active-vision 0.1.0__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
active_vision/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
- __version__ = "0.1.0"
1
+ __version__ = "0.1.1"
2
2
 
3
3
  from .core import *
active_vision/core.py CHANGED
@@ -2,7 +2,6 @@ import pandas as pd
2
2
  from loguru import logger
3
3
  from fastai.vision.all import *
4
4
  import torch
5
- import torch.nn.functional as F
6
5
 
7
6
  import warnings
8
7
  from typing import Callable
@@ -142,7 +141,8 @@ class ActiveLearner:
142
141
  {
143
142
  "filepath": filepaths,
144
143
  "pred_label": [self.learn.dls.vocab[i] for i in cls_preds.numpy()],
145
- "pred_conf": torch.max(F.softmax(preds, dim=1), dim=1)[0].numpy(),
144
+ "pred_conf": torch.max(preds, dim=1)[0].numpy(),
145
+ "pred_raw": preds.numpy().tolist(),
146
146
  }
147
147
  )
148
148
  return self.pred_df
@@ -275,107 +275,132 @@ class ActiveLearner:
275
275
  filepaths = df["filepath"].tolist()
276
276
 
277
277
  with gr.Blocks(head=shortcut_js) as demo:
278
- current_index = gr.State(value=0)
279
-
280
- image = gr.Image(
281
- type="filepath", label="Image", value=filepaths[0], height=500
282
- )
283
-
284
- with gr.Row():
285
- filename = gr.Textbox(
286
- label="Filename", value=filepaths[0], interactive=False
287
- )
278
+ with gr.Tabs():
279
+ with gr.Tab("Labeling"):
280
+ current_index = gr.State(value=0)
281
+
282
+ with gr.Row(min_height=500):
283
+ image = gr.Image(
284
+ type="filepath",
285
+ label="Image",
286
+ value=filepaths[0],
287
+ height=500
288
+ )
288
289
 
289
- pred_label = gr.Textbox(
290
- label="Predicted Label",
291
- value=df["pred_label"].iloc[0]
292
- if "pred_label" in df.columns
293
- else "",
294
- interactive=False,
295
- )
296
- pred_conf = gr.Textbox(
297
- label="Confidence",
298
- value=f"{df['pred_conf'].iloc[0]:.2%}"
299
- if "pred_conf" in df.columns
300
- else "",
301
- interactive=False,
302
- )
290
+ # Add bar plot with top 5 predictions
291
+ with gr.Column():
292
+ pred_plot = gr.BarPlot(
293
+ x="probability",
294
+ y="class",
295
+ title="Top 5 Predictions",
296
+ x_lim=[0, 1],
297
+ value=None
298
+ if "pred_raw" not in df.columns
299
+ else pd.DataFrame(
300
+ {
301
+ "class": self.class_names,
302
+ "probability": df["pred_raw"].iloc[0],
303
+ }
304
+ ).nlargest(5, "probability"),
305
+ )
306
+
307
+ filename = gr.Textbox(
308
+ label="Filename", value=filepaths[0], interactive=False
309
+ )
310
+
311
+ pred_label = gr.Textbox(
312
+ label="Predicted Label",
313
+ value=df["pred_label"].iloc[0]
314
+ if "pred_label" in df.columns
315
+ else "",
316
+ interactive=False,
317
+ )
318
+ pred_conf = gr.Textbox(
319
+ label="Confidence",
320
+ value=f"{df['pred_conf'].iloc[0]:.2%}"
321
+ if "pred_conf" in df.columns
322
+ else "",
323
+ interactive=False,
324
+ )
325
+
326
+ category = gr.Radio(
327
+ choices=self.class_names,
328
+ label="Select Category",
329
+ value=df["pred_label"].iloc[0]
330
+ if "pred_label" in df.columns
331
+ else None,
332
+ )
303
333
 
304
- category = gr.Radio(
305
- choices=self.class_names,
306
- label="Select Category",
307
- value=df["pred_label"].iloc[0] if "pred_label" in df.columns else None,
308
- )
334
+ with gr.Row():
335
+ back_btn = gr.Button("← Previous", elem_id="back_btn")
336
+ submit_btn = gr.Button(
337
+ "Submit (↑/Enter)",
338
+ variant="primary",
339
+ elem_id="submit_btn",
340
+ )
341
+ next_btn = gr.Button("Next →", elem_id="next_btn")
309
342
 
