adapto 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- adapto/__init__.py +1 -0
- adapto/predictor.py +24 -0
- adapto/scaler.py +112 -0
- adapto/utils.py +5 -0
- adapto-0.1.0.dist-info/LICENSE +21 -0
- adapto-0.1.0.dist-info/METADATA +19 -0
- adapto-0.1.0.dist-info/RECORD +9 -0
- adapto-0.1.0.dist-info/WHEEL +5 -0
- adapto-0.1.0.dist-info/top_level.txt +1 -0
adapto/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
from .scaler import AutoScaler
|
adapto/predictor.py
ADDED
@@ -0,0 +1,24 @@
|
|
1
|
+
import numpy as np
|
2
|
+
from sklearn.linear_model import LinearRegression
|
3
|
+
|
4
|
+
|
5
|
+
class Predictor:
|
6
|
+
def __init__(self):
|
7
|
+
pass
|
8
|
+
|
9
|
+
def train_predictor(self, history):
|
10
|
+
if len(history) < 2:
|
11
|
+
return history[-1] if history else 0
|
12
|
+
|
13
|
+
X = np.arange(len(history)).reshape(-1, 1)
|
14
|
+
y = np.array(history)
|
15
|
+
model = LinearRegression().fit(X, y)
|
16
|
+
return model.predict([[len(history)]])[0]
|
17
|
+
|
18
|
+
def predict(self, cpu_history, memory_history, network_sent_history, network_recv_history):
|
19
|
+
return {
|
20
|
+
"predicted_cpu": self.train_predictor(cpu_history),
|
21
|
+
"predicted_memory": self.train_predictor(memory_history),
|
22
|
+
"predicted_network_sent": self.train_predictor(network_sent_history),
|
23
|
+
"predicted_network_recv": self.train_predictor(network_recv_history)
|
24
|
+
}
|
adapto/scaler.py
ADDED
@@ -0,0 +1,112 @@
|
|
1
|
+
import psutil
|
2
|
+
import time
|
3
|
+
import logging
|
4
|
+
from collections import deque
|
5
|
+
from adapto.predictor import Predictor
|
6
|
+
|
7
|
+
# Set up logging
|
8
|
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
9
|
+
|
10
|
+
|
11
|
+
class AutoScaler:
|
12
|
+
def __init__(self, scale_up_threshold=80, scale_down_threshold=30, memory_threshold=75,
|
13
|
+
bandwidth_threshold=100000000, min_instances=1, max_instances=10, history_size=10):
|
14
|
+
self.scale_up_threshold = scale_up_threshold
|
15
|
+
self.scale_down_threshold = scale_down_threshold
|
16
|
+
self.memory_threshold = memory_threshold
|
17
|
+
self.bandwidth_threshold = bandwidth_threshold # in bytes per second
|
18
|
+
self.current_instances = min_instances
|
19
|
+
self.min_instances = min_instances
|
20
|
+
self.max_instances = max_instances
|
21
|
+
self.previous_network = psutil.net_io_counters()
|
22
|
+
|
23
|
+
# Data history for prediction
|
24
|
+
self.cpu_history = deque(maxlen=history_size)
|
25
|
+
self.memory_history = deque(maxlen=history_size)
|
26
|
+
self.network_sent_history = deque(maxlen=history_size)
|
27
|
+
self.network_recv_history = deque(maxlen=history_size)
|
28
|
+
|
29
|
+
self.predictor = Predictor()
|
30
|
+
|
31
|
+
def get_system_metrics(self):
|
32
|
+
cpu_usage = psutil.cpu_percent(interval=1)
|
33
|
+
memory_usage = psutil.virtual_memory().percent
|
34
|
+
load_avg = psutil.getloadavg()[0] if hasattr(psutil, "getloadavg") else 0 # Unix-only
|
35
|
+
disk_usage = psutil.disk_usage('/').percent
|
36
|
+
network_metrics = self.get_network_metrics()
|
37
|
+
|
38
|
+
# Store metrics in history
|
39
|
+
self.cpu_history.append(cpu_usage)
|
40
|
+
self.memory_history.append(memory_usage)
|
41
|
+
self.network_sent_history.append(network_metrics['network_sent'])
|
42
|
+
self.network_recv_history.append(network_metrics['network_recv'])
|
43
|
+
|
44
|
+
return {
|
45
|
+
"cpu_usage": cpu_usage,
|
46
|
+
"memory_usage": memory_usage,
|
47
|
+
"load_avg": load_avg,
|
48
|
+
"disk_usage": disk_usage,
|
49
|
+
**network_metrics
|
50
|
+
}
|
51
|
+
|
52
|
+
def get_network_metrics(self):
|
53
|
+
network_io = psutil.net_io_counters()
|
54
|
+
network_sent = network_io.bytes_sent - self.previous_network.bytes_sent
|
55
|
+
network_recv = network_io.bytes_recv - self.previous_network.bytes_recv
|
56
|
+
self.previous_network = network_io
|
57
|
+
|
58
|
+
return {
|
59
|
+
"network_sent": network_sent,
|
60
|
+
"network_recv": network_recv
|
61
|
+
}
|
62
|
+
|
63
|
+
def predict_future_usage(self):
|
64
|
+
return self.predictor.predict(
|
65
|
+
list(self.cpu_history),
|
66
|
+
list(self.memory_history),
|
67
|
+
list(self.network_sent_history),
|
68
|
+
list(self.network_recv_history)
|
69
|
+
)
|
70
|
+
|
71
|
+
def scale_up(self):
|
72
|
+
if self.current_instances < self.max_instances:
|
73
|
+
self.current_instances += 1
|
74
|
+
logging.info(f"Scaling up: New instance count = {self.current_instances}")
|
75
|
+
else:
|
76
|
+
logging.info("Max instances reached. Cannot scale up further.")
