adv-optm 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of adv-optm might be problematic. Click here for more details.

adv_optm/__init__.py CHANGED
@@ -14,4 +14,4 @@ __all__ = [
14
14
  "Lion_Prodigy_adv",
15
15
  ]
16
16
 
17
- __version__ = "0.1.5"
17
+ __version__ = "0.1.6"
@@ -230,7 +230,7 @@ class AdamW_adv(torch.optim.Optimizer):
230
230
  update.div_(denom)
231
231
  del denom
232
232
 
233
- update.view(p.shape).mul_(step_size)
233
+ update = update.view(p.shape).mul_(step_size)
234
234
 
235
235
  # Compress updated moments and store new factors
236
236
  if beta1 > 0:
@@ -277,7 +277,7 @@ class Prodigy_adv(torch.optim.Optimizer):
277
277
  update.div_(denom.add_(self.d * group['eps']))
278
278
  del denom
279
279
 
280
- update.view(p.shape).mul_(self.dlr)
280
+ update = update.view(p.shape).mul_(self.dlr)
281
281
 
282
282
  # Compress updated moments and store new factors
283
283
  if self.beta1 > 0:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: adv_optm
3
- Version: 0.1.5
3
+ Version: 0.1.6
4
4
  Summary: A family of highly efficient, lightweight yet powerful optimizers.
5
5
  Home-page: https://github.com/Koratahiu/Advanced_Optimizers
6
6
  Author: Koratahiu
@@ -1,9 +1,9 @@
1
- adv_optm/__init__.py,sha256=zZUr9I_lPmx5zNGtVbA7uw9wxMNzkcfMSzb2cR_jXrs,252
2
- adv_optm/optim/AdamW_adv.py,sha256=_jPdG4AurwEOqQjBji_uF4epBR9UVrxYgPSVBHvcQrM,13875
1
+ adv_optm/__init__.py,sha256=EdoSvk5lJeXMyo8GvdB8HcV7dhgclGDoxyGSY6tn7nc,252
2
+ adv_optm/optim/AdamW_adv.py,sha256=ZeNzk2tWbyd2QDI5hp4InwG3iuHHfqLrlhr_VmcQfRM,13884
3
3
  adv_optm/optim/Adopt_adv.py,sha256=rzBWfFOPrMuC6vwETsw7QPKmVXcv4IJRDCTj-6eU1Qk,14798
4
4
  adv_optm/optim/Lion_Prodigy_adv.py,sha256=JMss9X8lRpIU4E34PfFpWMMal_XNvZ8Yuqc6i7R5wIQ,14588
5
5
  adv_optm/optim/Lion_adv.py,sha256=BA4bSEhJiQ7BhGLDRn9nuMlBrLVh-OMscbmSTeGgRmI,10137
6
- adv_optm/optim/Prodigy_adv.py,sha256=uCqUYKJvRZ5bNAU3pMoHnyyaZtSdbzYgOz5IiRa_p0o,17729
6
+ adv_optm/optim/Prodigy_adv.py,sha256=mGV-B_9fvG3ycuG_-ohyECCU3fEki74fH-ZBHji_lO8,17738
7
7
  adv_optm/optim/__init__.py,sha256=e5UighM92LDvDB2JJwj8gDsTpXEedpytScwqS6F2FR8,300
8
8
  adv_optm/util/BF16_Stochastic_Rounding.py,sha256=Q5H0BcogmE4atP65dLoI21HKSf50lRdsBDfeF6v9Tbg,1548
9
9
  adv_optm/util/Effective_Shape.py,sha256=TBvIk1V8IuTbbBsxuekJA4e_v8JlR5Nujtut8RTWAm4,318
@@ -11,8 +11,8 @@ adv_optm/util/NNMF.py,sha256=yRf5IP5Sjq0Uf0DxN0Q8NxEGSdD-f1ULziLVDOjY8K4,639
11
11
  adv_optm/util/One_Bit_Boolean.py,sha256=Wat49esdwohuN-OHOFMW8D0aOQgV9cP5Rl8z6yfmpos,1068
12
12
  adv_optm/util/OrthoGrad.py,sha256=NzInuBQGy_Ja__M1R9XbvqVaQ0fhGbtGgFE9YON7B3I,707
13
13
  adv_optm/util/__init__.py,sha256=qoyIF0jcLjs_vSEcsv36clw5LFNBEbifyXrrVxMH-G4,349
14
- adv_optm-0.1.5.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
15
- adv_optm-0.1.5.dist-info/METADATA,sha256=2TPtVzcyE_Nu8ycs2KW9wsu7QD79Ff04OqL1TIbiW8I,5846
16
- adv_optm-0.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
17
- adv_optm-0.1.5.dist-info/top_level.txt,sha256=iNfBIIzu-lPrQ7jyC56WBCcbkRwitM2nJ15-MRQ_6fg,9
18
- adv_optm-0.1.5.dist-info/RECORD,,
14
+ adv_optm-0.1.6.dist-info/licenses/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
15
+ adv_optm-0.1.6.dist-info/METADATA,sha256=g0mWOWkYvoHtceMAWPdPAUw1vrgI5v9dnIIxLnD6aD0,5846
16
+ adv_optm-0.1.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
17
+ adv_optm-0.1.6.dist-info/top_level.txt,sha256=iNfBIIzu-lPrQ7jyC56WBCcbkRwitM2nJ15-MRQ_6fg,9
18
+ adv_optm-0.1.6.dist-info/RECORD,,