active-vision 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
active_vision/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
- __version__ = "0.0.3"
1
+ __version__ = "0.0.5"
2
2
 
3
3
  from .core import *
active_vision/core.py CHANGED
@@ -1,6 +1,5 @@
1
1
  import pandas as pd
2
2
  from loguru import logger
3
- from fastai.vision.models import resnet18, resnet34
4
3
  from fastai.callback.all import ShowGraphCallback
5
4
  from fastai.vision.all import (
6
5
  ImageDataLoaders,
@@ -17,6 +16,7 @@ import torch
17
16
  import torch.nn.functional as F
18
17
 
19
18
  import warnings
19
+ from typing import Callable
20
20
 
21
21
  warnings.filterwarnings("ignore", category=FutureWarning)
22
22
 
@@ -25,13 +25,14 @@ class ActiveLearner:
25
25
  def __init__(self, model_name: str):
26
26
  self.model = self.load_model(model_name)
27
27
 
28
- def load_model(self, model_name: str):
29
- models = {"resnet18": resnet18, "resnet34": resnet34}
30
- logger.info(f"Loading model {model_name}")
31
- if model_name not in models:
32
- logger.error(f"Model {model_name} not found")
33
- raise ValueError(f"Model {model_name} not found")
34
- return models[model_name]
28
+ def load_model(self, model_name: str | Callable):
29
+ if isinstance(model_name, Callable):
30
+ logger.info(f"Loading fastai model {model_name.__name__}")
31
+ return model_name
32
+
33
+ if isinstance(model_name, str):
34
+ logger.info(f"Loading timm model {model_name}")
35
+ return model_name
35
36
 
36
37
  def load_dataset(
37
38
  self,
@@ -41,6 +42,7 @@ class ActiveLearner:
41
42
  valid_pct: float = 0.2,
42
43
  batch_size: int = 16,
43
44
  image_size: int = 224,
45
+ batch_tfms: Callable = None,
44
46
  ):
45
47
  logger.info(f"Loading dataset from {filepath_col} and {label_col}")
46
48
  self.train_set = df.copy()
@@ -54,13 +56,16 @@ class ActiveLearner:
54
56
  label_col=label_col,
55
57
  bs=batch_size,
56
58
  item_tfms=Resize(image_size),
57
- batch_tfms=aug_transforms(size=image_size, min_scale=0.75),
59
+ batch_tfms=batch_tfms,
58
60
  )
59
61
  logger.info("Creating learner")
60
62
  self.learn = vision_learner(self.dls, self.model, metrics=accuracy).to_fp16()
61
63
  self.class_names = self.dls.vocab
62
64
  logger.info("Done. Ready to train.")
63
65
 
66
+ def show_batch(self):
67
+ self.dls.show_batch()
68
+
64
69
  def lr_find(self):
65
70
  logger.info("Finding optimal learning rate")
66
71
  self.lrs = self.learn.lr_find(suggest_funcs=(minimum, steep, valley, slide))
@@ -112,13 +117,69 @@ class ActiveLearner:
112
117
  logger.info(f"Accuracy: {accuracy:.2%}")
113
118
  return accuracy
114
119
 
