adapto 0.1.0__py3-none-any.whl → 0.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
adapto/predictor.py CHANGED
@@ -1,24 +1,24 @@
1
- import numpy as np
2
- from sklearn.linear_model import LinearRegression
3
-
4
-
5
- class Predictor:
6
- def __init__(self):
7
- pass
8
-
9
- def train_predictor(self, history):
10
- if len(history) < 2:
11
- return history[-1] if history else 0
12
-
13
- X = np.arange(len(history)).reshape(-1, 1)
14
- y = np.array(history)
15
- model = LinearRegression().fit(X, y)
16
- return model.predict([[len(history)]])[0]
17
-
18
- def predict(self, cpu_history, memory_history, network_sent_history, network_recv_history):
19
- return {
20
- "predicted_cpu": self.train_predictor(cpu_history),
21
- "predicted_memory": self.train_predictor(memory_history),
22
- "predicted_network_sent": self.train_predictor(network_sent_history),
23
- "predicted_network_recv": self.train_predictor(network_recv_history)
24
- }
1
+ import numpy as np
2
+ from sklearn.linear_model import LinearRegression
3
+
4
+
5
+ class Predictor:
6
+ def __init__(self):
7
+ pass
8
+
9
+ def train_predictor(self, history):
10
+ if len(history) < 2:
11
+ return history[-1] if history else 0
12
+
13
+ X = np.arange(len(history)).reshape(-1, 1)
14
+ y = np.array(history)
15
+ model = LinearRegression().fit(X, y)
16
+ return model.predict([[len(history)]])[0]
17
+
18
+ def predict(self, cpu_history, memory_history, network_sent_history, network_recv_history):
19
+ return {
20
+ "predicted_cpu": self.train_predictor(cpu_history),
21
+ "predicted_memory": self.train_predictor(memory_history),
22
+ "predicted_network_sent": self.train_predictor(network_sent_history),
23
+ "predicted_network_recv": self.train_predictor(network_recv_history)
24
+ }
adapto/scaler.py CHANGED
@@ -1,112 +1,128 @@
1
- import psutil
2
- import time
3
- import logging
4
- from collections import deque
5
- from adapto.predictor import Predictor
6
-
7
- # Set up logging
8
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
9
-
10
-
11
- class AutoScaler:
12
- def __init__(self, scale_up_threshold=80, scale_down_threshold=30, memory_threshold=75,
13
- bandwidth_threshold=100000000, min_instances=1, max_instances=10, history_size=10):
14
- self.scale_up_threshold = scale_up_threshold
15
- self.scale_down_threshold = scale_down_threshold
16
- self.memory_threshold = memory_threshold
17
- self.bandwidth_threshold = bandwidth_threshold # in bytes per second
18
- self.current_instances = min_instances
19
- self.min_instances = min_instances
20
- self.max_instances = max_instances
21
- self.previous_network = psutil.net_io_counters()
22
-
23
- # Data history for prediction
24
- self.cpu_history = deque(maxlen=history_size)
25
- self.memory_history = deque(maxlen=history_size)
26
- self.network_sent_history = deque(maxlen=history_size)
27
- self.network_recv_history = deque(maxlen=history_size)
28
-
29
- self.predictor = Predictor()
30
-
31
- def get_system_metrics(self):
32
- cpu_usage = psutil.cpu_percent(interval=1)
33
- memory_usage = psutil.virtual_memory().percent
34
- load_avg = psutil.getloadavg()[0] if hasattr(psutil, "getloadavg") else 0 # Unix-only
35
- disk_usage = psutil.disk_usage('/').percent
36
- network_metrics = self.get_network_metrics()
37
-
38
- # Store metrics in history
39
- self.cpu_history.append(cpu_usage)
40
- self.memory_history.append(memory_usage)
41
- self.network_sent_history.append(network_metrics['network_sent'])
42
- self.network_recv_history.append(network_metrics['network_recv'])
43
-
44
- return {
45
- "cpu_usage": cpu_usage,
46
- "memory_usage": memory_usage,
47
- "load_avg": load_avg,
48
- "disk_usage": disk_usage,
49
- **network_metrics
50
- }
51
-
52
- def get_network_metrics(self):
53
- network_io = psutil.net_io_counters()
54
- network_sent = network_io.bytes_sent - self.previous_network.bytes_sent
55
- network_recv = network_io.bytes_recv - self.previous_network.bytes_recv
56
- self.previous_network = network_io
57
-
58
- return {
59
- "network_sent": network_sent,
60
- "network_recv": network_recv
61
- }
62
-
63
- def predict_future_usage(self):
64
- return self.predictor.predict(
65
- list(self.cpu_history),
66
- list(self.memory_history),
67
- list(self.network_sent_history),
68
- list(self.network_recv_history)
69
- )
70
-
71
- def scale_up(self):
72
- if self.current_instances < self.max_instances:
73
- self.current_instances += 1
74
- logging.info(f"Scaling up: New instance count = {self.current_instances}")
75
- else:
76
- logging.info("Max instances reached. Cannot scale up further.")
