acryl-datahub 1.2.0.10rc2__py3-none-any.whl → 1.2.0.10rc3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub might be problematic. Click here for more details.

@@ -1,7 +1,7 @@
1
- acryl_datahub-1.2.0.10rc2.dist-info/licenses/LICENSE,sha256=9xNHpsD0uYF5ONzXsKDCuHHB-xbiCrSbueWXqrTNsxk,11365
1
+ acryl_datahub-1.2.0.10rc3.dist-info/licenses/LICENSE,sha256=9xNHpsD0uYF5ONzXsKDCuHHB-xbiCrSbueWXqrTNsxk,11365
2
2
  datahub/__init__.py,sha256=aq_i5lVREmoLfYIqcx_pEQicO855YlhD19tWc1eZZNI,59
3
3
  datahub/__main__.py,sha256=pegIvQ9hzK7IhqVeUi1MeADSZ2QlP-D3K0OQdEg55RU,106
4
- datahub/_version.py,sha256=EmO6ZWHg0m-jKxy3tyNs5CnPt86iFlMSrEkhzdbO54M,324
4
+ datahub/_version.py,sha256=VuL0cf5kSPWwJF2YoxiWA-UuOSPyWDPYeQVw6VxtPrk,324
5
5
  datahub/entrypoints.py,sha256=9Qf-37rNnTzbGlx8S75OCDazIclFp6zWNcCEL1zCZto,9015
6
6
  datahub/errors.py,sha256=p5rFAdAGVCk4Lqolol1YvthceadUSwpaCxLXRcyCCFQ,676
7
7
  datahub/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -228,7 +228,7 @@ datahub/ingestion/source/redash.py,sha256=C4cDikWymbL88fDqaIPX5WA3f2sIEtH7bmhJKk
228
228
  datahub/ingestion/source/salesforce.py,sha256=UttN3y4Ylbx_yCFCr-33wUEZFR48nTiYeUfOjGIFj2E,40872
229
229
  datahub/ingestion/source/source_registry.py,sha256=a2mLjJPLkSI-gYCTb_7U7Jo4D8jGknNQ_yScPIihXFk,1208
230
230
  datahub/ingestion/source/sql_queries.py,sha256=Zf6Y84WFCD-j0v4HdtcXshAPrtGq5InncXCjnLaAuS4,14657
231
- datahub/ingestion/source/superset.py,sha256=OWllzS0D0K9zUUQE6w-ZzemJduu6ZV003rBVe2rxkaM,56814
231
+ datahub/ingestion/source/superset.py,sha256=PH6YJZ4rXV2u43-MEapSurgO1joIge6-pklAivY-wzM,57903
232
232
  datahub/ingestion/source/abs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
233
233
  datahub/ingestion/source/abs/config.py,sha256=WW9JWbzqAJDblAcJKtNeuBHqOeJsB57lW2PqSD65-BU,6729
234
234
  datahub/ingestion/source/abs/datalake_profiler_config.py,sha256=FfrcgK-JEF94vw-l3q6pN6FENXb-wZzW2w1VUZVkwW8,3620
@@ -383,7 +383,7 @@ datahub/ingestion/source/kafka_connect/sink_connectors.py,sha256=QTMY0FmOHkTxfIC
383
383
  datahub/ingestion/source/kafka_connect/source_connectors.py,sha256=A9q-u5IoV35swvoyMrzT75FVV9-SBeYGhLKDYRge-IQ,23845
384
384
  datahub/ingestion/source/looker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
385
385
  datahub/ingestion/source/looker/lkml_patched.py,sha256=XShEU7Wbz0DubDhYMjKf9wjKZrBJa2XPg9MIjp8rPhk,733
386
- datahub/ingestion/source/looker/looker_common.py,sha256=LKjGnPOKiWLD0cq-6eaFgXvIjzMdp-RPacwk_wMrXxA,68726
386
+ datahub/ingestion/source/looker/looker_common.py,sha256=WOOOerQpngT7XkRPD2klOz-2K4_QqCL0hM2Gbs1EUko,67756
387
387