115
- def sample_uncertain(self, df: pd.DataFrame, num_samples: int):
120
+ def sample_uncertain(
121
+ self, df: pd.DataFrame, num_samples: int, strategy: str = "least-confidence"
122
+ ):
116
123
  """
117
124
  Sample top `num_samples` low confidence samples. Returns a df with filepaths and predicted labels, and confidence scores.
125
+
126
+ Strategies:
127
+ - least-confidence: Get top `num_samples` low confidence samples.
128
+ - margin-of-confidence: Get top `num_samples` samples with the smallest margin between the top two predictions.
129
+ - ratio-of-confidence: Get top `num_samples` samples with the highest ratio between the top two predictions.
130
+ - entropy: Get top `num_samples` samples with the highest entropy.
118
131
  """
119
- logger.info(f"Getting top {num_samples} low confidence samples")
120
- uncertain_df = df.sort_values(by="pred_conf", ascending=True).head(num_samples)
121
- return uncertain_df
132
+
133
+ # Remove samples that is already in the training set
134
+ df = df[~df["filepath"].isin(self.train_set["filepath"])]
135
+
136
+ if strategy == "least-confidence":
137
+ logger.info(f"Getting top {num_samples} low confidence samples")
138
+ uncertain_df = df.sort_values(by="pred_conf", ascending=True).head(
139
+ num_samples
140
+ )
141
+ return uncertain_df
142
+
143
+ # TODO: Implement margin of confidence strategy
144
+ elif strategy == "margin-of-confidence":
145
+ logger.error("Margin of confidence strategy not implemented")
146
+ raise NotImplementedError("Margin of confidence strategy not implemented")
147
+
148
+ # TODO: Implement ratio of confidence strategy
149
+ elif strategy == "ratio-of-confidence":
150
+ logger.error("Ratio of confidence strategy not implemented")
151
+ raise NotImplementedError("Ratio of confidence strategy not implemented")
152
+
153
+ # TODO: Implement entropy strategy
154
+ elif strategy == "entropy":
155
+ logger.error("Entropy strategy not implemented")
156
+ raise NotImplementedError("Entropy strategy not implemented")
157
+
158
+ else:
159
+ logger.error(f"Unknown strategy: {strategy}")
160
+ raise ValueError(f"Unknown strategy: {strategy}")
161
+
162
+ def sample_diverse(self, df: pd.DataFrame, num_samples: int):
163
+ """
164
+ Sample top `num_samples` diverse samples. Returns a df with filepaths and predicted labels, and confidence scores.
165
+
166
+ Strategies:
167
+ - model-based-outlier: Get top `num_samples` samples with lowest activation of the model's last layer.
168
+ - cluster-based: Get top `num_samples` samples with the highest distance to the nearest neighbor.
169
+ - representative: Get top `num_samples` samples with the highest distance to the centroid of the training set.
170
+ """
171
+ logger.error("Diverse sampling strategy not implemented")
172
+ raise NotImplementedError("Diverse sampling strategy not implemented")
173
+
174
+ def sample_random(self, df: pd.DataFrame, num_samples: int, seed: int = None):
175
+ """
176
+ Sample `num_samples` random samples. Returns a df with filepaths and predicted labels, and confidence scores.
177
+ """
178
+
179
+ logger.info(f"Sampling {num_samples} random samples")
180
+ if seed is not None:
181
+ logger.info(f"Using seed: {seed}")
182
+ return df.sample(n=num_samples, random_state=seed)
122
183
 
123
184
  def label(self, df: pd.DataFrame, output_filename: str = "labeled"):
124
185
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: active-vision
3
- Version: 0.0.3
3
+ Version: 0.0.5
4
4
  Summary: Active learning for edge vision.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
@@ -12,6 +12,7 @@ Requires-Dist: ipykernel>=6.29.5
12
12
  Requires-Dist: ipywidgets>=8.1.5
13
13
  Requires-Dist: loguru>=0.7.3
14
14
  Requires-Dist: seaborn>=0.13.2
15
+ Requires-Dist: timm>=1.0.13
15
16
 
16
17
  ![Python Version](https://img.shields.io/badge/python-3.10%2B-blue?style=for-the-badge)
17
18
  ![License](https://img.shields.io/badge/License-Apache%202.0-green.svg?style=for-the-badge)
@@ -22,20 +23,38 @@ Requires-Dist: seaborn>=0.13.2
22
23
  <img src="https://raw.githubusercontent.com/dnth/active-vision/main/assets/logo.png" alt="active-vision">
23
24
  </p>
24
25
 
25
- Active learning at the edge for computer vision.
26
+ The goal of this project is to create a framework for the active learning loop for computer vision. The diagram below shows a general workflow of how the active learning loop works.
26
27
 
27
- The goal of this project is to create a framework for the active learning loop for computer vision deployed on edge devices.
28
+ <p align="center">
29
+ <img src="https://raw.githubusercontent.com/dnth/active-vision/main/assets/data_flywheel.gif" alt="active-vision", width="700">
30
+ </p>
28
31
 