310
- with gr.Row():
311
- back_btn = gr.Button("← Previous", elem_id="back_btn")
312
- submit_btn = gr.Button(
313
- "Submit (↑/Enter)",
314
- variant="primary",
315
- elem_id="submit_btn",
316
- interactive=False,
317
- )
318
- next_btn = gr.Button("Next →", elem_id="next_btn")
319
-
320
- progress = gr.Slider(
321
- minimum=0,
322
- maximum=len(filepaths) - 1,
323
- value=0,
324
- label="Progress",
325
- interactive=False,
326
- )
343
+ progress = gr.Slider(
344
+ minimum=0,
345
+ maximum=len(filepaths) - 1,
346
+ value=0,
347
+ label="Progress",
348
+ interactive=False,
349
+ )
327
350
 
328
- finish_btn = gr.Button("Finish Labeling", variant="primary")
351
+ finish_btn = gr.Button("Finish Labeling", variant="primary")
329
352
 
330
- with gr.Accordion("Zero-Shot Inference", open=False) as zero_shot_accordion:
331
- gr.Markdown("""
332
- Uses a VLM to predict the label of the image.
333
- """)
353
+ with gr.Tab("Zero-Shot Inference"):
354
+ gr.Markdown("""
355
+ Uses a VLM to predict the label of the image.
356
+ """)
334
357
 
335
- import xinfer
336
- from xinfer.model_registry import model_registry
337
- from xinfer.types import ModelInputOutput
358
+ import xinfer
359
+ from xinfer.model_registry import model_registry
360
+ from xinfer.types import ModelInputOutput
338
361
 
339
- # Get models and filter for image-to-text models
340
- all_models = model_registry.list_models()
341
- model_list = [
342
- model.id
343
- for model in all_models
344
- if model.input_output == ModelInputOutput.IMAGE_TEXT_TO_TEXT
345
- ]
362
+ # Get models and filter for image-to-text models
363
+ all_models = model_registry.list_models()
364
+ model_list = [
365
+ model.id
366
+ for model in all_models
367
+ if model.input_output == ModelInputOutput.IMAGE_TEXT_TO_TEXT
368
+ ]
346
369
 
347
- with gr.Row():
348
370
  with gr.Row():
349
- model_dropdown = gr.Dropdown(
350
- choices=model_list,
351
- label="Select a model",
352
- value="vikhyatk/moondream2",
353
- )
354
- device_dropdown = gr.Dropdown(
355
- choices=["cuda", "cpu"],
356
- label="Device",
357
- value="cuda" if torch.cuda.is_available() else "cpu",
371
+ with gr.Row():
372
+ model_dropdown = gr.Dropdown(
373
+ choices=model_list,
374
+ label="Select a model",
375
+ value="vikhyatk/moondream2",
376
+ )
377
+ device_dropdown = gr.Dropdown(
378
+ choices=["cuda", "cpu"],
379
+ label="Device",
380
+ value="cuda" if torch.cuda.is_available() else "cpu",
381
+ )
382
+ dtype_dropdown = gr.Dropdown(
383
+ choices=["float32", "float16", "bfloat16"],
384
+ label="Data Type",
385
+ value="float16"
386
+ if torch.cuda.is_available()
387
+ else "float32",
388
+ )
389
+
390
+ with gr.Column():
391
+ prompt_textbox = gr.Textbox(
392
+ label="Prompt",
393
+ lines=5,
394
+ value=f"Classify the image into one of the following categories: {self.class_names}. Answer with the category name only.",
395
+ interactive=True,
358
396
  )
359
- dtype_dropdown = gr.Dropdown(
360
- choices=["float32", "float16", "bfloat16"],
361
- label="Data Type",
362
- value="float16" if torch.cuda.is_available() else "float32",
363
- )
364
-
365
- with gr.Column():
366
- prompt_textbox = gr.Textbox(
367
- label="Prompt",
368
- lines=3,
369
- value=f"Classify the image into one of the following categories: {self.class_names}",
370
- interactive=True,
371
- )
372
- inference_btn = gr.Button("Run Inference", variant="primary")
397
+ inference_btn = gr.Button("Run Inference", variant="primary")
373
398
 
