active-vision 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
active_vision/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
- __version__ = "0.0.2"
1
+ __version__ = "0.0.3"
2
2
 
3
3
  from .core import *
active_vision/core.py CHANGED
@@ -87,7 +87,9 @@ class ActiveLearner:
87
87
  )
88
88
  return self.pred_df
89
89
 
90
- def evaluate(self, df: pd.DataFrame, filepath_col: str, label_col: str, batch_size: int = 16):
90
+ def evaluate(
91
+ self, df: pd.DataFrame, filepath_col: str, label_col: str, batch_size: int = 16
92
+ ):
91
93
  """
92
94
  Evaluate on a labeled dataset. Returns a score.
93
95
  """
@@ -114,20 +116,158 @@ class ActiveLearner:
114
116
  """
115
117
  Sample top `num_samples` low confidence samples. Returns a df with filepaths and predicted labels, and confidence scores.
116
118
  """
117
- uncertain_df = df.sort_values(
118
- by="pred_conf", ascending=True
119
- ).head(num_samples)
119
+ logger.info(f"Getting top {num_samples} low confidence samples")
120
+ uncertain_df = df.sort_values(by="pred_conf", ascending=True).head(num_samples)
120
121
  return uncertain_df
121
122
 
122
- def add_to_train_set(self, df: pd.DataFrame):
123
+ def label(self, df: pd.DataFrame, output_filename: str = "labeled"):
124
+ """
125
+ Launch a labeling interface for the user to label the samples.
126
+ Input is a df with filepaths listing the files to be labeled. Output is a df with filepaths and labels.
127
+ """
128
+ import gradio as gr
129
+
130
+ shortcut_js = """
131
+ <script>
132
+ function shortcuts(e) {
133
+ // Only block shortcuts if we're in a text input or textarea
134
+ if (e.target.tagName.toLowerCase() === "textarea" ||
135
+ (e.target.tagName.toLowerCase() === "input" && e.target.type.toLowerCase() === "text")) {
136
+ return;
137
+ }
138
+
139
+ if (e.key.toLowerCase() == "w") {
140
+ document.getElementById("submit_btn").click();
141
+ } else if (e.key.toLowerCase() == "d") {
142
+ document.getElementById("next_btn").click();
143
+ } else if (e.key.toLowerCase() == "a") {
144
+ document.getElementById("back_btn").click();
145
+ }
146
+ }
147
+ document.addEventListener('keypress', shortcuts, false);
148
+ </script>
149
+ """
150
+
151
+ logger.info(f"Launching labeling interface for {len(df)} samples")
152
+
153
+ filepaths = df["filepath"].tolist()
154
+
155
+ with gr.Blocks(head=shortcut_js) as demo:
156
+ current_index = gr.State(value=0)
157
+
158
+ filename = gr.Textbox(
159
+ label="Filename", value=filepaths[0], interactive=False
160
+ )
161
+
162
+ image = gr.Image(
163
+ type="filepath", label="Image", value=filepaths[0], height=500
164
+ )
165
+ category = gr.Radio(choices=self.class_names, label="Select Category")
166
+
167
+ with gr.Row():
168
+ back_btn = gr.Button("← Previous (A)", elem_id="back_btn")
169
+ submit_btn = gr.Button(
170
+ "Submit (W)",
171
+ variant="primary",
172
+ elem_id="submit_btn",
173
+ interactive=False,
174
+ )
175
+ next_btn = gr.Button("Next → (D)", elem_id="next_btn")
176
+
177
+ progress = gr.Slider(
178
+ minimum=0,
179
+ maximum=len(filepaths) - 1,
180
+ value=0,
181
+ label="Progress",
182
+ interactive=False,
183
+ )
184
+
185
+ finish_btn = gr.Button("Finish Labeling", variant="primary")
186
+
187
+ def update_submit_btn(choice):
188
+ return gr.Button(interactive=choice is not None)