77
-
78
- def scale_down(self):
79
- if self.current_instances > self.min_instances:
80
- self.current_instances -= 1
81
- logging.info(f"Scaling down: New instance count = {self.current_instances}")
82
- else:
83
- logging.info("Min instances reached. Cannot scale down further.")
84
-
85
- def monitor(self, interval=5):
86
- while True:
87
- metrics = self.get_system_metrics()
88
- predictions = self.predict_future_usage()
89
-
90
- logging.info(
91
- f"CPU: {metrics['cpu_usage']}% | Memory: {metrics['memory_usage']}% | Load Avg: {metrics['load_avg']} | Disk: {metrics['disk_usage']}% | Network Sent: {metrics['network_sent']} bytes/s | Network Recv: {metrics['network_recv']} bytes/s")
92
- logging.info(
93
- f"Predicted CPU: {predictions['predicted_cpu']}% | Predicted Memory: {predictions['predicted_memory']}% | Predicted Network Sent: {predictions['predicted_network_sent']} bytes/s | Predicted Network Recv: {predictions['predicted_network_recv']} bytes/s")
94
-
95
- if (predictions['predicted_cpu'] > self.scale_up_threshold or
96
- predictions['predicted_memory'] > self.memory_threshold or
97
- predictions['predicted_network_sent'] > self.bandwidth_threshold or
98
- predictions['predicted_network_recv'] > self.bandwidth_threshold):
99
- self.scale_up()
100
- elif (predictions['predicted_cpu'] < self.scale_down_threshold and
101
- predictions['predicted_memory'] < self.memory_threshold / 2 and
102
- predictions['predicted_network_sent'] < self.bandwidth_threshold / 2 and
103
- predictions['predicted_network_recv'] < self.bandwidth_threshold / 2):
104
- self.scale_down()
105
-
106
- time.sleep(interval)
107
-
108
-
109
- # Example usage
110
- if __name__ == "__main__":
111
- scaler = AutoScaler()
112
- scaler.monitor()
1
+ import psutil
2
+ import time
3
+ import logging
4
+ from collections import deque
5
+ from adapto.predictor import Predictor
6
+
7
+ # Set up logging
8
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
9
+
10
+
11
+ class AutoScaler:
12
+ def __init__(self, scale_up_threshold=80, scale_down_threshold=30, memory_threshold=75,
13
+ bandwidth_threshold=100000000, min_instances=1, max_instances=10, history_size=10, custom_scaling=None):
14
+ self.scale_up_threshold = scale_up_threshold
15
+ self.scale_down_threshold = scale_down_threshold
16
+ self.memory_threshold = memory_threshold
17
+ self.bandwidth_threshold = bandwidth_threshold # in bytes per second
18
+ self.current_instances = min_instances
19
+ self.min_instances = min_instances
20
+ self.max_instances = max_instances
21
+ self.previous_network = psutil.net_io_counters()
22
+
23
+ # Optional custom scaling function; should accept (metrics, predictions) and return 'scale_up', 'scale_down', or 'no_change'
24
+ self.custom_scaling = custom_scaling
25
+
26
+ # Data history for prediction
27
+ self.cpu_history = deque(maxlen=history_size)
28
+ self.memory_history = deque(maxlen=history_size)
29
+ self.network_sent_history = deque(maxlen=history_size)
30
+ self.network_recv_history = deque(maxlen=history_size)
31
+
32
+ self.predictor = Predictor()
33
+
34
+ def get_system_metrics(self):
35
+ cpu_usage = psutil.cpu_percent(interval=1)
36
+ memory_usage = psutil.virtual_memory().percent
37
+ load_avg = psutil.getloadavg()[0] if hasattr(psutil, "getloadavg") else 0 # Unix-only
38
+ disk_usage = psutil.disk_usage('/').percent
39
+ network_metrics = self.get_network_metrics()
40
+
41
+ # Store metrics in history
42
+ self.cpu_history.append(cpu_usage)