374
- result_textbox = gr.Textbox(
375
- label="Result",
376
- lines=3,
377
- interactive=False,
378
- )
399
+ result_textbox = gr.Textbox(
400
+ label="Result",
401
+ lines=3,
402
+ interactive=False,
403
+ )
379
404
 
380
405
  def run_zero_shot_inference(prompt, model, device, dtype, current_filename):
381
406
  model = xinfer.create_model(model, device=device, dtype=dtype)
@@ -407,6 +432,16 @@ class ActiveLearner:
407
432
  next_idx = current_idx + direction
408
433
 
409
434
  if 0 <= next_idx < len(filepaths):
435
+ plot_data = (
436
+ None
437
+ if "pred_raw" not in df.columns
438
+ else pd.DataFrame(
439
+ {
440
+ "class": self.class_names,
441
+ "probability": df["pred_raw"].iloc[next_idx],
442
+ }
443
+ ).nlargest(5, "probability")
444
+ )
410
445
  return (
411
446
  filepaths[next_idx],
412
447
  filepaths[next_idx],
@@ -421,7 +456,18 @@ class ActiveLearner:
421
456
  else None,
422
457
  next_idx,
423
458
  next_idx,
459
+ plot_data,
424
460
  )
461
+ plot_data = (
462
+ None
463
+ if "pred_raw" not in df.columns
464
+ else pd.DataFrame(
465
+ {
466
+ "class": self.class_names,
467
+ "probability": df["pred_raw"].iloc[current_idx],
468
+ }
469
+ ).nlargest(5, "probability")
470
+ )
425
471
  return (
426
472
  filepaths[current_idx],
427
473
  filepaths[current_idx],
@@ -436,6 +482,7 @@ class ActiveLearner:
436
482
  else None,
437
483
  current_idx,
438
484
  current_idx,
485
+ plot_data,
439
486
  )
440
487
 
441
488
  def save_and_next(current_idx, selected_category):
@@ -443,20 +490,21 @@ class ActiveLearner:
443
490
  current_idx = int(current_idx)
444
491
 
445
492
  if selected_category is None:
493
+ plot_data = None if "pred_raw" not in df.columns else pd.DataFrame(
494
+ {
495
+ "class": self.class_names,
496
+ "probability": df["pred_raw"].iloc[current_idx],
497
+ }
498
+ ).nlargest(5, "probability")
446
499
  return (
447
500
  filepaths[current_idx],
448
501
  filepaths[current_idx],
449
- df["pred_label"].iloc[current_idx]
450
- if "pred_label" in df.columns
451
- else "",
452
- f"{df['pred_conf'].iloc[current_idx]:.2%}"
453
- if "pred_conf" in df.columns
454
- else "",
455
- df["pred_label"].iloc[current_idx]
456
- if "pred_label" in df.columns
457
- else None,
502
+ df["pred_label"].iloc[current_idx] if "pred_label" in df.columns else "",
503
+ f"{df['pred_conf'].iloc[current_idx]:.2%}" if "pred_conf" in df.columns else "",
504
+ df["pred_label"].iloc[current_idx] if "pred_label" in df.columns else None,
458
505
  current_idx,
459
506
  current_idx,
507
+ plot_data,
460
508
  )
461
509
 