29
- ## Installation
30
- I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
32
+ ### Supported tasks:
33
+ - [X] Image classification
34
+ - [ ] Object detection
35
+ - [ ] Segmentation
31
36
 
32
- If you're using uv:
37
+ ### Supported models:
38
+ - [X] Fastai models
39
+ - [X] Torchvision models
40
+ - [X] Timm models
41
+ - [ ] Hugging Face models
33
42
 
34
- ```bash
35
- uv venv
36
- uv sync
37
- ```
38
- Once the virtual environment is created, you can install the package using pip.
43
+ ### Supported Active Learning Strategies:
44
+
45
+ Uncertainty Sampling:
46
+ - [X] Least confidence
47
+ - [ ] Margin of confidence
48
+ - [ ] Ratio of confidence
49
+ - [ ] Entropy
50
+
51
+ Diverse Sampling:
52
+ - [X] Random sampling
53
+ - [ ] Model-based outlier
54
+ - [ ] Cluster-based
55
+ - [ ] Representative
56
+
57
+ ## 📦 Installation
39
58
 
40
59
  Get a release from PyPI
41
60
  ```bash
@@ -49,19 +68,31 @@ cd active-vision
49
68
  pip install -e .
50
69
  ```
51
70
 
71
+ I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
72
+
73
+ If you're using uv:
74
+
75
+ ```bash
76
+ uv venv
77
+ uv sync
78
+ ```
79
+ Once the virtual environment is created, you can install the package using pip.
80
+
52
81
  > [!TIP]
53
- > If you're using uv add a uv before the pip install command to install into your virtual environment. Eg:
82
+ > If you're using uv add a `uv` before the pip install command to install into your virtual environment. Eg:
54
83
  > ```bash
55
84
  > uv pip install active-vision
56
85
  > ```
57
86
 
58
- ## Usage
87
+ ## 🛠️ Usage
59
88
  See the [notebook](./nbs/04_relabel_loop.ipynb) for a complete example.
60
89
 
61
- Be sure to prepared 3 datasets:
62
- - train: A dataframe of an existing labeled training dataset.
63
- - unlabeled: A dataframe of unlabeled data which we will sample from using active learning.
64
- - eval: A dataframe of labeled data which we will use to evaluate the performance of the model. (Optional)
90
+ Be sure to prepared 3 subsets of the dataset:
91
+ - [Initial samples](./nbs/initial_samples.parquet): A dataframe of a labeled images to train an initial model. If you don't have any labeled data, you can label some images yourself.
92
+ - [Unlabeled samples](./nbs/unlabeled_samples.parquet): A dataframe of *unlabeled* images. We will continuously sample from this set using active learning strategies.
93
+ - [Evaluation samples](./nbs/evaluation_samples.parquet): A dataframe of *labeled* images. We will use this set to evaluate the performance of the model. This is the test set, DO NOT use it for active learning. Split this out in the beginning.
94
+
95
+ As a toy example I created the above 3 datasets from the imagenette dataset.
65
96
 
66
97
  ```python
67
98
  from active_vision import ActiveLearner
@@ -90,7 +121,7 @@ uncertain_df = al.sample_uncertain(pred_df, num_samples=10)
90
121
  al.label(uncertain_df, output_filename="uncertain")
91
122
  ```
92
123
 
93
- ![Gradio UI](./assets/labeling_ui.png)
124
+ ![Gradio UI](https://raw.githubusercontent.com/dnth/active-vision/main/assets/labeling_ui.png)
94
125
 
95
126
  Once complete, the labeled samples will be save into a new df.
96
127
  We can now add the newly labeled data to the training set.
@@ -102,17 +133,90 @@ al.add_to_train_set(labeled_df, output_filename="active_labeled")
102
133
 
103
134
  Repeat the process until the model is good enough. Use the dataset to train a larger model and deploy.
104
135
 