43
+ self.memory_history.append(memory_usage)
44
+ self.network_sent_history.append(network_metrics['network_sent'])
45
+ self.network_recv_history.append(network_metrics['network_recv'])
46
+
47
+ return {
48
+ "cpu_usage": cpu_usage,
49
+ "memory_usage": memory_usage,
50
+ "load_avg": load_avg,
51
+ "disk_usage": disk_usage,
52
+ **network_metrics
53
+ }
54
+
55
+ def get_network_metrics(self):
56
+ network_io = psutil.net_io_counters()
57
+ network_sent = network_io.bytes_sent - self.previous_network.bytes_sent
58
+ network_recv = network_io.bytes_recv - self.previous_network.bytes_recv
59
+ self.previous_network = network_io
60
+
61
+ return {
62
+ "network_sent": network_sent,
63
+ "network_recv": network_recv
64
+ }
65
+
66
+ def predict_future_usage(self):
67
+ return self.predictor.predict(
68
+ list(self.cpu_history),
69
+ list(self.memory_history),
70
+ list(self.network_sent_history),
71
+ list(self.network_recv_history)
72
+ )
73
+
74
+ def scale_up(self):
75
+ if self.current_instances < self.max_instances:
76
+ self.current_instances += 1
77
+ logging.info(f"Scaling up: New instance count = {self.current_instances}")
78
+ else:
79
+ logging.info("Max instances reached. Cannot scale up further.")
80
+
81
+ def scale_down(self):
82
+ if self.current_instances > self.min_instances:
83
+ self.current_instances -= 1
84
+ logging.info(f"Scaling down: New instance count = {self.current_instances}")
85
+ else:
86
+ logging.info("Min instances reached. Cannot scale down further.")
87
+
88
+ def monitor(self, interval=5):
89
+ while True:
90
+ metrics = self.get_system_metrics()
91
+ predictions = self.predict_future_usage()
92
+
93
+ logging.info(
94
+ f"CPU: {metrics['cpu_usage']}% | Memory: {metrics['memory_usage']}% | Load Avg: {metrics['load_avg']} | Disk: {metrics['disk_usage']}% | "
95
+ f"Network Sent: {metrics['network_sent']} bytes/s | Network Recv: {metrics['network_recv']} bytes/s"
96
+ )
97
+ logging.info(
98
+ f"Predicted CPU: {predictions['predicted_cpu']}% | Predicted Memory: {predictions['predicted_memory']}% | "
99
+ f"Predicted Network Sent: {predictions['predicted_network_sent']} bytes/s | Predicted Network Recv: {predictions['predicted_network_recv']} bytes/s"
100
+ )
101
+
102
+ # If a custom scaling strategy is provided, use it to decide the action
103
+ if self.custom_scaling:
104
+ action = self.custom_scaling(metrics, predictions)
105
+ if action == 'scale_up':
106
+ self.scale_up()
107
+ elif action == 'scale_down':
108
+ self.scale_down()
109
+ else:
110
+ # Default scaling strategy
111
+ if (predictions['predicted_cpu'] > self.scale_up_threshold or
112
+ predictions['predicted_memory'] > self.memory_threshold or
113
+ predictions['predicted_network_sent'] > self.bandwidth_threshold or
114
+ predictions['predicted_network_recv'] > self.bandwidth_threshold):
115
+ self.scale_up()
116
+ elif (predictions['predicted_cpu'] < self.scale_down_threshold and
117
+ predictions['predicted_memory'] < self.memory_threshold / 2 and
118
+ predictions['predicted_network_sent'] < self.bandwidth_threshold / 2 and
119
+ predictions['predicted_network_recv'] < self.bandwidth_threshold / 2):
120
+ self.scale_down()
121
+
122
+ time.sleep(interval)
123
+
124
+
125
+ # Example usage
126
+ if __name__ == "__main__":
127
+ scaler = AutoScaler()
128
+ scaler.monitor()
adapto/utils.py CHANGED
@@ -1,5 +1,5 @@
1
- import time
2
-
3
- def log_event(message):
4
- """Log an event with a timestamp."""