462
510
  # Save the current annotation
@@ -466,35 +514,38 @@ class ActiveLearner:
466
514
  # Move to next image if not at the end
467
515
  next_idx = current_idx + 1
468
516
  if next_idx >= len(filepaths):
517
+ plot_data = None if "pred_raw" not in df.columns else pd.DataFrame(
518
+ {
519
+ "class": self.class_names,
520
+ "probability": df["pred_raw"].iloc[current_idx],
521
+ }
522
+ ).nlargest(5, "probability")
469
523
  return (
470
524
  filepaths[current_idx],
471
525
  filepaths[current_idx],
472
- df["pred_label"].iloc[current_idx]
473
- if "pred_label" in df.columns
474
- else "",
475
- f"{df['pred_conf'].iloc[current_idx]:.2%}"
476
- if "pred_conf" in df.columns
477
- else "",
478
- df["pred_label"].iloc[current_idx]
479
- if "pred_label" in df.columns
480
- else None,
526
+ df["pred_label"].iloc[current_idx] if "pred_label" in df.columns else "",
527
+ f"{df['pred_conf'].iloc[current_idx]:.2%}" if "pred_conf" in df.columns else "",
528
+ df["pred_label"].iloc[current_idx] if "pred_label" in df.columns else None,
481
529
  current_idx,
482
530
  current_idx,
531
+ plot_data,
483
532
  )
533
+
534
+ plot_data = None if "pred_raw" not in df.columns else pd.DataFrame(
535
+ {
536
+ "class": self.class_names,
537
+ "probability": df["pred_raw"].iloc[next_idx],
538
+ }
539
+ ).nlargest(5, "probability")
484
540
  return (
485
541
  filepaths[next_idx],
486
542
  filepaths[next_idx],
487
- df["pred_label"].iloc[next_idx]
488
- if "pred_label" in df.columns
489
- else "",
490
- f"{df['pred_conf'].iloc[next_idx]:.2%}"
491
- if "pred_conf" in df.columns
492
- else "",
493
- df["pred_label"].iloc[next_idx]
494
- if "pred_label" in df.columns
495
- else None,
543
+ df["pred_label"].iloc[next_idx] if "pred_label" in df.columns else "",
544
+ f"{df['pred_conf'].iloc[next_idx]:.2%}" if "pred_conf" in df.columns else "",
545
+ df["pred_label"].iloc[next_idx] if "pred_label" in df.columns else None,
496
546
  next_idx,
497
547
  next_idx,
548
+ plot_data,
498
549
  )
499
550
 
500
551
  def convert_csv_to_parquet():
@@ -519,6 +570,7 @@ class ActiveLearner:
519
570
  category,
520
571
  current_index,
521
572
  progress,
573
+ pred_plot,
522
574
  ],
523
575
  )
524
576
 
@@ -533,6 +585,7 @@ class ActiveLearner:
533
585
  category,
534
586
  current_index,
535
587
  progress,
588
+ pred_plot,
536
589
  ],
537
590
  )
538
591
 
@@ -547,6 +600,7 @@ class ActiveLearner:
547
600
  category,
548
601
  current_index,
549
602
  progress,
603
+ pred_plot,
550
604
  ],
551
605
  )
552
606
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: active-vision
3
- Version: 0.1.0
3
+ Version: 0.1.1
4
4
  Summary: Active learning for edge vision.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
@@ -71,17 +71,18 @@ cd active-vision
71
71
  pip install -e .
72
72
  ```
73
73
 
74
- I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
75
-
76
- If you're using uv:
77
-
78
- ```bash
79
- uv venv
80
- uv sync
81
- ```
82
- Once the virtual environment is created, you can install the package using pip.
83
74
 
84
75
  > [!TIP]
76
+ > I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
77
+ >
78
+ > If you're using uv:
79
+ >
80
+ > ```bash
81
+ > uv venv
82
+ > uv sync
83
+ > ```
84
+ > Once the virtual environment is created, you can install the package using pip.
85
+ >
85
86
  > If you're using uv add a `uv` before the pip install command to install into your virtual environment. Eg:
86
87
  > ```bash
87
88
  > uv pip install active-vision
@@ -120,12 +121,16 @@ pred_df = al.predict(filepaths)
120
121
  # Sample low confidence predictions from unlabeled set
121
122
  uncertain_df = al.sample_uncertain(pred_df, num_samples=10)
122
123
 
123
- # Launch a Gradio UI to label the low confidence samples
124
+ # Launch a Gradio UI to label the low confidence samples, save the labeled samples to a file
124
125
  al.label(uncertain_df, output_filename="uncertain")
125
126
  ```
126
127
 
127
128
  ![Gradio UI](https://raw.githubusercontent.com/dnth/active-vision/main/assets/labeling_ui.png)
128
129
 
130
+ In the UI, you can optionally run zero-shot inference on the image. This will use a VLM to predict the label of the image. There are a dozen VLM models as supported in the [x.infer project](https://github.com/dnth/x.infer).
131
+
132
+ ![Zero-Shot Inference](https://raw.githubusercontent.com/dnth/active-vision/main/assets/zero_shot_ui.png)
133
+
129
134
  Once complete, the labeled samples will be save into a new df.
130
135
  We can now add the newly labeled data to the training set.
131
136
 
@@ -170,12 +175,12 @@ The active learning loop is a iterative process and can keep going until you hit
170
175
  For this dataset,I decided to stop the active learning loop at 275 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard.
171
176
 