189
+
190
+ category.change(
191
+ fn=update_submit_btn, inputs=[category], outputs=[submit_btn]
192
+ )
193
+
194
+ def navigate(current_idx, direction):
195
+ next_idx = current_idx + direction
196
+ if 0 <= next_idx < len(filepaths):
197
+ return filepaths[next_idx], filepaths[next_idx], next_idx, next_idx
198
+ return (
199
+ filepaths[current_idx],
200
+ filepaths[current_idx],
201
+ current_idx,
202
+ current_idx,
203
+ )
204
+
205
+ def save_and_next(current_idx, selected_category):
206
+ if selected_category is None:
207
+ return (
208
+ filepaths[current_idx],
209
+ filepaths[current_idx],
210
+ current_idx,
211
+ current_idx,
212
+ )
213
+
214
+ # Save the current annotation
215
+ with open(f"{output_filename}.csv", "a") as f:
216
+ f.write(f"{filepaths[current_idx]},{selected_category}\n")
217
+
218
+ # Move to next image if not at the end
219
+ next_idx = current_idx + 1
220
+ if next_idx >= len(filepaths):
221
+ return (
222
+ filepaths[current_idx],
223
+ filepaths[current_idx],
224
+ current_idx,
225
+ current_idx,
226
+ )
227
+ return filepaths[next_idx], filepaths[next_idx], next_idx, next_idx
228
+
229
+ def convert_csv_to_parquet():
230
+ try:
231
+ df = pd.read_csv(f"{output_filename}.csv", header=None)
232
+ df.columns = ["filepath", "label"]
233
+ df = df.drop_duplicates(subset=["filepath"], keep="last")
234
+ df.to_parquet(f"{output_filename}.parquet")
235
+ gr.Info(f"Annotation saved to {output_filename}.parquet")
236
+ except Exception as e:
237
+ logger.error(e)
238
+ return
239
+
240
+ back_btn.click(
241
+ fn=lambda idx: navigate(idx, -1),
242
+ inputs=[current_index],
243
+ outputs=[filename, image, current_index, progress],
244
+ )
245
+
246
+ next_btn.click(
247
+ fn=lambda idx: navigate(idx, 1),
248
+ inputs=[current_index],
249
+ outputs=[filename, image, current_index, progress],
250
+ )
251
+
252
+ submit_btn.click(
253
+ fn=save_and_next,
254
+ inputs=[current_index, category],
255
+ outputs=[filename, image, current_index, progress],
256
+ )
257
+
258
+ finish_btn.click(fn=convert_csv_to_parquet)
259
+
260
+ demo.launch(height=1000)
261
+
262
+ def add_to_train_set(self, df: pd.DataFrame, output_filename: str):
123
263
  """
124
264
  Add samples to the training set.
125
265
  """
126
266
  new_train_set = df.copy()
127
- new_train_set.drop(columns=["pred_conf"], inplace=True)
128
- new_train_set.rename(columns={"pred_label": "label"}, inplace=True)
267
+ # new_train_set.drop(columns=["pred_conf"], inplace=True)
268
+ # new_train_set.rename(columns={"pred_label": "label"}, inplace=True)
129
269
 
130
- len_old = len(self.train_set)
270
+ # len_old = len(self.train_set)
131
271
 
132
272
  logger.info(f"Adding {len(new_train_set)} samples to training set")
133
273
  self.train_set = pd.concat([self.train_set, new_train_set])
@@ -137,13 +277,15 @@ class ActiveLearner:
137
277
  )
138
278
  self.train_set.reset_index(drop=True, inplace=True)
139
279
 
280
+ self.train_set.to_parquet(f"{output_filename}.parquet")
281
+ logger.info(f"Saved training set to {output_filename}.parquet")
140
282
 
141
- if len(self.train_set) == len_old:
142
- logger.warning("No new samples added to training set")
283
+ # if len(self.train_set) == len_old:
284
+ # logger.warning("No new samples added to training set")
143
285
 