1
+ import time
2
+
3
+ def log_event(message):
4
+ """Log an event with a timestamp."""
5
5
  print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}")
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 Harshal Mehta
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Harshal Mehta
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -1,19 +1,21 @@
1
- Metadata-Version: 2.1
2
- Name: adapto
3
- Version: 0.1.0
4
- Summary: AI-driven auto-scaling library for dynamic resource allocation.
5
- Home-page: https://github.com/hrshlmeht/adapto
6
- Author: Harshal Mehta
7
- Author-email: harshalmehta1998@gmail.com
8
- License: UNKNOWN
9
- Platform: UNKNOWN
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: License :: OSI Approved :: MIT License
12
- Classifier: Operating System :: OS Independent
13
- Requires-Python: >=3.7
14
- License-File: LICENSE
15
- Requires-Dist: psutil
16
- Requires-Dist: numpy
17
-
18
- UNKNOWN
19
-
1
+ Metadata-Version: 2.2
2
+ Name: adapto
3
+ Version: 0.1.2
4
+ Summary: AI-driven auto-scaling library for dynamic resource allocation.
5
+ Home-page: https://github.com/hrshlmeht/adapto
6
+ Author: Harshal Mehta
7
+ Author-email: harshalmehta1998@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Requires-Python: >=3.7
12
+ License-File: LICENSE
13
+ Requires-Dist: psutil
14
+ Requires-Dist: numpy
15
+ Dynamic: author
16
+ Dynamic: author-email
17
+ Dynamic: classifier
18
+ Dynamic: home-page
19
+ Dynamic: requires-dist
20
+ Dynamic: requires-python
21
+ Dynamic: summary
@@ -0,0 +1,9 @@
1
+ adapto/__init__.py,sha256=8SWysOKRVNsD3cOXLOfIdVZx6MxzIqGKEh9Z26QuCyM,30
2
+ adapto/predictor.py,sha256=ze-cMHdf290o3_9D-PQ7yQ8eMz1Utv3E3qTHRUFQiAI,842
3
+ adapto/scaler.py,sha256=qVwnjd6YondkJ_vorinmReXoO0TNf0-CiKUMvDgHYrw,5544
4
+ adapto/utils.py,sha256=6TgDvowlXL__v-OkLSTZF12ZOEqEKCLuNv1LmL70eAY,140
5
+ adapto-0.1.2.dist-info/LICENSE,sha256=B73NNEiUy-CCs4zrOPlOWR39PfoG4zKtK97OnNctjvg,1070
6
+ adapto-0.1.2.dist-info/METADATA,sha256=c42fZm-Mw_GOCTHNpZLqQpT6jv8DaNaIxSwrvqWnUV8,609
7
+ adapto-0.1.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
8
+ adapto-0.1.2.dist-info/top_level.txt,sha256=IYsgAr6fnEC1R1ztYmK2ZpFNNGV0qRaf3Tvf-R8j0cM,7
9
+ adapto-0.1.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.38.4)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,9 +0,0 @@
1
- adapto/__init__.py,sha256=8SWysOKRVNsD3cOXLOfIdVZx6MxzIqGKEh9Z26QuCyM,30
2
- adapto/predictor.py,sha256=RqPbSWwppyI1PQGzGZMihpX5YQoyWvN_G-ocHOa2H0g,866
3
- adapto/scaler.py,sha256=P1f8TDc4mrFpqXffs2FImg9mRRpP0GoYks_3JNyz4O4,4955
4
- adapto/utils.py,sha256=8elBvOHytKcqT9TnVYcDU8yN1SibprjhNKrnSPgBR9E,144
5
- adapto-0.1.0.dist-info/LICENSE,sha256=SAzpYNgJ4rxFNBFW55imF0XI2fjW7O7yXqajoK1SBmw,1091
6
- adapto-0.1.0.dist-info/METADATA,sha256=i2ikB2E6_fVLZgGUmwgC-LCkxr24pEHr2v2lR55vv-c,531
7
- adapto-0.1.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
8
- adapto-0.1.0.dist-info/top_level.txt,sha256=IYsgAr6fnEC1R1ztYmK2ZpFNNGV0qRaf3Tvf-R8j0cM,7
9
- adapto-0.1.0.dist-info/RECORD,,