  datahub/ingestion/source/looker/looker_config.py,sha256=eVKw1nn9D8hUFdRfNyT3MtzL8w-zWhFeokiwSnNKQuc,13607
388
388
  datahub/ingestion/source/looker/looker_connection.py,sha256=yDmC6lDsHmL2e_Pw8ULylwOIHPWPp_6gT1iyLvD0fTw,2075
389
389
  datahub/ingestion/source/looker/looker_constant.py,sha256=GMKYtNXlpojPxa9azridKfcGLSJwKdUCTesp7U8dIrQ,402
@@ -392,7 +392,7 @@ datahub/ingestion/source/looker/looker_file_loader.py,sha256=gb2Z97_w28MsybYe01J
392
392
  datahub/ingestion/source/looker/looker_lib_wrapper.py,sha256=6smUt_Ya7ZJMHWdGZl3TnhM7XHZVpYQ6gz2i5hHejZ4,11547
393
393
  datahub/ingestion/source/looker/looker_liquid_tag.py,sha256=27WnOuTghayaH-HL4lLoq0IcHvNm1UybMqMnoaxN8Cs,5383
394
394
  datahub/ingestion/source/looker/looker_query_model.py,sha256=N0jBbFruiCIIGT6sJn6tNeppeQ78KGTkOwTLirhxFNc,2144
395
- datahub/ingestion/source/looker/looker_source.py,sha256=1muVoXk7Jr73D0dlDFSdea8aK2wdyL6wa66qAjyv_OQ,68100
395
+ datahub/ingestion/source/looker/looker_source.py,sha256=a-G_73NWHD0YPDetT-Eyvq5KenJjqbmb-bV5JMOByNU,65048
396
396
  datahub/ingestion/source/looker/looker_template_language.py,sha256=5fZFPKFP3IYbJg3jLifjaji4wWg8wRy-1XDvc8Qucus,17949
397
397
  datahub/ingestion/source/looker/looker_usage.py,sha256=qFBX7OHtIcarYIqFe0jQMrDV8MMPV_nN4PZrZRUznTw,23029
398
398
  datahub/ingestion/source/looker/looker_view_id_cache.py,sha256=92gDy6NONhJYBp92z_IBzDVZvezmUIkaBCZY1bdk6mE,4392
@@ -554,10 +554,10 @@ datahub/ingestion/source/state_provider/datahub_ingestion_checkpointing_provider
554
554
  datahub/ingestion/source/state_provider/file_ingestion_checkpointing_provider.py,sha256=DziD57PbHn2Tcy51tYXCG-GQgyTGMUxnkuzVS_xihFY,4079
555
555
  datahub/ingestion/source/state_provider/state_provider_registry.py,sha256=SVq4mIyGNmLXE9OZx1taOiNPqDoQp03-Ot9rYnB5F3k,401
556
556
  datahub/ingestion/source/tableau/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
557
- datahub/ingestion/source/tableau/tableau.py,sha256=OCdEHTYhJllnvQKalaEdiRATt04syAs2-O1oBYhCu74,156162
558
- datahub/ingestion/source/tableau/tableau_common.py,sha256=4cUm3E8wLfjLSjcAXXWDWVUXAEho_hbsQa2BzAF-vtM,27012
559
- datahub/ingestion/source/tableau/tableau_constant.py,sha256=4ngrOwqxf4cgbLR3i0OKI4pUxmHMABKyywfhXQ0GazA,2592
560
- datahub/ingestion/source/tableau/tableau_server_wrapper.py,sha256=nSyx9RzC6TCQDm-cTVJ657qT8iDwzk_8JMKpohhmOc4,1046
557
+ datahub/ingestion/source/tableau/tableau.py,sha256=8yJZU3jdAixCloT1EfvzH7hNTv0iEd29gip03SGA2fw,157849
558
+ datahub/ingestion/source/tableau/tableau_common.py,sha256=2vE7DIigPvMNcTCWSou0tliaVy9MgFR1qwqnE4pilw8,27086
559
+ datahub/ingestion/source/tableau/tableau_constant.py,sha256=2WPAHN-GAR83_c3eTTNd8cy0-zC8GIXeUdSxX_mNdas,2608