144
- elif len_old + len(new_train_set) < len(self.train_set):
145
- logger.warning("Some samples were duplicates and removed from training set")
286
+ # elif len_old + len(new_train_set) < len(self.train_set):
287
+ # logger.warning("Some samples were duplicates and removed from training set")
146
288
 
147
- else:
148
- logger.info("All new samples added to training set")
149
- logger.info(f"Training set now has {len(self.train_set)} samples")
289
+ # else:
290
+ # logger.info("All new samples added to training set")
291
+ # logger.info(f"Training set now has {len(self.train_set)} samples")
@@ -1,12 +1,13 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: active-vision
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: Active learning for edge vision.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
7
7
  License-File: LICENSE
8
8
  Requires-Dist: datasets>=3.2.0
9
9
  Requires-Dist: fastai>=2.7.18
10
+ Requires-Dist: gradio>=5.12.0
10
11
  Requires-Dist: ipykernel>=6.29.5
11
12
  Requires-Dist: ipywidgets>=8.1.5
12
13
  Requires-Dist: loguru>=0.7.3
@@ -14,40 +15,53 @@ Requires-Dist: seaborn>=0.13.2
14
15
 
15
16
  ![Python Version](https://img.shields.io/badge/python-3.10%2B-blue?style=for-the-badge)
16
17
  ![License](https://img.shields.io/badge/License-Apache%202.0-green.svg?style=for-the-badge)
17
- ![PyPI](https://img.shields.io/pypi/v/active-vision?style=for-the-badge)
18
+ [![PyPI](https://img.shields.io/pypi/v/active-vision?style=for-the-badge)](https://pypi.org/project/active-vision/)
18
19
  ![Downloads](https://img.shields.io/pepy/dt/active-vision?style=for-the-badge&logo=pypi&logoColor=white&label=Downloads&color=purple)
19
20
 
20
21
  <p align="center">
21
- <img src="https://github.com/dnth/active-vision/blob/main/assets/logo.png" alt="active-vision">
22
+ <img src="https://raw.githubusercontent.com/dnth/active-vision/main/assets/logo.png" alt="active-vision">
22
23
  </p>
23
24
 
24
25
  Active learning at the edge for computer vision.
25
26
 
26
- The goal of this project is to create a framework for active learning at the edge for computer vision. We should be able to train a model on a small dataset and then use active learning to iteratively improve the model all on a local machine.
27
+ The goal of this project is to create a framework for the active learning loop for computer vision deployed on edge devices.
27
28
 
28
- ## Tech Stack
29
+ ## Installation
30
+ I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
29
31
 
30
- - Training framework: fastai
31
- - User interface: streamlit
32
- - Database: sqlite
33
- - Experiment tracking: wandb
32
+ If you're using uv:
34
33
 
35
- ## Installation
34
+ ```bash
35
+ uv venv
36
+ uv sync
37
+ ```
38
+ Once the virtual environment is created, you can install the package using pip.
36
39
 
37
- PyPI
40
+ Get a release from PyPI
38
41
  ```bash
39
42
  pip install active-vision
40
43
  ```
41
44
 
42
- Local install
45
+ Install from source
43
46
  ```bash
44
47
  git clone https://github.com/dnth/active-vision.git
45
48
  cd active-vision
46
49
  pip install -e .
47
50
  ```
48
51
 
52
+ > [!TIP]
53
+ > If you're using uv add a uv before the pip install command to install into your virtual environment. Eg:
54
+ > ```bash
55
+ > uv pip install active-vision
56
+ > ```
57
+
49
58
  ## Usage
50
- See the [notebook](./nbs/end-to-end.ipynb) for a complete example.
59
+ See the [notebook](./nbs/04_relabel_loop.ipynb) for a complete example.
60
+
61
+ Be sure to prepared 3 datasets:
62
+ - train: A dataframe of an existing labeled training dataset.
63
+ - unlabeled: A dataframe of unlabeled data which we will sample from using active learning.
64
+ - eval: A dataframe of labeled data which we will use to evaluate the performance of the model. (Optional)
51
65
 
52
66
  ```python
53
67
  from active_vision import ActiveLearner
@@ -56,29 +70,38 @@ import pandas as pd
56
70
  # Create an active learner instance with a model
57
71
  al = ActiveLearner("resnet18")
58
72
 
59
- # Load the dataset into the active learner
73
+ # Load dataset
60
74
  train_df = pd.read_parquet("training_samples.parquet")
61
- al.load_dataset(train_df, "filepath", "label")
75
+ al.load_dataset(df, filepath_col="filepath", label_col="label")
62
76
 
63
- # Train the model
77
+ # Train model
64
78
  al.train(epochs=3, lr=1e-3)
65
79
 
66
- # Load evaluation data
67
- eval_df = pd.read_parquet("evaluation_samples.parquet")
80
+ # Evaluate the model on a *labeled* evaluation set
81
+ accuracy = al.evaluate(eval_df, filepath_col="filepath", label_col="label")
68
82
 
69
- # Evaluate the model on a labeled evaluation set
70
- accuracy = al.evaluate(eval_df, "filepath", "label")
71
-
72
- # Get predictions from an unlabeled set
83
+ # Get predictions from an *unlabeled* set
73
84
  pred_df = al.predict(filepaths)
74
85
 
75
- # Sample low confidence predictions
86
+ # Sample low confidence predictions from unlabeled set
76
87
  uncertain_df = al.sample_uncertain(pred_df, num_samples=10)
77
88
 
78
- # Add newly labeled data to training set
79
- al.add_to_train_set(uncertain_df)
89
+ # Launch a Gradio UI to label the low confidence samples
90
+ al.label(uncertain_df, output_filename="uncertain")
80
91
  ```
81
92
 
93
+ ![Gradio UI](./assets/labeling_ui.png)
94
+
95
+ Once complete, the labeled samples will be save into a new df.
96
+ We can now add the newly labeled data to the training set.
97
+
98
+ ```python
99
+ # Add newly labeled data to training set and save as a new file active_labeled
100
+ al.add_to_train_set(labeled_df, output_filename="active_labeled")
101
+ ```
102
+
103
+ Repeat the process until the model is good enough. Use the dataset to train a larger model and deploy.
104
+
82
105
  ## Workflow
83
106
  There are two workflows for active learning at the edge that we can use depending on the availability of labeled data.
84
107
 
@@ -0,0 +1,7 @@
1
+ active_vision/__init__.py,sha256=hZp8jB284ByY44Q5cdwTt9Zz5n4QWXnz0OexpEE9muk,43
2
+ active_vision/core.py,sha256=0aXDI5Gpj0Spk7TSIxJf8aJDDBgZh0-jkWdYyZ1Zric,10713
3
+ active_vision-0.0.3.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
4
+ active_vision-0.0.3.dist-info/METADATA,sha256=g629Kn07n4ZXOOX5cW1nPQK1IR9Mm5vW_z7RqxdwKgY,9385
5
+ active_vision-0.0.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
+ active_vision-0.0.3.dist-info/top_level.txt,sha256=7qUQvccN2UU63z5S9vrgJmqK-8sFGrtpf1e9Z86nihE,14
7
+ active_vision-0.0.3.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- active_vision/__init__.py,sha256=5VE_DRQ_Rgbo7NlPh3-rP2pUClK48jGxPqAcptBscZ8,43
2
- active_vision/core.py,sha256=RBVabC350wucYl7KJgIp3fc1pS9pxtG14iDb-ZyBJxI,5262
3
- active_vision-0.0.2.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
4
- active_vision-0.0.2.dist-info/METADATA,sha256=7_eqZJnGeIPjb4LLZ-Bqu1AMJ_h77_0bNRyS_COEv5w,8350
5
- active_vision-0.0.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
- active_vision-0.0.2.dist-info/top_level.txt,sha256=7qUQvccN2UU63z5S9vrgJmqK-8sFGrtpf1e9Z86nihE,14
7
- active_vision-0.0.2.dist-info/RECORD,,