172
177
 
173
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
174
- |-----------------|---------------------|--------------|----------------------|----------------|--------|
175
- | 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
176
- | 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
177
- | 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
178
- | 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
178
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
179
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |------------------------------------------------------------------------------------- |
180
+ | 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
181
+ | 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
182
+ | 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
183
+ | 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
179
184
 
180
185
  ### Dog Food
181
186
  - num classes: 2
@@ -185,11 +190,11 @@ To start the active learning loop, I labeled 20 images (10 images from each clas
185
190
 
186
191
  I decided to stop the active learning loop at 160 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
187
192
 
188
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
189
- |-----------------|---------------------|--------------|-------|----------------|--------|
190
- | 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
191
- | 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
192
- | 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
193
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
194
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |--------------------------------------------------------------------------------------------- |
195
+ | 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
196
+ | 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
197
+ | 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
193
198
 
194
199
  ### Oxford-IIIT Pet
195
200
  - num classes: 37
@@ -199,13 +204,27 @@ To start the active learning loop, I labeled 370 images (10 images from each cla
199
204
 
200
205
  I decided to stop the active learning loop at 612 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
201
206
 
202
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
203
- |-----------------|---------------------|--------------|-------|----------------|--------|
204
- | 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
205
- | 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
206
- | 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
207
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
208
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |------------------------------------------------------------------------------------------------- |
209
+ | 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
210
+ | 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
211
+ | 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
212
+
213
+ ### Eurosat RGB
214
+ - num classes: 10
215
+ - num images: 16100
216
+
217
+ To start the active learning loop, I labeled 100 images (10 images from each class) and iteratively labeled the most informative images until I hit 1188 labeled images.
218
+
219
+ I decided to stop the active learning loop at 1188 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
207
220
 
208
221
 
222
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
223
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |-------------------------------------------------------------------------------------------- |
224
+ | 16100 | 98.55% | 6 | vit-base-patch16-224 | ❌ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/03_train_all.ipynb) |
225
+ | 1188 | 94.59% | 6 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/02_train.ipynb) |
226
+ | 1188 | 96.57% | 13 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/02_train.ipynb) |
227
+
209
228
 
210
229
  ## ➿ Workflow
211
230
  This section describes a more detailed workflow for active learning. There are two workflows for active learning that we can use depending on the availability of labeled data.
@@ -273,55 +292,21 @@ graph TD
273
292
 
274
293
 
275
294
 
276
- <!-- ## Methodology
277
- To test out the workflows we will use the [imagenette dataset](https://huggingface.co/datasets/frgfm/imagenette). But this will be applicable to any dataset.
278
-
279
- Imagenette is a subset of the ImageNet dataset with 10 classes. We will use this dataset to test out the workflows. Additionally, Imagenette has an existing leaderboard which we can use to evaluate the performance of the models.
280
-
281
- ### Step 1: Download the dataset
282
- Download the imagenette dataset. The imagenette dataset has a train and validation split. Since the leaderboard is based on the validation set, we will evalutate the performance of our model on the validation set to make it easier to compare to the leaderboard.
283
-
284
- We will treat the imagenette train set as a unlabeled set and iteratively sample from it while monitoring the performance on the validation set. Ideally we will be able to get to a point where the performance on the validation set is close to the leaderboard with minimal number of labeled images.
295
+ ## 🧱 Sampling Approaches
285
296
 
286
- I've processed the imagenette dataset and uploaded it to the hub. You can download it from [here](https://huggingface.co/datasets/dnth/active-learning-imagenette).
297
+ Recommendation 1:
298
+ - 10% randomly selected from unlabeled items.
299
+ - 80% selected from the lowest confidence items.
300
+ - 10% selected as outliers.
287
301
 
288
- To load the dataset, you can use the following code:
289
- ```python
290
- from datasets import load_dataset
291
-
292
- unlabeled_dataset = load_dataset("dnth/active-learning-imagenette", "unlabeled")
293
- eval_dataset = load_dataset("dnth/active-learning-imagenette", "evaluation")
294
- ```
302
+ Recommendation 2:
295
303
 