560
+ datahub/ingestion/source/tableau/tableau_server_wrapper.py,sha256=wsVD0SkGUwb-H9_g0aDclKwYkcoxugaWyAcyAMgBCAU,1136
561
561
  datahub/ingestion/source/tableau/tableau_validation.py,sha256=Hjbfc1AMIkGgzo5ffWXtNRjrxSxzHvw7-dYZDt4d3WE,1819
562
562
  datahub/ingestion/source/unity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
563
563
  datahub/ingestion/source/unity/analyze_profiler.py,sha256=2pqkFY30CfN4aHgFZZntjeG0hNhBytZJvXC13VfTc1I,4689
@@ -635,8 +635,8 @@ datahub/lite/lite_registry.py,sha256=bpH0kasP-LtwwUFNA2QsOIehfekAYfJtN-AkQLmSWnw
635
635
  datahub/lite/lite_server.py,sha256=p9Oa2nNs65mqcssSIVOr7VOzWqfVstz6ZQEdT4f82S0,1949
636
636
  datahub/lite/lite_util.py,sha256=G0LQHKkyEb1pc_q183g6hflShclGx7kikgMaOxtVVcs,4545
637
637
  datahub/metadata/__init__.py,sha256=AjhXPjI6cnpdcrBRrE5gOWo15vv2TTl2ctU4UAnUN7A,238
638
- datahub/metadata/_internal_schema_classes.py,sha256=gijo0J9PIU9wETlfly4ngC1ognj9LyoFSXyiQCoWdzk,1068035
639
- datahub/metadata/schema.avsc,sha256=H39OyQNCy031TBDFbaa5ZGWiSYde8RZ5Q92GmhZ3F0M,708737
638
+ datahub/metadata/_internal_schema_classes.py,sha256=ORmPVDR7_UMk8x4pwbTukK7QZm0oFi9XK0DKa0oPjy0,1069945
639
+ datahub/metadata/schema.avsc,sha256=bbtE3veiGe5fqJnMWJTERU99CMOR4CP2lAZidj4UWGE,709640
640
640
  datahub/metadata/schema_classes.py,sha256=tPT8iHCak4IsZi_oL0nirbPpI8ETTPTZzapqLRpeKU4,1326
641
641
  datahub/metadata/urns.py,sha256=nfrCTExR-k2P9w272WVtWSN3xW1VUJngPwP3xnvULjU,1217
642
642
  datahub/metadata/_urns/__init__.py,sha256=cOF3GHMDgPhmbLKbN02NPpuLGHSu0qNgQyBRv08eqF0,243
@@ -651,7 +651,7 @@ datahub/metadata/com/linkedin/pegasus2avro/application/__init__.py,sha256=1ibbZG
651
651
  datahub/metadata/com/linkedin/pegasus2avro/assertion/__init__.py,sha256=PgK5O-6pVRaEcvmwXAsSkwRLe8NjGiLH8AVBXeArqK8,5751
652
652
  datahub/metadata/com/linkedin/pegasus2avro/businessattribute/__init__.py,sha256=N8kO-eUi0_Rt7weizIExxlnJ2_kZRtPrZLWCC1xtDMA,653
653
653
  datahub/metadata/com/linkedin/pegasus2avro/chart/__init__.py,sha256=RNyyHLBNp_fxgFcBOLWO2UsXR1ofD_JczcBdPEQSusg,848
654
- datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py,sha256=D5rQ4RNxPzVaZOedwUup9-LMy1pIBhQxL7EQ7jaxvaM,5885
654
+ datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py,sha256=PHRvctPZJ0xxtmr8OMhigEVbky4GQ2Z4JLa63tBNvQg,6037
655
655
  datahub/metadata/com/linkedin/pegasus2avro/common/fieldtransformer/__init__.py,sha256=FN63vLiB3FCmIRqBjTA-0Xt7M6i7h5NhaVzbA1ysv18,396
656
656
  datahub/metadata/com/linkedin/pegasus2avro/connection/__init__.py,sha256=qRtw-dB14pzVzgQ0pDK8kyBplNdpRxVKNj4D70e_FqI,564
657