105
- ## Workflow
106
- There are two workflows for active learning at the edge that we can use depending on the availability of labeled data.
136
+ > [!TIP]
137
+ > For the toy dataset, I got to about 93% accuracy on the evaluation set with 200+ labeled images. The best performing model on the [leaderboard](https://github.com/fastai/imagenette) got 95.11% accuracy training on all 9469 labeled images.
138
+ >
139
+ > This took me about 6 iterations of relabeling. Each iteration took about 5 minutes to complete including labeling and model training (resnet18). See the [notebook](./nbs/04_relabel_loop.ipynb) for more details.
140
+ >
141
+ > But using the dataset of 200+ images, I trained a more capable model (convnext_small_in22k) and got 99.3% accuracy on the evaluation set. See the [notebook](./nbs/05_retrain_larger.ipynb) for more details.
142
+
143
+
144
+ ## 📊 Benchmarks
145
+ This section contains the benchmarks I ran using the active learning loop on various datasets.
146
+
147
+ Column description:
148
+ - `#Labeled Images`: The number of labeled images used to train the model.
149
+ - `Evaluation Accuracy`: The accuracy of the model on the evaluation set.
150
+ - `Train Epochs`: The number of epochs used to train the model.
151
+ - `Model`: The model used to train.
152
+ - `Active Learning`: Whether active learning was used to train the model.
153
+ - `Source`: The source of the results.
154
+
155
+ ### Imagenette
156
+ - num classes: 10
157
+ - num images: 9469
158
+
159
+ To start the active learning loop, I labeled 100 images (10 images from each class) and iteratively relabeled the most informative images until I hit 275 labeled images.
160
+
161
+ The active learning loop is a iterative process and can keep going until you hit a stopping point. You can decide your own stopping point based on your use case. It could be:
162
+ - You ran out of data to label.
163
+ - You hit a performance goal.
164
+ - You hit a budget.
165
+ - Other criteria.
166
+
167
+ For this dataset,I decided to stop the active learning loop at 275 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard.
168
+
169
+
170
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
171
+ |-----------------|---------------------|--------------|----------------------|----------------|--------|
172
+ | 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
173
+ | 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
174
+ | 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
175
+ | 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
176
+
177
+ ### Dog Food
178
+ - num classes: 2
179
+ - num images: 2100
180
+
181
+ To start the active learning loop, I labeled 20 images (10 images from each class) and iteratively relabeled the most informative images until I hit 160 labeled images.
182
+
183
+ I decided to stop the active learning loop at 160 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
184
+
185
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
186
+ |-----------------|---------------------|--------------|-------|----------------|--------|
187
+ | 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
188
+ | 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
189
+ | 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
190
+
191
+ ### Oxford-IIIT Pet
192
+ - num classes: 37
193
+ - num images: 3680
194
+
195
+ To start the active learning loop, I labeled 370 images (10 images from each class) and iteratively relabeled the most informative images until I hit 612 labeled images.
196
+
197
+ I decided to stop the active learning loop at 612 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
198
+
199
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
200
+ |-----------------|---------------------|--------------|-------|----------------|--------|
201
+ | 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
202
+ | 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
203
+ | 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
204
+
205
+
206
+
207
+ ## ➿ Workflow
208
+ This section describes a more detailed workflow for active learning. There are two workflows for active learning that we can use depending on the availability of labeled data.
107
209
 
108
210
  ### With unlabeled data
109
- If we have no labeled data, we can use active learning to iteratively improve the model and build a labeled dataset.
211
+ If we have no labeled data, the goal of the active learning loop is to build a resonably good labeled dataset to train a larger model.
212
+
213
+ Steps:
110
214
 