|
77
|
+
|
78
|
+
def scale_down(self):
|
79
|
+
if self.current_instances > self.min_instances:
|
80
|
+
self.current_instances -= 1
|
81
|
+
logging.info(f"Scaling down: New instance count = {self.current_instances}")
|
82
|
+
else:
|
83
|
+
logging.info("Min instances reached. Cannot scale down further.")
|
84
|
+
|
85
|
+
def monitor(self, interval=5):
|
86
|
+
while True:
|
87
|
+
metrics = self.get_system_metrics()
|
88
|
+
predictions = self.predict_future_usage()
|
89
|
+
|
90
|
+
logging.info(
|
91
|
+
f"CPU: {metrics['cpu_usage']}% | Memory: {metrics['memory_usage']}% | Load Avg: {metrics['load_avg']} | Disk: {metrics['disk_usage']}% | Network Sent: {metrics['network_sent']} bytes/s | Network Recv: {metrics['network_recv']} bytes/s")
|
92
|
+
logging.info(
|
93
|
+
f"Predicted CPU: {predictions['predicted_cpu']}% | Predicted Memory: {predictions['predicted_memory']}% | Predicted Network Sent: {predictions['predicted_network_sent']} bytes/s | Predicted Network Recv: {predictions['predicted_network_recv']} bytes/s")
|
94
|
+
|
95
|
+
if (predictions['predicted_cpu'] > self.scale_up_threshold or
|
96
|
+
predictions['predicted_memory'] > self.memory_threshold or
|
97
|
+
predictions['predicted_network_sent'] > self.bandwidth_threshold or
|
98
|
+
predictions['predicted_network_recv'] > self.bandwidth_threshold):
|
99
|
+
self.scale_up()
|
100
|
+
elif (predictions['predicted_cpu'] < self.scale_down_threshold and
|
101
|
+
predictions['predicted_memory'] < self.memory_threshold / 2 and
|
102
|
+
predictions['predicted_network_sent'] < self.bandwidth_threshold / 2 and
|
103
|
+
predictions['predicted_network_recv'] < self.bandwidth_threshold / 2):
|
104
|
+
self.scale_down()
|
105
|
+
|
106
|
+
time.sleep(interval)
|
107
|
+
|
108
|
+
|
109
|
+
# Example usage
|
110
|
+
if __name__ == "__main__":
|
111
|
+
scaler = AutoScaler()
|
112
|
+
scaler.monitor()
|
adapto/utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Harshal Mehta
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,19 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: adapto
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: AI-driven auto-scaling library for dynamic resource allocation.
|
5
|
+
Home-page: https://github.com/hrshlmeht/adapto
|
6
|
+
Author: Harshal Mehta
|
7
|
+
Author-email: harshalmehta1998@gmail.com
|
8
|
+
License: UNKNOWN
|
9
|
+
Platform: UNKNOWN
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: License :: OSI Approved :: MIT License
|
12
|
+
Classifier: Operating System :: OS Independent
|
13
|
+
Requires-Python: >=3.7
|
14
|
+
License-File: LICENSE
|
15
|
+
Requires-Dist: psutil
|
16
|
+
Requires-Dist: numpy
|
17
|
+
|
18
|
+
UNKNOWN
|
19
|
+
|
@@ -0,0 +1,9 @@
|
|
1
|
+
adapto/__init__.py,sha256=8SWysOKRVNsD3cOXLOfIdVZx6MxzIqGKEh9Z26QuCyM,30
|
2
|
+
adapto/predictor.py,sha256=RqPbSWwppyI1PQGzGZMihpX5YQoyWvN_G-ocHOa2H0g,866
|
3
|
+
adapto/scaler.py,sha256=P1f8TDc4mrFpqXffs2FImg9mRRpP0GoYks_3JNyz4O4,4955
|
4
|
+
adapto/utils.py,sha256=8elBvOHytKcqT9TnVYcDU8yN1SibprjhNKrnSPgBR9E,144
|
5
|
+
adapto-0.1.0.dist-info/LICENSE,sha256=SAzpYNgJ4rxFNBFW55imF0XI2fjW7O7yXqajoK1SBmw,1091
|
6
|
+
adapto-0.1.0.dist-info/METADATA,sha256=i2ikB2E6_fVLZgGUmwgC-LCkxr24pEHr2v2lR55vv-c,531
|
7
|
+
adapto-0.1.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
8
|
+
adapto-0.1.0.dist-info/top_level.txt,sha256=IYsgAr6fnEC1R1ztYmK2ZpFNNGV0qRaf3Tvf-R8j0cM,7
|
9
|
+
adapto-0.1.0.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
adapto
|