657
  datahub/metadata/com/linkedin/pegasus2avro/container/__init__.py,sha256=3yWt36KqDKFhRc9pzvt0AMnbMTlhKurGvT3BUvc25QU,510
@@ -874,7 +874,7 @@ datahub/metadata/schemas/IncidentKey.avsc,sha256=Pip__DyNNTal7NxryM3kFi9qHlwntp1
874
874
  datahub/metadata/schemas/IncidentSource.avsc,sha256=lY_SarA3cM55KNENcB5z1Gu2MygxEl9l7R8LdMak9AQ,1199
875
875
  datahub/metadata/schemas/IncidentsSummary.avsc,sha256=NTYp-6Oe92ALApbM3759TJ5pLXRArsSriIPq-f7w9vI,4514
876
876
  datahub/metadata/schemas/InputFields.avsc,sha256=f3SFxnV3-K2D59ctC5H2xCRx8uwqZTRI95KgSotQT-k,33832
877
- datahub/metadata/schemas/InstitutionalMemory.avsc,sha256=0dKK18Gr6eBIgUimZrm9zsBdIfmCgYYfIiWW0w07PoA,4084
877
+ datahub/metadata/schemas/InstitutionalMemory.avsc,sha256=O6I0gs5C1FinXXcYrT7CSEQNoPkBL8A4nFb-1so2TcA,4912
878
878
  datahub/metadata/schemas/IntendedUse.avsc,sha256=IKZSWdvc0uAyyT-FtdQOGbMC-P7RS9cO0vOVKWT6fbw,1361
879
879
  datahub/metadata/schemas/InviteToken.avsc,sha256=8k_9MxHu9GVf7gvS0SlnQu7tJfpbXsRFdz6lQrFKPNc,737
880
880
  datahub/metadata/schemas/InviteTokenKey.avsc,sha256=MuQUlQaeVjaBkjSshB9gsx5Fm0civYgWD8UhCiRLdOQ,434
@@ -888,14 +888,14 @@ datahub/metadata/schemas/MLMetric.avsc,sha256=y8WPVVwjhu3YGtqpFFJYNYK8w778RRL_d2
888
888
  datahub/metadata/schemas/MLModelDeploymentKey.avsc,sha256=EcA0z4sQfqe3IJ8PO8cGW34XMxc9Q2BbCBjgkJTaznE,2685
889
889
  datahub/metadata/schemas/MLModelDeploymentProperties.avsc,sha256=7IlGrMmX8nfgezvaZyrXskCTCRlwvRzGOYUOpFV3r6Y,5480
890
890
  datahub/metadata/schemas/MLModelFactorPrompts.avsc,sha256=8kX-P4F4mVLFT980z3MwIautt1_6uA-c_Z87nYNDK-k,2712
891
- datahub/metadata/schemas/MLModelGroupKey.avsc,sha256=zIyIHI-23i_oQMbc1sigar9sJNJsa6CYfHHy-nH5IXE,2779
891
+ datahub/metadata/schemas/MLModelGroupKey.avsc,sha256=LFSIgaT-6oTgMO6wzo8bgovCNl6oAIRvjCsRiSDao2I,2808
892
892
  datahub/metadata/schemas/MLModelGroupProperties.avsc,sha256=AZ5Pohk3_pCctQ4hcE1UOURQFYHQne0dw_lRUpOu5WY,6924
893
893
  datahub/metadata/schemas/MLModelKey.avsc,sha256=zwoY9opTL5tMm5aoRHoWcNv5DjERYS-hWR05kVFlcTw,3148
894
894
  datahub/metadata/schemas/MLModelProperties.avsc,sha256=hDCBHxGe-cmCBeU1k0ANuQlKjtZsDcTfl2X_jWmtFqo,12355
895
895
  datahub/metadata/schemas/MLPrimaryKeyKey.avsc,sha256=F3lgpMnHBhXsqGncHE9x06P-0RiNCrzbUUWlMkPJxFI,1132
896
896
  datahub/metadata/schemas/MLPrimaryKeyProperties.avsc,sha256=URIuOpS93RVk8MZVcbZ-dmTwu_cN3KSOKxSR8fm-eTo,6744
897
897
  datahub/metadata/schemas/MLTrainingRunProperties.avsc,sha256=WGgj0MuQrGD4UgvyHCJHzTnHja2LlJTOr1gLu8SySj0,4269
898
- datahub/metadata/schemas/MetadataChangeEvent.avsc,sha256=4FUC9OWiBLHgGmKKfHqOx6XqocwTL0Dj9HQo3-vE84g,380117