111
215
  1. Load a small proxy model.
112
- 2. Label an initial dataset.
216
+ 2. Label an initial dataset. If there is none, you'll have to label some images.
113
217
  3. Train the proxy model on the labeled dataset.
114
218
  4. Run inference on the unlabeled dataset.
115
- 5. Evaluate the performance of the proxy model on the unlabeled dataset.
219
+ 5. Evaluate the performance of the proxy model.
116
220
  6. Is model good enough?
117
221
  - Yes: Save the proxy model and the dataset.
118
222
  - No: Select the most informative images to label using active learning.
@@ -138,24 +242,25 @@ graph TD
138
242
  ```
139
243
 
140
244
  ### With labeled data
141
- If we have a labeled dataset, we can use active learning to iteratively improve the dataset and the model by fixing the most important label errors.
245
+ If we already have a labeled dataset, the goal of the active learning loop is to iteratively improve the dataset and the model by fixing the most important label errors.
246
+
247
+ Steps:
142
248
 
143
249
  1. Load a small proxy model.
144
250
  2. Train the proxy model on the labeled dataset.
145
251
  3. Run inference on the entire labeled dataset.
146
- 4. Get the most important label errors with active learning.
252
+ 4. Get the most impactful label errors with active learning.
147
253
  5. Fix the label errors.
148
254
  6. Repeat steps 2-5 until the dataset is good enough.
149
255
  7. Save the labeled dataset.
150
256
  8. Train a larger model on the saved labeled dataset.
151
257
 
152
258
 
153
-
154
259
  ```mermaid
155
260
  graph TD
156
261
  A[Load a small proxy model] --> B[Train proxy model on labeled dataset]
157
262
  B --> C[Run inference on labeled dataset]
158
- C --> D[Get important label errors using active learning]
263
+ C --> D[Get label errors using active learning]
159
264
  D --> E[Fix label errors]
160
265
  E --> F{Dataset good enough?}
161
266
  F -->|No| B
@@ -164,7 +269,8 @@ graph TD
164
269
  ```
165
270
 
166
271
 
167
- ## Methodology
272
+
273
+ <!-- ## Methodology
168
274
  To test out the workflows we will use the [imagenette dataset](https://huggingface.co/datasets/frgfm/imagenette). But this will be applicable to any dataset.
169
275
 
170
276
  Imagenette is a subset of the ImageNet dataset with 10 classes. We will use this dataset to test out the workflows. Additionally, Imagenette has an existing leaderboard which we can use to evaluate the performance of the models.
@@ -215,4 +321,4 @@ After the first iteration we got 94.57% accuracy on the validation set. See the
215
321
  > [!TIP]
216
322
  > | Train Epochs | Number of Images | Validation Accuracy | Source |
217
323
  > |--------------|-----------------|----------------------|------------------|
218
- > | 10 | 200 | 94.57% | First relabeling [notebook](./nbs/03_retrain_model.ipynb) |
324
+ > | 10 | 200 | 94.57% | First relabeling [notebook](./nbs/03_retrain_model.ipynb) | -->
@@ -0,0 +1,7 @@
1
+ active_vision/__init__.py,sha256=u-7eEtxmLFoQfY0fM9JSs_lWb4e1c7WxR3cC619BTXE,43
2
+ active_vision/core.py,sha256=mKS-ZZunjPgXuavm_J4oYiO9lm6UNRjFEzIn4kNfdVA,13421
3
+ active_vision-0.0.5.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
4
+ active_vision-0.0.5.dist-info/METADATA,sha256=mSFB-DeJ43roTwswTp3oHcG3CIyKnO-7ZCqaYbw26eQ,15846
5
+ active_vision-0.0.5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
+ active_vision-0.0.5.dist-info/top_level.txt,sha256=7qUQvccN2UU63z5S9vrgJmqK-8sFGrtpf1e9Z86nihE,14
7
+ active_vision-0.0.5.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- active_vision/__init__.py,sha256=hZp8jB284ByY44Q5cdwTt9Zz5n4QWXnz0OexpEE9muk,43
2
- active_vision/core.py,sha256=0aXDI5Gpj0Spk7TSIxJf8aJDDBgZh0-jkWdYyZ1Zric,10713
3
- active_vision-0.0.3.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
4
- active_vision-0.0.3.dist-info/METADATA,sha256=g629Kn07n4ZXOOX5cW1nPQK1IR9Mm5vW_z7RqxdwKgY,9385
5
- active_vision-0.0.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
- active_vision-0.0.3.dist-info/top_level.txt,sha256=7qUQvccN2UU63z5S9vrgJmqK-8sFGrtpf1e9Z86nihE,14
7
- active_vision-0.0.3.dist-info/RECORD,,