32) | 100, 50, 20, 10 | Emphasizes recent gradients for quick adaptation |
|
|
136
|
-
| Medium (32-512) | 10, 5, 2, 1 | Balanced approach |
|
|
137
|
-
| Large (≥512) | 1, 0.5, 0 | Emphasizes historical gradients for stability |
|
|
138
|
-
|
|
139
|
-
⚠️ **Important**: Use **~100x smaller learning rate** with Simplified_AdEMAMix compared to AdamW (e.g., 1e-6 instead of 1e-4)
|
|
140
|
-
|
|
141
|
-
### 📊 Performance Validation
|
|
142
|
-
Small Batch Training (SDXL, BS=2, 1.8K steps)
|
|
143
|
-

|
|
144
|
-
|
|
145
|
-
- **🟢 Prodigy_adv** (beta1=0.9, d0=1e-5): Final LR=2.9e-4
|
|
146
|
-
- **🔵 Prodigy_adv + Simplified_AdEMAMix** (beta1=0.99, α=100, d0=1e-7): Final LR=5.8e-6
|
|
147
|
-
|
|
148
|
-
**Results**:
|
|
149
|
-
- Simplified_AdEMAMix shows faster convergence and better final performance
|
|
150
|
-
- D-Adaptation automatically handles aggressive updates (50x smaller LR)
|
|
151
|
-
- Generated samples show significantly better quality with Simplified_AdEMAMix
|
|
152
|
-
|
|
153
|
-
---
|
|
154
|
-
|
|
155
|
-
## ⚠️ Known Limitations
|
|
156
|
-
|
|
157
|
-
### 1. Prodigy_Adv Sensitivity
|
|
158
|
-
- Highly sensitive to gradient modifications (Adopt normalization, low-rank factorization)
|
|
159
|
-
- May fail to increase learning rate in some LoRA scenarios
|
|
160
|
-
- **Fix**: Disable factorization or set beta1=0
|
|
161
|
-
|
|
162
|
-
### 2. Aggressive Learning Rates
|
|
163
|
-
- Can destabilize factored first moment
|
|
164
|
-
- **Recommendation**: Check Prodigy learning rate as reference for safe LR threshold
|
|
165
|
-
|
|
166
|
-
---
|
|
167
|
-
|
|
168
|
-
## 📚 References
|
|
169
|
-
|
|
170
|
-
1. [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
|
|
171
|
-
2. [The AdEMAMix Optimizer: Better, Faster, Older](https://arxiv.org/abs/2409.03137)
|
|
172
|
-
3. [Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD Variants](https://arxiv.org/abs/2502.02431)
|
|
173
|
-
|
|
174
|
-
---
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
adv_optm/__init__.py,sha256=lOHXiF0KmYmUnaQGIoUYeIxdEfYE8T1hFSVq5FVujDs,311
|
|
2
|
-
adv_optm/optim/AdamW_adv.py,sha256=gVVpaKIbpv8pkfvfgVGCQN6No8A4atO7eRSPDBUVqq8,17490
|
|
3
|
-
adv_optm/optim/Adopt_adv.py,sha256=K7z1iiln_HxuEPLl9yGtCngBfdZHxJISQ5dKgNBV-s4,21463
|
|
4
|
-
adv_optm/optim/Lion_Prodigy_adv.py,sha256=aJ9orEEw0QYbrDzn1be0SHvOBlIkLwWG9RpWFuNMskM,13163
|
|
5
|
-
adv_optm/optim/Lion_adv.py,sha256=aGNAplZlyXYgVllYcV_s4bK8iC4fv6EizFoWIMNLdBc,8299
|
|
6
|
-
adv_optm/optim/Prodigy_adv.py,sha256=ecdnnbRgclcG49sGzxAmPHPE_0KkaQWtaiynsBYudoM,25979
|
|
7
|
-
adv_optm/optim/Simplified_AdEMAMix.py,sha256=Cm-8tdCaTahdz45EExgn2W3a5Xl44T9MW-IMrUDbJFk,12983
|
|
8
|
-
adv_optm/optim/__init__.py,sha256=pcP865H2j1tut2VfTUhzQh7V8TF_tzPjqFnjMfFed2k,382
|
|
9
|
-
adv_optm/util/BF16_Stochastic_Rounding.py,sha256=Q5H0BcogmE4atP65dLoI21HKSf50lRdsBDfeF6v9Tbg,1548
|
|
10
|
-
adv_optm/util/Effective_Shape.py,sha256=TBvIk1V8IuTbbBsxuekJA4e_v8JlR5Nujtut8RTWAm4,318
|
|
11
|
-
adv_optm/util/Kourkoutas.py,sha256=DCsIcZ1sEeSwthN8KZH7OTKoIZJ3ah4t5DNiqxsSuCk,8344
|
|
12
|
-
adv_optm/util/NNMF.py,sha256=yRf5IP5Sjq0Uf0DxN0Q8NxEGSdD-f1ULziLVDOjY8K4,639
|
|
13
|
-
adv_optm/util/One_Bit_Boolean.py,sha256=Wat49esdwohuN-OHOFMW8D0aOQgV9cP5Rl8z6yfmpos,1068
|
|
14
|
-
adv_optm/util/OrthoGrad.py,sha256=NzInuBQGy_Ja__M1R9XbvqVaQ0fhGbtGgFE9YON7B3I,707
|
|
15
|
-
adv_optm/util/__init__.py,sha256=qoyIF0jcLjs_vSEcsv36clw5LFNBEbifyXrrVxMH-G4,349
|
|
16
|
-
adv_optm-1.1.0.dev5.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
17
|
-
adv_optm-1.1.0.dev5.dist-info/METADATA,sha256=2xyGCRbIN54aIuAWnRIpR49okoVgVJb2AGHl2-jgVx8,8427
|
|
18
|
-
adv_optm-1.1.0.dev5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
19
|
-
adv_optm-1.1.0.dev5.dist-info/top_level.txt,sha256=iNfBIIzu-lPrQ7jyC56WBCcbkRwitM2nJ15-MRQ_6fg,9
|
|
20
|
-
adv_optm-1.1.0.dev5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|