898
+ datahub/metadata/schemas/MetadataChangeEvent.avsc,sha256=bs_f_quv7oDsJ1vgkkQLaP6rLks2lW2Fq6fE-_fTlh0,381341
899
899
  datahub/metadata/schemas/MetadataChangeLog.avsc,sha256=soCmgrcEBE5yS-mQIm-RIefhb74ONj9Fqayxa0-59KE,13254
900
900
  datahub/metadata/schemas/MetadataChangeProposal.avsc,sha256=pT14vUmpj7VJ8hinQ0pcCUtRKx6RAGHWh1eJixkqaE8,12647
901
901
  datahub/metadata/schemas/Metrics.avsc,sha256=O7DJGjOwmHbb1x_Zj7AuM_HaHKjBvkfJKfUsX8icXD4,690
@@ -961,7 +961,7 @@ datahub/sdk/_shared.py,sha256=uSLPjXfUl_0SPt-kWirkhE6u1CKOC67q5c4hJzxS2uo,28812
961
961
  datahub/sdk/_utils.py,sha256=oXE2BzsXE5zmSkCP3R1tObD4RHnPeH_ps83D_Dw9JaQ,1169
962
962
  datahub/sdk/chart.py,sha256=_gixCcKp6kCMizWMXwNH1Ip1ZqJ05_Iu2t94dmONQFM,11774
963
963
  datahub/sdk/container.py,sha256=IjnFVGDpSFDvgHuuMb7C3VdBxhJuIMq0q6crOs5PupE,7899
964
- datahub/sdk/dashboard.py,sha256=BtOslP85IfthdnfWzDTSXJKXsTjXP17nIHlYvK7Zqhg,15173
964
+ datahub/sdk/dashboard.py,sha256=ekdchqZ57enVFIfeEOOl0Dk4ec-MFQSncArciTgU1sk,15109
965
965
  datahub/sdk/dataflow.py,sha256=gdAPVVkyKvsKtsa1AwhN_LpzidG_XzV3nhtd1cjnzDA,11128
966
966
  datahub/sdk/datajob.py,sha256=5kU0txTDcn2ce3AhNry83TazPVhoYZ2rAPPNWM1_FP8,13677
967
967
  datahub/sdk/dataset.py,sha256=-C4TCJAs1PFkLAgkUZEU1JOg3orm7AAIkqjw7oo_4PQ,31400
@@ -1114,8 +1114,8 @@ datahub_provider/operators/datahub_assertion_operator.py,sha256=uvTQ-jk2F0sbqqxp
1114
1114
  datahub_provider/operators/datahub_assertion_sensor.py,sha256=lCBj_3x1cf5GMNpHdfkpHuyHfVxsm6ff5x2Z5iizcAo,140
1115
1115
  datahub_provider/operators/datahub_operation_operator.py,sha256=aevDp2FzX7FxGlXrR0khoHNbxbhKR2qPEX5e8O2Jyzw,174
1116
1116
  datahub_provider/operators/datahub_operation_sensor.py,sha256=8fcdVBCEPgqy1etTXgLoiHoJrRt_nzFZQMdSzHqSG7M,168
1117
- acryl_datahub-1.2.0.10rc2.dist-info/METADATA,sha256=bPXVHE45T0nHRzSOr4cTIhKQVXcO7TfksCB9yifFx0k,186878
1118
- acryl_datahub-1.2.0.10rc2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1119
- acryl_datahub-1.2.0.10rc2.dist-info/entry_points.txt,sha256=qopCAD6qrsijaZ9mTw3UlPCKsE00C3t9MbkkWow7pi4,9943
1120
- acryl_datahub-1.2.0.10rc2.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
1121
- acryl_datahub-1.2.0.10rc2.dist-info/RECORD,,
1117
+ acryl_datahub-1.2.0.10rc3.dist-info/METADATA,sha256=dbKMy0Er57vf8j1C1AegAKdo8eZ3dwDDotNwBmJ1akM,186878
1118
+ acryl_datahub-1.2.0.10rc3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
1119
+ acryl_datahub-1.2.0.10rc3.dist-info/entry_points.txt,sha256=qopCAD6qrsijaZ9mTw3UlPCKsE00C3t9MbkkWow7pi4,9943
1120
+ acryl_datahub-1.2.0.10rc3.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
1121