296
- ### Step 2: Initial Sampling
297
- Label an initial dataset of 10 images from each class. This will give us a small proxy dataset to train our model on. The sampling will be done randomly. There are more intelligent sampling strategies but we will start with random sampling.
304
+ - Sample 100 predicted images at 10–20% confidence.
305
+ - Sample 100 predicted images at 20–30% confidence.
306
+ - Sample 100 predicted images at 30–40% confidence, and so on.
298
307
 
299
- ### Step 3: Training the proxy model
300
- Train a proxy model on the initial dataset. The proxy model will be a small model that is easy to train and deploy. We will use the fastai framework to train the model. We will use the resnet18 architecture as a starting point. Once training is complete, compute the accuracy of the proxy model on the validation set and compare it to the leaderboard.
301
308
 
302
- > [!TIP]
303
- > With the initial model we got 91.24% accuracy on the validation set. See the [notebook](./nbs/01_initial_sampling.ipynb) for more details.
304
- > | Train Epochs | Number of Images | Validation Accuracy | Source |
305
- > |--------------|-----------------|----------------------|------------------|
306
- > | 10 | 100 | 91.24% | Initial sampling [notebook](./nbs/01_initial_sampling.ipynb) |
307
- > | 80 | 9469 | 94.90% | fastai |
308
- > | 200 | 9469 | 95.11% | fastai |
309
+ Uncertainty and diversity sampling are most effective when combined. For instance, you could first sample the most uncertain items using an uncertainty sampling method, then apply a diversity sampling method such as clustering to select a diverse set from the uncertain items.
309
310
 
311
+ Ultimately, the right ratios can depend on the specific task and dataset.
310
312
 
311
-
312
- ### Step 4: Inference on the unlabeled dataset
313
- Run inference on the unlabeled dataset (the remaining imagenette train set) and evaluate the performance of the proxy model.
314
-
315
- ### Step 5: Active learning
316
- Use active learning to select the most informative images to label from the unlabeled set. Pick the top 10 images from the unlabeled set that the proxy model is least confident about and label them.
317
-
318
- ### Step 6: Repeat
319
- Repeat step 3 - 5 until the performance on the validation set is close to the leaderboard. Note the number of labeled images vs the performance on the validation set. Ideally we want to get to a point where the performance on the validation set is close to the leaderboard with minimal number of labeled images.
320
-
321
-
322
- After the first iteration we got 94.57% accuracy on the validation set. See the [notebook](./nbs/03_retrain_model.ipynb) for more details.
323
-
324
- > [!TIP]
325
- > | Train Epochs | Number of Images | Validation Accuracy | Source |
326
- > |--------------|-----------------|----------------------|------------------|
327
- > | 10 | 200 | 94.57% | First relabeling [notebook](./nbs/03_retrain_model.ipynb) | -->
@@ -0,0 +1,7 @@
1
+ active_vision/__init__.py,sha256=xWa6YKvR3wF8p_D9PprKNGP3VnxjbyVpcwnPCMhhaHM,43
2
+ active_vision/core.py,sha256=jWzTOx3GCB2Sq5-JGgoi-ZD2teoIGTYas9StqZxXefo,24999
3
+ active_vision-0.1.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
4
+ active_vision-0.1.1.dist-info/METADATA,sha256=U8-IH0WJnPj6KPBsfsxcW4GZCTDY0KFxrqz7migcnro,15454
5
+ active_vision-0.1.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
+ active_vision-0.1.1.dist-info/top_level.txt,sha256=7qUQvccN2UU63z5S9vrgJmqK-8sFGrtpf1e9Z86nihE,14
7
+ active_vision-0.1.1.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- active_vision/__init__.py,sha256=dDQijes3C7zAUc_08TyblLSP6Lk0PcPPI8PYgEliKCI,43
2
- active_vision/core.py,sha256=D_ve-nMv2EWSaQCOBTggleo-1op8JHXchk0QLicGDqg,21715
3
- active_vision-0.1.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
4
- active_vision-0.1.0.dist-info/METADATA,sha256=aA793OK3PGKnKVchMQthXl1H14xcBh_kq9tAO9o6jf0,15944
5
- active_vision-0.1.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
- active_vision-0.1.0.dist-info/top_level.txt,sha256=7qUQvccN2UU63z5S9vrgJmqK-8sFGrtpf1e9Z86nihE,14
7
- active_vision-0.1.0.dist-info/RECORD,,