+ acryl_datahub-1.2.0.10rc3.dist-info/RECORD,,
datahub/_version.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Published at https://pypi.org/project/acryl-datahub/.
2
2
  __package_name__ = "acryl-datahub"
3
- __version__ = "1.2.0.10rc2"
3
+ __version__ = "1.2.0.10rc3"
4
4
 
5
5
 
6
6
  def is_dev_mode() -> bool:
@@ -36,7 +36,7 @@ from datahub.api.entities.platformresource.platform_resource import (
36
36
  PlatformResourceKey,
37
37
  )
38
38
  from datahub.emitter.mcp import MetadataChangeProposalWrapper
39
- from datahub.emitter.mcp_builder import ContainerKey, create_embed_mcp
39
+ from datahub.emitter.mcp_builder import ContainerKey
40
40
  from datahub.ingestion.api.report import Report
41
41
  from datahub.ingestion.api.source import SourceReport
42
42
  from datahub.ingestion.source.common.subtypes import DatasetSubTypes
@@ -72,7 +72,6 @@ from datahub.metadata.com.linkedin.pegasus2avro.dataset import (
72
72
  UpstreamClass,
73
73
  UpstreamLineage,
74
74
  )
75
- from datahub.metadata.com.linkedin.pegasus2avro.metadata.snapshot import DatasetSnapshot
76
75
  from datahub.metadata.com.linkedin.pegasus2avro.mxe import MetadataChangeEvent
77
76
  from datahub.metadata.com.linkedin.pegasus2avro.schema import (
78
77
  ArrayTypeClass,
@@ -90,21 +89,18 @@ from datahub.metadata.com.linkedin.pegasus2avro.schema import (
90
89
  )
91
90
  from datahub.metadata.schema_classes import (
92
91
  BrowsePathEntryClass,
93
- BrowsePathsClass,
94
92
  BrowsePathsV2Class,
95
- ContainerClass,
96
- DatasetPropertiesClass,
93
+ EmbedClass,
97
94
  EnumTypeClass,
98
95
  FineGrainedLineageClass,
99
96
  GlobalTagsClass,
100
97
  SchemaMetadataClass,
101
- StatusClass,
102
- SubTypesClass,
103
98
  TagAssociationClass,
104
99
  TagPropertiesClass,
105
100
  TagSnapshotClass,
106
101
  )
107
102
  from datahub.metadata.urns import TagUrn
103
+ from datahub.sdk.dataset import Dataset
108
104
  from datahub.sql_parsing.sqlglot_lineage import ColumnRef
109
105
  from datahub.utilities.lossy_collections import LossyList, LossySet
110
106
  from datahub.utilities.url_util import remove_port_from_url
@@ -1307,50 +1303,28 @@ class LookerExplore:
1307
1303
  reporter: SourceReport,
1308
1304
  base_url: str,
1309
1305
  extract_embed_urls: bool,
1310
- ) -> Optional[List[Union[MetadataChangeEvent, MetadataChangeProposalWrapper]]]:
1311
- # We only generate MCE-s for explores that contain from clauses and do NOT contain joins
1312
- # All other explores (passthrough explores and joins) end in correct resolution of lineage, and don't need additional nodes in the graph.
1313
-
1314
- dataset_snapshot = DatasetSnapshot(
1315
- urn=self.get_explore_urn(config),
1316
- aspects=[], # we append to this list later on
1317
- )
1318
-
1319
- model_key = gen_model_key(config, self.model_name)
1320
- browse_paths = BrowsePathsClass(paths=[self.get_explore_browse_path(config)])
1321
- container = ContainerClass(container=model_key.as_urn())
1322
- dataset_snapshot.aspects.append(browse_paths)
1323
- dataset_snapshot.aspects.append(StatusClass(removed=False))
1324
-
1325
- custom_properties = {
1326
- "project": self.project_name,
1327
- "model": self.model_name,
1328
- "looker.explore.label": self.label,
1329
- "looker.explore.name": self.name,
1330
- "looker.explore.file": self.source_file,
1331
- }
1332
- dataset_props = DatasetPropertiesClass(
1333
- name=str(self.label) if self.label else LookerUtil._display_name(self.name),
1334
- description=self.description,
1335
- customProperties={
1336
- k: str(v) for k, v in custom_properties.items() if v is not None
1337
- },
1338
- )
1339
- dataset_props.externalUrl = self._get_url(base_url)
1306
+ ) -> Dataset:
1307
+ """
1308
+ Generate a Dataset metadata event for this Looker Explore.
1340
1309
 
1341
- dataset_snapshot.aspects.append(dataset_props)
1310
+ Only generates datasets for explores that contain FROM clauses and do NOT contain joins.
1311
+ Passthrough explores and joins are handled via lineage and do not need additional nodes.
1312
+ """
1313
+ upstream_lineage = None
1342
1314
  view_name_to_urn_map: Dict[str, str] = {}
1315
+
1343
1316
  if self.upstream_views is not None:
1344
1317
  assert self.project_name is not None
1345
- upstreams = []
1318
+ upstreams: list[UpstreamClass] = []
1346
1319
  observed_lineage_ts = datetime.datetime.now(tz=datetime.timezone.utc)
1320
+
1347
1321
  for view_ref in sorted(self.upstream_views):
1348
1322
  # set file_path to ViewFieldType.UNKNOWN if file_path is not available to keep backward compatibility
1349
1323
  # if we raise error on file_path equal to None then existing test-cases will fail as mock data
1350
1324
  # doesn't have required attributes.
1351
1325
  file_path: str = (
1352
1326
  cast(str, self.upstream_views_file_path[view_ref.include])
1353
- if self.upstream_views_file_path[view_ref.include] is not None
1327
+ if self.upstream_views_file_path.get(view_ref.include) is not None
1354
1328
  else ViewFieldValue.NOT_AVAILABLE.value
1355
1329
  )
1356
1330
 
@@ -1377,7 +1351,7 @@ class LookerExplore:
1377
1351
  )
1378
1352
  view_name_to_urn_map[view_ref.include] = view_urn
1379
1353
 
1380
- fine_grained_lineages = []
1354
+ fine_grained_lineages: list[FineGrainedLineageClass] = []
1381
1355
  if config.extract_column_level_lineage:
1382
1356
  for field in self.fields or []:
1383
1357
  # Skip creating fine-grained lineage for empty field names to prevent invalid schema field URNs
@@ -1418,9 +1392,11 @@ class LookerExplore:
1418
1392
  )
1419
1393
 
1420
1394
  upstream_lineage = UpstreamLineage(
1421
- upstreams=upstreams, fineGrainedLineages=fine_grained_lineages or None
1395
+ upstreams=upstreams,
1396
+ fineGrainedLineages=fine_grained_lineages or None,
1422
1397
  )
1423
- dataset_snapshot.aspects.append(upstream_lineage)
1398
+
1399
+ schema_metadata = None
1424
1400
  if self.fields is not None:
1425
1401
  schema_metadata = LookerUtil._get_schema(
1426
1402
  platform_name=config.platform_name,
@@ -1428,42 +1404,46 @@ class LookerExplore:
1428
1404
  view_fields=self.fields,
1429
1405
  reporter=reporter,
1430
1406
  )
1431
- if schema_metadata is not None:
1432
- dataset_snapshot.aspects.append(schema_metadata)
1433
-
1434
- mce = MetadataChangeEvent(proposedSnapshot=dataset_snapshot)
1435
- mcp = MetadataChangeProposalWrapper(
1436
- entityUrn=dataset_snapshot.urn,
1437
- aspect=SubTypesClass(typeNames=[DatasetSubTypes.LOOKER_EXPLORE]),
1438
- )
1439
1407
 
1440
- proposals: List[Union[MetadataChangeEvent, MetadataChangeProposalWrapper]] = [
1441
- mce,
1442
- mcp,
1443
- ]
1444
-
1445
- # Add tags
1446
- explore_tag_urns: List[TagAssociationClass] = [
1447
- TagAssociationClass(tag=TagUrn(tag).urn()) for tag in self.tags
1448
- ]
1449
- if explore_tag_urns:
1450
- dataset_snapshot.aspects.append(GlobalTagsClass(explore_tag_urns))
1408
+ extra_aspects: List[Union[GlobalTagsClass, EmbedClass]] = []
1451
1409
 
1452
- # If extracting embeds is enabled, produce an MCP for embed URL.
1410
+ explore_tag_urns: List[TagUrn] = [TagUrn(tag) for tag in self.tags]
1453
1411
  if extract_embed_urls:
1454
- embed_mcp = create_embed_mcp(
1455
- dataset_snapshot.urn, self._get_embed_url(base_url)
1456
- )
1457
- proposals.append(embed_mcp)
1412
+ extra_aspects.append(EmbedClass(renderUrl=self._get_embed_url(base_url)))
1458
1413
 
1459
- proposals.append(
1460
- MetadataChangeProposalWrapper(
1461
- entityUrn=dataset_snapshot.urn,
1462
- aspect=container,
1463
- )
1464
- )
1414
+ custom_properties: Dict[str, Optional[str]] = {
1415
+ "project": self.project_name,
1416
+ "model": self.model_name,
1417
+ "looker.explore.label": self.label,
1418
+ "looker.explore.name": self.name,
1419
+ "looker.explore.file": self.source_file,
1420
+ }
1465
1421
 
1466
- return proposals
1422
+ return Dataset(
1423
+ platform=config.platform_name,
1424
+ name=config.explore_naming_pattern.replace_variables(
1425
+ self.get_mapping(config)
1426
+ ),
1427
+ display_name=str(self.label)
1428
+ if self.label
1429
+ else LookerUtil._display_name(self.name),
1430
+ description=self.description,
1431
+ subtype=DatasetSubTypes.LOOKER_EXPLORE,
1432
+ env=config.env,
1433
+ platform_instance=config.platform_instance,
1434
+ custom_properties={
1435
+ k: str(v) for k, v in custom_properties.items() if v is not None
1436
+ },
1437
+ external_url=self._get_url(base_url),
1438
+ upstreams=upstream_lineage,
1439
+ schema=schema_metadata,
1440
+ parent_container=[
1441
+ "Explore",
1442
+ gen_model_key(config, self.model_name).as_urn(),
1443
+ ],
1444
+ tags=explore_tag_urns if explore_tag_urns else None,
1445
+ extra_aspects=extra_aspects,
1446
+ )
1467
1447
 
1468
1448
 
1469
1449
  def gen_project_key(config: LookerCommonConfig, project_name: str) -> LookMLProjectKey: