acryl-datahub 1.1.1rc4__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of acryl-datahub might be problematic. Click here for more details.
- {acryl_datahub-1.1.1rc4.dist-info → acryl_datahub-1.2.0.dist-info}/METADATA +2558 -2531
- {acryl_datahub-1.1.1rc4.dist-info → acryl_datahub-1.2.0.dist-info}/RECORD +221 -187
- {acryl_datahub-1.1.1rc4.dist-info → acryl_datahub-1.2.0.dist-info}/entry_points.txt +2 -0
- datahub/_version.py +1 -1
- datahub/api/entities/dataset/dataset.py +1 -1
- datahub/api/entities/external/__init__.py +0 -0
- datahub/api/entities/external/external_entities.py +239 -0
- datahub/api/entities/external/external_tag.py +145 -0
- datahub/api/entities/external/lake_formation_external_entites.py +161 -0
- datahub/api/entities/external/restricted_text.py +247 -0
- datahub/api/entities/external/unity_catalog_external_entites.py +173 -0
- datahub/cli/check_cli.py +88 -7
- datahub/cli/cli_utils.py +63 -0
- datahub/cli/container_cli.py +5 -0
- datahub/cli/delete_cli.py +124 -27
- datahub/cli/docker_check.py +107 -12
- datahub/cli/docker_cli.py +149 -227
- datahub/cli/exists_cli.py +0 -2
- datahub/cli/get_cli.py +0 -2
- datahub/cli/iceberg_cli.py +5 -0
- datahub/cli/ingest_cli.py +3 -15
- datahub/cli/migrate.py +2 -0
- datahub/cli/put_cli.py +1 -4
- datahub/cli/quickstart_versioning.py +50 -7
- datahub/cli/specific/assertions_cli.py +0 -4
- datahub/cli/specific/datacontract_cli.py +0 -3
- datahub/cli/specific/dataproduct_cli.py +0 -11
- datahub/cli/specific/dataset_cli.py +1 -8
- datahub/cli/specific/forms_cli.py +0 -4
- datahub/cli/specific/group_cli.py +0 -2
- datahub/cli/specific/structuredproperties_cli.py +1 -4
- datahub/cli/specific/user_cli.py +0 -2
- datahub/cli/state_cli.py +0 -2
- datahub/cli/timeline_cli.py +0 -2
- datahub/emitter/rest_emitter.py +70 -12
- datahub/entrypoints.py +4 -3
- datahub/ingestion/api/decorators.py +15 -3
- datahub/ingestion/api/report.py +332 -3
- datahub/ingestion/api/sink.py +3 -0
- datahub/ingestion/api/source.py +48 -44
- datahub/ingestion/autogenerated/__init__.py +0 -0
- datahub/ingestion/autogenerated/capability_summary.json +3449 -0
- datahub/ingestion/autogenerated/lineage.json +401 -0
- datahub/ingestion/autogenerated/lineage_helper.py +177 -0
- datahub/ingestion/extractor/schema_util.py +13 -4
- datahub/ingestion/glossary/classification_mixin.py +5 -0
- datahub/ingestion/graph/client.py +100 -15
- datahub/ingestion/graph/config.py +1 -0
- datahub/ingestion/reporting/datahub_ingestion_run_summary_provider.py +20 -10
- datahub/ingestion/run/pipeline.py +54 -2
- datahub/ingestion/sink/datahub_rest.py +13 -0
- datahub/ingestion/source/abs/source.py +1 -1
- datahub/ingestion/source/aws/aws_common.py +4 -0
- datahub/ingestion/source/aws/glue.py +489 -244
- datahub/ingestion/source/aws/tag_entities.py +292 -0
- datahub/ingestion/source/azure/azure_common.py +2 -2
- datahub/ingestion/source/bigquery_v2/bigquery.py +50 -23
- datahub/ingestion/source/bigquery_v2/bigquery_config.py +1 -1
- datahub/ingestion/source/bigquery_v2/bigquery_queries.py +1 -0
- datahub/ingestion/source/bigquery_v2/bigquery_schema_gen.py +2 -0
- datahub/ingestion/source/bigquery_v2/common.py +1 -1
- datahub/ingestion/source/bigquery_v2/profiler.py +4 -2
- datahub/ingestion/source/bigquery_v2/queries.py +3 -3
- datahub/ingestion/source/cassandra/cassandra.py +1 -1
- datahub/ingestion/source/cassandra/cassandra_profiling.py +6 -5
- datahub/ingestion/source/common/subtypes.py +45 -0
- datahub/ingestion/source/data_lake_common/object_store.py +115 -27
- datahub/ingestion/source/data_lake_common/path_spec.py +10 -21
- datahub/ingestion/source/datahub/datahub_database_reader.py +1 -2
- datahub/ingestion/source/dbt/dbt_cloud.py +10 -2
- datahub/ingestion/source/dbt/dbt_common.py +6 -2
- datahub/ingestion/source/dbt/dbt_core.py +3 -0
- datahub/ingestion/source/debug/__init__.py +0 -0
- datahub/ingestion/source/debug/datahub_debug.py +300 -0
- datahub/ingestion/source/dremio/dremio_api.py +114 -73
- datahub/ingestion/source/dremio/dremio_config.py +2 -0
- datahub/ingestion/source/dremio/dremio_reporting.py +23 -2
- datahub/ingestion/source/dremio/dremio_source.py +94 -81
- datahub/ingestion/source/dremio/dremio_sql_queries.py +82 -21
- datahub/ingestion/source/file.py +3 -0
- datahub/ingestion/source/fivetran/fivetran.py +34 -26
- datahub/ingestion/source/gcs/gcs_source.py +13 -2
- datahub/ingestion/source/ge_data_profiler.py +76 -28
- datahub/ingestion/source/ge_profiling_config.py +11 -0
- datahub/ingestion/source/hex/api.py +26 -1
- datahub/ingestion/source/iceberg/iceberg.py +3 -1
- datahub/ingestion/source/identity/azure_ad.py +1 -1
- datahub/ingestion/source/identity/okta.py +1 -14
- datahub/ingestion/source/kafka/kafka.py +16 -0
- datahub/ingestion/source/kafka_connect/sink_connectors.py +156 -47
- datahub/ingestion/source/kafka_connect/source_connectors.py +59 -4
- datahub/ingestion/source/looker/looker_source.py +1 -0
- datahub/ingestion/source/mlflow.py +11 -1
- datahub/ingestion/source/mock_data/__init__.py +0 -0
- datahub/ingestion/source/mock_data/datahub_mock_data.py +472 -0
- datahub/ingestion/source/mock_data/datahub_mock_data_report.py +12 -0
- datahub/ingestion/source/mock_data/table_naming_helper.py +91 -0
- datahub/ingestion/source/nifi.py +1 -1
- datahub/ingestion/source/powerbi/powerbi.py +1 -5
- datahub/ingestion/source/powerbi/rest_api_wrapper/powerbi_api.py +0 -1
- datahub/ingestion/source/powerbi_report_server/report_server.py +0 -23
- datahub/ingestion/source/preset.py +2 -2
- datahub/ingestion/source/qlik_sense/qlik_sense.py +1 -0
- datahub/ingestion/source/redshift/redshift.py +21 -1
- datahub/ingestion/source/redshift/usage.py +4 -3
- datahub/ingestion/source/s3/report.py +4 -2
- datahub/ingestion/source/s3/source.py +367 -115
- datahub/ingestion/source/sac/sac.py +3 -1
- datahub/ingestion/source/salesforce.py +6 -3
- datahub/ingestion/source/sigma/sigma.py +7 -1
- datahub/ingestion/source/slack/slack.py +2 -1
- datahub/ingestion/source/snowflake/snowflake_config.py +30 -7
- datahub/ingestion/source/snowflake/snowflake_queries.py +348 -82
- datahub/ingestion/source/snowflake/snowflake_summary.py +5 -0
- datahub/ingestion/source/snowflake/snowflake_usage_v2.py +8 -2
- datahub/ingestion/source/snowflake/snowflake_utils.py +2 -7
- datahub/ingestion/source/snowflake/snowflake_v2.py +16 -2
- datahub/ingestion/source/snowflake/stored_proc_lineage.py +143 -0
- datahub/ingestion/source/sql/athena.py +119 -11
- datahub/ingestion/source/sql/athena_properties_extractor.py +777 -0
- datahub/ingestion/source/sql/clickhouse.py +3 -1
- datahub/ingestion/source/sql/cockroachdb.py +0 -1
- datahub/ingestion/source/sql/hana.py +3 -1
- datahub/ingestion/source/sql/hive_metastore.py +3 -11
- datahub/ingestion/source/sql/mariadb.py +0 -1
- datahub/ingestion/source/sql/mssql/source.py +239 -34
- datahub/ingestion/source/sql/mysql.py +0 -1
- datahub/ingestion/source/sql/oracle.py +1 -1
- datahub/ingestion/source/sql/postgres.py +0 -1
- datahub/ingestion/source/sql/sql_common.py +121 -34
- datahub/ingestion/source/sql/sql_generic_profiler.py +2 -1
- datahub/ingestion/source/sql/teradata.py +997 -235
- datahub/ingestion/source/sql/vertica.py +10 -6
- datahub/ingestion/source/sql_queries.py +2 -2
- datahub/ingestion/source/state/stateful_ingestion_base.py +1 -1
- datahub/ingestion/source/superset.py +58 -3
- datahub/ingestion/source/tableau/tableau.py +58 -37
- datahub/ingestion/source/tableau/tableau_common.py +4 -2
- datahub/ingestion/source/tableau/tableau_constant.py +0 -4
- datahub/ingestion/source/unity/config.py +5 -0
- datahub/ingestion/source/unity/proxy.py +118 -0
- datahub/ingestion/source/unity/source.py +195 -17
- datahub/ingestion/source/unity/tag_entities.py +295 -0
- datahub/ingestion/source/usage/clickhouse_usage.py +4 -1
- datahub/ingestion/source/usage/starburst_trino_usage.py +3 -0
- datahub/ingestion/transformer/add_dataset_ownership.py +18 -2
- datahub/integrations/assertion/snowflake/compiler.py +4 -3
- datahub/metadata/_internal_schema_classes.py +1433 -546
- datahub/metadata/_urns/urn_defs.py +1826 -1658
- datahub/metadata/com/linkedin/pegasus2avro/application/__init__.py +19 -0
- datahub/metadata/com/linkedin/pegasus2avro/identity/__init__.py +2 -0
- datahub/metadata/com/linkedin/pegasus2avro/logical/__init__.py +15 -0
- datahub/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py +4 -0
- datahub/metadata/com/linkedin/pegasus2avro/module/__init__.py +27 -0
- datahub/metadata/com/linkedin/pegasus2avro/settings/global/__init__.py +4 -0
- datahub/metadata/com/linkedin/pegasus2avro/template/__init__.py +25 -0
- datahub/metadata/schema.avsc +17736 -17112
- datahub/metadata/schemas/ApplicationKey.avsc +31 -0
- datahub/metadata/schemas/ApplicationProperties.avsc +72 -0
- datahub/metadata/schemas/Applications.avsc +38 -0
- datahub/metadata/schemas/ChartKey.avsc +1 -0
- datahub/metadata/schemas/ContainerKey.avsc +1 -0
- datahub/metadata/schemas/ContainerProperties.avsc +8 -0
- datahub/metadata/schemas/CorpUserSettings.avsc +41 -0
- datahub/metadata/schemas/DashboardKey.avsc +1 -0
- datahub/metadata/schemas/DataFlowInfo.avsc +8 -0
- datahub/metadata/schemas/DataFlowKey.avsc +1 -0
- datahub/metadata/schemas/DataHubPageModuleKey.avsc +21 -0
- datahub/metadata/schemas/DataHubPageModuleProperties.avsc +200 -0
- datahub/metadata/schemas/DataHubPageTemplateKey.avsc +21 -0
- datahub/metadata/schemas/DataHubPageTemplateProperties.avsc +175 -0
- datahub/metadata/schemas/DataHubPolicyInfo.avsc +12 -1
- datahub/metadata/schemas/DataJobInfo.avsc +8 -0
- datahub/metadata/schemas/DataJobKey.avsc +1 -0
- datahub/metadata/schemas/DataProcessKey.avsc +8 -0
- datahub/metadata/schemas/DataProductKey.avsc +1 -0
- datahub/metadata/schemas/DataProductProperties.avsc +1 -1
- datahub/metadata/schemas/DatasetKey.avsc +11 -1
- datahub/metadata/schemas/GlobalSettingsInfo.avsc +62 -0
- datahub/metadata/schemas/GlossaryTermKey.avsc +1 -0
- datahub/metadata/schemas/IcebergWarehouseInfo.avsc +8 -0
- datahub/metadata/schemas/LogicalParent.avsc +140 -0
- datahub/metadata/schemas/MLFeatureKey.avsc +1 -0
- datahub/metadata/schemas/MLFeatureTableKey.avsc +1 -0
- datahub/metadata/schemas/MLModelDeploymentKey.avsc +8 -0
- datahub/metadata/schemas/MLModelGroupKey.avsc +9 -0
- datahub/metadata/schemas/MLModelKey.avsc +9 -0
- datahub/metadata/schemas/MLPrimaryKeyKey.avsc +1 -0
- datahub/metadata/schemas/MetadataChangeEvent.avsc +20 -1
- datahub/metadata/schemas/NotebookKey.avsc +1 -0
- datahub/metadata/schemas/QuerySubjects.avsc +1 -12
- datahub/metadata/schemas/SchemaFieldKey.avsc +2 -1
- datahub/metadata/schemas/__init__.py +3 -3
- datahub/sdk/__init__.py +2 -0
- datahub/sdk/_all_entities.py +7 -0
- datahub/sdk/_shared.py +116 -0
- datahub/sdk/chart.py +315 -0
- datahub/sdk/container.py +7 -0
- datahub/sdk/dashboard.py +432 -0
- datahub/sdk/dataflow.py +7 -0
- datahub/sdk/datajob.py +45 -13
- datahub/sdk/dataset.py +8 -2
- datahub/sdk/entity_client.py +82 -2
- datahub/sdk/lineage_client.py +683 -82
- datahub/sdk/main_client.py +46 -16
- datahub/sdk/mlmodel.py +101 -38
- datahub/sdk/mlmodelgroup.py +7 -0
- datahub/sdk/search_client.py +4 -3
- datahub/specific/chart.py +1 -1
- datahub/specific/dataproduct.py +4 -0
- datahub/sql_parsing/sql_parsing_aggregator.py +29 -17
- datahub/sql_parsing/sqlglot_lineage.py +62 -13
- datahub/telemetry/telemetry.py +17 -11
- datahub/testing/sdk_v2_helpers.py +7 -1
- datahub/upgrade/upgrade.py +46 -13
- datahub/utilities/server_config_util.py +8 -0
- datahub/utilities/sqlalchemy_query_combiner.py +5 -2
- datahub/utilities/stats_collections.py +4 -0
- {acryl_datahub-1.1.1rc4.dist-info → acryl_datahub-1.2.0.dist-info}/WHEEL +0 -0
- {acryl_datahub-1.1.1rc4.dist-info → acryl_datahub-1.2.0.dist-info}/licenses/LICENSE +0 -0
- {acryl_datahub-1.1.1rc4.dist-info → acryl_datahub-1.2.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,472 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from typing import Dict, Iterable, List, Optional, Tuple
|
|
3
|
+
|
|
4
|
+
from pydantic import Field
|
|
5
|
+
|
|
6
|
+
from datahub.configuration.common import ConfigModel
|
|
7
|
+
from datahub.emitter.mce_builder import make_dataset_urn
|
|
8
|
+
from datahub.emitter.mcp import MetadataChangeProposalWrapper
|
|
9
|
+
from datahub.ingestion.api.common import PipelineContext
|
|
10
|
+
from datahub.ingestion.api.decorators import (
|
|
11
|
+
SupportStatus,
|
|
12
|
+
config_class,
|
|
13
|
+
platform_name,
|
|
14
|
+
support_status,
|
|
15
|
+
)
|
|
16
|
+
from datahub.ingestion.api.source import Source, SourceReport
|
|
17
|
+
from datahub.ingestion.api.workunit import MetadataWorkUnit
|
|
18
|
+
from datahub.ingestion.source.common.subtypes import DatasetSubTypes
|
|
19
|
+
from datahub.ingestion.source.mock_data.datahub_mock_data_report import (
|
|
20
|
+
DataHubMockDataReport,
|
|
21
|
+
)
|
|
22
|
+
from datahub.ingestion.source.mock_data.table_naming_helper import TableNamingHelper
|
|
23
|
+
from datahub.metadata.schema_classes import (
|
|
24
|
+
CalendarIntervalClass,
|
|
25
|
+
DatasetLineageTypeClass,
|
|
26
|
+
DatasetProfileClass,
|
|
27
|
+
DatasetUsageStatisticsClass,
|
|
28
|
+
StatusClass,
|
|
29
|
+
SubTypesClass,
|
|
30
|
+
TimeWindowSizeClass,
|
|
31
|
+
UpstreamClass,
|
|
32
|
+
UpstreamLineageClass,
|
|
33
|
+
)
|
|
34
|
+
from datahub.utilities.str_enum import StrEnum
|
|
35
|
+
|
|
36
|
+
logger = logging.getLogger(__name__)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class SubTypePattern(StrEnum):
|
|
40
|
+
ALTERNATING = "alternating"
|
|
41
|
+
ALL_TABLE = "all_table"
|
|
42
|
+
ALL_VIEW = "all_view"
|
|
43
|
+
LEVEL_BASED = "level_based"
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class LineageConfigGen1(ConfigModel):
|
|
47
|
+
"""
|
|
48
|
+
Configuration for generating mock lineage data for testing purposes.
|
|
49
|
+
|
|
50
|
+
This configuration controls how the mock data source generates a hierarchical
|
|
51
|
+
lineage graph with multiple levels of upstream/downstream relationships.
|
|
52
|
+
|
|
53
|
+
The lineage graph is structured as follows:
|
|
54
|
+
- Level 0: 1 table (root)
|
|
55
|
+
- Level 1: lineage_fan_out tables (each connected to the root)
|
|
56
|
+
- Level 2+: If lineage_fan_out_after_first_hop is set, uses that value;
|
|
57
|
+
otherwise uses lineage_fan_out^level tables (each connected to a level 1 table)
|
|
58
|
+
- ... and so on for lineage_hops levels
|
|
59
|
+
|
|
60
|
+
Examples:
|
|
61
|
+
- With lineage_fan_out=2, lineage_hops=1: Creates 3 tables total
|
|
62
|
+
(1 root + 2 downstream) with 2 lineage relationships
|
|
63
|
+
- With lineage_fan_out=3, lineage_hops=2: Creates 13 tables total
|
|
64
|
+
(1 + 3 + 9) with 12 lineage relationships
|
|
65
|
+
- With lineage_fan_out=4, lineage_hops=1: Creates 5 tables total
|
|
66
|
+
(1 + 4) with 4 lineage relationships
|
|
67
|
+
- With lineage_fan_out=3, lineage_hops=3, lineage_fan_out_after_first_hop=2:
|
|
68
|
+
Creates 1 + 3 + 6 + 12 = 22 tables total (prevents exponential growth)
|
|
69
|
+
|
|
70
|
+
Table naming convention: "hops_{lineage_hops}_f_{lineage_fan_out}_h{level}_t{table_index}"
|
|
71
|
+
"""
|
|
72
|
+
|
|
73
|
+
enabled: bool = Field(
|
|
74
|
+
default=False,
|
|
75
|
+
description="Whether this source is enabled",
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
emit_lineage: bool = Field(
|
|
79
|
+
default=True,
|
|
80
|
+
description="Whether to emit lineage data for testing purposes. When False, no lineage data is generated regardless of other settings.",
|
|
81
|
+
)
|
|
82
|
+
emit_usage: bool = Field(
|
|
83
|
+
default=True,
|
|
84
|
+
description="Whether to emit usage data for testing purposes. When False, no usage data is generated regardless of other settings.",
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
lineage_fan_out: int = Field(
|
|
88
|
+
default=3,
|
|
89
|
+
description="Number of downstream tables that each upstream table connects to. This controls the 'width' of the lineage graph. Higher values create more parallel downstream tables per level.",
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
lineage_hops: int = Field(
|
|
93
|
+
default=2,
|
|
94
|
+
description="Number of hops (levels) in the lineage graph. This controls the 'depth' of the lineage graph. Level 0 is the root table, and each subsequent level contains downstream tables. Higher values create deeper lineage chains.",
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
lineage_fan_out_after_first_hop: Optional[int] = Field(
|
|
98
|
+
default=None,
|
|
99
|
+
description="Optional limit on fanout for hops after the first hop. When set, prevents exponential growth by limiting the number of downstream tables per upstream table at levels 2 and beyond. When None, uses the standard exponential growth (lineage_fan_out^level).",
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
subtype_pattern: SubTypePattern = Field(
|
|
103
|
+
default=SubTypePattern.ALTERNATING,
|
|
104
|
+
description="Pattern for determining SubTypes. Options: 'alternating', 'all_table', 'all_view', 'level_based'",
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
level_subtypes: Dict[int, str] = Field(
|
|
108
|
+
default={0: "Table", 1: "View", 2: "Table"},
|
|
109
|
+
description="Mapping of level to subtype for level_based pattern",
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
class DataHubMockDataConfig(ConfigModel):
|
|
114
|
+
enabled: bool = Field(
|
|
115
|
+
default=True,
|
|
116
|
+
description="Whether this source is enabled",
|
|
117
|
+
)
|
|
118
|
+
throw_uncaught_exceptions: bool = Field(
|
|
119
|
+
default=False,
|
|
120
|
+
description="Whether to throw an uncaught exception for testing",
|
|
121
|
+
)
|
|
122
|
+
num_errors: int = Field(
|
|
123
|
+
default=0,
|
|
124
|
+
description="Number of errors to add in report for testing",
|
|
125
|
+
)
|
|
126
|
+
num_warnings: int = Field(
|
|
127
|
+
default=0,
|
|
128
|
+
description="Number of warnings to add in report for testing",
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
gen_1: LineageConfigGen1 = Field(
|
|
132
|
+
default_factory=LineageConfigGen1,
|
|
133
|
+
description="Configuration for lineage data generation",
|
|
134
|
+
)
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
@platform_name("DataHubMockData")
|
|
138
|
+
@config_class(DataHubMockDataConfig)
|
|
139
|
+
@support_status(SupportStatus.TESTING)
|
|
140
|
+
class DataHubMockDataSource(Source):
|
|
141
|
+
"""
|
|
142
|
+
This source is for generating mock data for testing purposes.
|
|
143
|
+
Expect breaking changes as we iterate on the mock data source.
|
|
144
|
+
"""
|
|
145
|
+
|
|
146
|
+
def __init__(self, ctx: PipelineContext, config: DataHubMockDataConfig):
|
|
147
|
+
self.ctx = ctx
|
|
148
|
+
self.config = config
|
|
149
|
+
self.report = DataHubMockDataReport()
|
|
150
|
+
|
|
151
|
+
def get_workunits(self) -> Iterable[MetadataWorkUnit]:
|
|
152
|
+
if self.config.throw_uncaught_exceptions:
|
|
153
|
+
raise Exception("This is a test exception")
|
|
154
|
+
|
|
155
|
+
if self.config.num_errors > 0:
|
|
156
|
+
for i in range(self.config.num_errors):
|
|
157
|
+
self.report.failure(
|
|
158
|
+
message="This is test error message",
|
|
159
|
+
title="Test Error",
|
|
160
|
+
context=f"This is test error {i}",
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
if self.config.num_warnings > 0:
|
|
164
|
+
for i in range(self.config.num_warnings):
|
|
165
|
+
self.report.warning(
|
|
166
|
+
message="This is test warning",
|
|
167
|
+
title="Test Warning",
|
|
168
|
+
context=f"This is test warning {i}",
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
# We don't want any implicit aspects to be produced
|
|
172
|
+
# so we are not using get_workunits_internal
|
|
173
|
+
if self.config.gen_1.enabled:
|
|
174
|
+
for wu in self._data_gen_1():
|
|
175
|
+
if self.report.first_urn_seen is None:
|
|
176
|
+
self.report.first_urn_seen = wu.get_urn()
|
|
177
|
+
self.report.report_workunit(wu)
|
|
178
|
+
yield wu
|
|
179
|
+
|
|
180
|
+
yield from []
|
|
181
|
+
|
|
182
|
+
def _calculate_lineage_tables(
|
|
183
|
+
self, fan_out: int, hops: int, fan_out_after_first: Optional[int] = None
|
|
184
|
+
) -> Tuple[int, List[int]]:
|
|
185
|
+
"""
|
|
186
|
+
Calculate the total number of tables and tables at each level for lineage generation.
|
|
187
|
+
|
|
188
|
+
Args:
|
|
189
|
+
fan_out: Number of downstream tables per upstream table at level 1
|
|
190
|
+
hops: Number of hops (levels) in the lineage graph
|
|
191
|
+
fan_out_after_first: Optional limit on fanout for hops after the first hop
|
|
192
|
+
|
|
193
|
+
Returns:
|
|
194
|
+
Tuple of (total_tables, tables_at_levels) where tables_at_levels is a list
|
|
195
|
+
containing the number of tables at each level (index 0 = level 0, etc.)
|
|
196
|
+
"""
|
|
197
|
+
tables_to_be_created = 0
|
|
198
|
+
tables_at_levels: List[int] = []
|
|
199
|
+
|
|
200
|
+
for i in range(hops + 1):
|
|
201
|
+
if i == 0:
|
|
202
|
+
# Level 0: always 1 table
|
|
203
|
+
tables_at_level = 1
|
|
204
|
+
elif i == 1:
|
|
205
|
+
# Level 1: uses lineage_fan_out
|
|
206
|
+
tables_at_level = fan_out
|
|
207
|
+
else:
|
|
208
|
+
# Level 2+: use fan_out_after_first_hop if set, otherwise exponential growth
|
|
209
|
+
if fan_out_after_first is not None:
|
|
210
|
+
# Each table at previous level creates fan_out_after_first tables
|
|
211
|
+
tables_at_level = tables_at_levels[i - 1] * fan_out_after_first
|
|
212
|
+
else:
|
|
213
|
+
# Original exponential behavior
|
|
214
|
+
tables_at_level = fan_out**i
|
|
215
|
+
|
|
216
|
+
tables_at_levels.append(tables_at_level)
|
|
217
|
+
tables_to_be_created += tables_at_level
|
|
218
|
+
|
|
219
|
+
return tables_to_be_created, tables_at_levels
|
|
220
|
+
|
|
221
|
+
def _calculate_fanout_for_level(
|
|
222
|
+
self, level: int, fan_out: int, fan_out_after_first: Optional[int] = None
|
|
223
|
+
) -> int:
|
|
224
|
+
"""
|
|
225
|
+
Calculate the fanout (number of downstream tables) for a specific level.
|
|
226
|
+
|
|
227
|
+
Args:
|
|
228
|
+
level: The current level (0-based)
|
|
229
|
+
fan_out: Number of downstream tables per upstream table at level 1
|
|
230
|
+
fan_out_after_first: Optional limit on fanout for hops after the first hop
|
|
231
|
+
|
|
232
|
+
Returns:
|
|
233
|
+
The number of downstream tables that each table at this level should connect to
|
|
234
|
+
"""
|
|
235
|
+
if level == 0:
|
|
236
|
+
# Level 0: uses the standard fan_out
|
|
237
|
+
return fan_out
|
|
238
|
+
else:
|
|
239
|
+
# Level 1+: use fan_out_after_first if set, otherwise use fan_out
|
|
240
|
+
return fan_out_after_first if fan_out_after_first is not None else fan_out
|
|
241
|
+
|
|
242
|
+
def _determine_subtype(
|
|
243
|
+
self, table_name: str, table_level: int, table_index: int
|
|
244
|
+
) -> str:
|
|
245
|
+
"""
|
|
246
|
+
Determine subtype based on configured pattern.
|
|
247
|
+
|
|
248
|
+
Args:
|
|
249
|
+
table_name: Name of the table
|
|
250
|
+
table_level: Level of the table in the lineage graph
|
|
251
|
+
table_index: Index of the table within its level
|
|
252
|
+
|
|
253
|
+
Returns:
|
|
254
|
+
The determined subtype ("Table" or "View")
|
|
255
|
+
"""
|
|
256
|
+
pattern = self.config.gen_1.subtype_pattern
|
|
257
|
+
|
|
258
|
+
if pattern == SubTypePattern.ALTERNATING:
|
|
259
|
+
return (
|
|
260
|
+
DatasetSubTypes.TABLE if table_index % 2 == 0 else DatasetSubTypes.VIEW
|
|
261
|
+
)
|
|
262
|
+
elif pattern == SubTypePattern.LEVEL_BASED:
|
|
263
|
+
return self.config.gen_1.level_subtypes.get(
|
|
264
|
+
table_level, DatasetSubTypes.TABLE
|
|
265
|
+
)
|
|
266
|
+
elif pattern == SubTypePattern.ALL_TABLE:
|
|
267
|
+
return DatasetSubTypes.TABLE
|
|
268
|
+
elif pattern == SubTypePattern.ALL_VIEW:
|
|
269
|
+
return DatasetSubTypes.VIEW
|
|
270
|
+
else:
|
|
271
|
+
return DatasetSubTypes.TABLE # default
|
|
272
|
+
|
|
273
|
+
def _get_subtypes_aspect(
|
|
274
|
+
self, table_name: str, table_level: int, table_index: int
|
|
275
|
+
) -> MetadataWorkUnit:
|
|
276
|
+
"""
|
|
277
|
+
Create a SubTypes aspect for a table based on deterministic pattern.
|
|
278
|
+
|
|
279
|
+
Args:
|
|
280
|
+
table_name: Name of the table
|
|
281
|
+
table_level: Level of the table in the lineage graph
|
|
282
|
+
table_index: Index of the table within its level
|
|
283
|
+
|
|
284
|
+
Returns:
|
|
285
|
+
MetadataWorkUnit containing the SubTypes aspect
|
|
286
|
+
"""
|
|
287
|
+
# Determine subtype based on pattern
|
|
288
|
+
subtype = self._determine_subtype(table_name, table_level, table_index)
|
|
289
|
+
|
|
290
|
+
urn = make_dataset_urn(platform="fake", name=table_name)
|
|
291
|
+
mcp = MetadataChangeProposalWrapper(
|
|
292
|
+
entityUrn=urn,
|
|
293
|
+
entityType="dataset",
|
|
294
|
+
aspect=SubTypesClass(typeNames=[subtype]),
|
|
295
|
+
)
|
|
296
|
+
return mcp.as_workunit()
|
|
297
|
+
|
|
298
|
+
def _data_gen_1(self) -> Iterable[MetadataWorkUnit]:
|
|
299
|
+
"""Generate mock lineage data for testing purposes."""
|
|
300
|
+
gen_1 = self.config.gen_1
|
|
301
|
+
fan_out = gen_1.lineage_fan_out
|
|
302
|
+
hops = gen_1.lineage_hops
|
|
303
|
+
fan_out_after_first = gen_1.lineage_fan_out_after_first_hop
|
|
304
|
+
|
|
305
|
+
logger.info(
|
|
306
|
+
f"Generating lineage data with fan_out={fan_out}, hops={hops}, fan_out_after_first={fan_out_after_first}"
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
tables_to_be_created, tables_at_levels = self._calculate_lineage_tables(
|
|
310
|
+
fan_out, hops, fan_out_after_first
|
|
311
|
+
)
|
|
312
|
+
|
|
313
|
+
logger.info(f"About to create {tables_to_be_created} datasets mock data")
|
|
314
|
+
|
|
315
|
+
for i in range(hops + 1):
|
|
316
|
+
tables_at_level = tables_at_levels[i]
|
|
317
|
+
|
|
318
|
+
for j in range(tables_at_level):
|
|
319
|
+
table_name = TableNamingHelper.generate_table_name(hops, fan_out, i, j)
|
|
320
|
+
|
|
321
|
+
yield self._get_status_aspect(table_name)
|
|
322
|
+
|
|
323
|
+
yield self._get_subtypes_aspect(table_name, i, j)
|
|
324
|
+
|
|
325
|
+
yield self._get_profile_aspect(table_name)
|
|
326
|
+
|
|
327
|
+
if self.config.gen_1.emit_usage:
|
|
328
|
+
yield self._get_usage_aspect(table_name)
|
|
329
|
+
|
|
330
|
+
if self.config.gen_1.emit_lineage:
|
|
331
|
+
yield from self._generate_lineage_for_table(
|
|
332
|
+
table_name=table_name,
|
|
333
|
+
table_level=i,
|
|
334
|
+
table_index=j,
|
|
335
|
+
hops=hops,
|
|
336
|
+
fan_out=fan_out,
|
|
337
|
+
fan_out_after_first=fan_out_after_first,
|
|
338
|
+
tables_at_levels=tables_at_levels,
|
|
339
|
+
)
|
|
340
|
+
|
|
341
|
+
def _generate_lineage_for_table(
|
|
342
|
+
self,
|
|
343
|
+
table_name: str,
|
|
344
|
+
table_level: int,
|
|
345
|
+
table_index: int,
|
|
346
|
+
hops: int,
|
|
347
|
+
fan_out: int,
|
|
348
|
+
fan_out_after_first: Optional[int],
|
|
349
|
+
tables_at_levels: List[int],
|
|
350
|
+
) -> Iterable[MetadataWorkUnit]:
|
|
351
|
+
"""Generate lineage relationships for a specific table."""
|
|
352
|
+
# Only generate lineage if there are downstream levels
|
|
353
|
+
if table_level + 1 > hops:
|
|
354
|
+
return
|
|
355
|
+
|
|
356
|
+
current_fan_out = self._calculate_fanout_for_level(
|
|
357
|
+
table_level, fan_out, fan_out_after_first
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
yield from self._generate_downstream_lineage(
|
|
361
|
+
upstream_table_name=table_name,
|
|
362
|
+
upstream_table_index=table_index,
|
|
363
|
+
upstream_table_level=table_level,
|
|
364
|
+
current_fan_out=current_fan_out,
|
|
365
|
+
hops=hops,
|
|
366
|
+
fan_out=fan_out,
|
|
367
|
+
tables_at_levels=tables_at_levels,
|
|
368
|
+
)
|
|
369
|
+
|
|
370
|
+
def _generate_downstream_lineage(
|
|
371
|
+
self,
|
|
372
|
+
upstream_table_name: str,
|
|
373
|
+
upstream_table_index: int,
|
|
374
|
+
upstream_table_level: int,
|
|
375
|
+
current_fan_out: int,
|
|
376
|
+
hops: int,
|
|
377
|
+
fan_out: int,
|
|
378
|
+
tables_at_levels: List[int],
|
|
379
|
+
) -> Iterable[MetadataWorkUnit]:
|
|
380
|
+
"""Generate lineage relationships to downstream tables."""
|
|
381
|
+
downstream_level = upstream_table_level + 1
|
|
382
|
+
downstream_tables_count = tables_at_levels[downstream_level]
|
|
383
|
+
|
|
384
|
+
# Calculate range of downstream tables this upstream table connects to
|
|
385
|
+
start_downstream = upstream_table_index * current_fan_out
|
|
386
|
+
end_downstream = min(
|
|
387
|
+
(upstream_table_index + 1) * current_fan_out, downstream_tables_count
|
|
388
|
+
)
|
|
389
|
+
|
|
390
|
+
for downstream_index in range(start_downstream, end_downstream):
|
|
391
|
+
downstream_table_name = TableNamingHelper.generate_table_name(
|
|
392
|
+
hops, fan_out, downstream_level, downstream_index
|
|
393
|
+
)
|
|
394
|
+
yield self._get_upstream_aspect(
|
|
395
|
+
upstream_table=upstream_table_name,
|
|
396
|
+
downstream_table=downstream_table_name,
|
|
397
|
+
)
|
|
398
|
+
|
|
399
|
+
def _get_status_aspect(self, table: str) -> MetadataWorkUnit:
|
|
400
|
+
urn = make_dataset_urn(
|
|
401
|
+
platform="fake",
|
|
402
|
+
name=table,
|
|
403
|
+
)
|
|
404
|
+
mcp = MetadataChangeProposalWrapper(
|
|
405
|
+
entityUrn=urn,
|
|
406
|
+
entityType="dataset",
|
|
407
|
+
aspect=StatusClass(removed=False),
|
|
408
|
+
)
|
|
409
|
+
return mcp.as_workunit()
|
|
410
|
+
|
|
411
|
+
def _get_upstream_aspect(
|
|
412
|
+
self, upstream_table: str, downstream_table: str
|
|
413
|
+
) -> MetadataWorkUnit:
|
|
414
|
+
mcp = MetadataChangeProposalWrapper(
|
|
415
|
+
entityUrn=make_dataset_urn(
|
|
416
|
+
platform="fake",
|
|
417
|
+
name=downstream_table,
|
|
418
|
+
),
|
|
419
|
+
entityType="dataset",
|
|
420
|
+
aspect=UpstreamLineageClass(
|
|
421
|
+
upstreams=[
|
|
422
|
+
UpstreamClass(
|
|
423
|
+
dataset=make_dataset_urn(
|
|
424
|
+
platform="fake",
|
|
425
|
+
name=upstream_table,
|
|
426
|
+
),
|
|
427
|
+
type=DatasetLineageTypeClass.TRANSFORMED,
|
|
428
|
+
)
|
|
429
|
+
],
|
|
430
|
+
),
|
|
431
|
+
)
|
|
432
|
+
return mcp.as_workunit()
|
|
433
|
+
|
|
434
|
+
def _get_profile_aspect(self, table: str) -> MetadataWorkUnit:
|
|
435
|
+
urn = make_dataset_urn(
|
|
436
|
+
platform="fake",
|
|
437
|
+
name=table,
|
|
438
|
+
)
|
|
439
|
+
mcp = MetadataChangeProposalWrapper(
|
|
440
|
+
entityUrn=urn,
|
|
441
|
+
entityType="dataset",
|
|
442
|
+
aspect=DatasetProfileClass(
|
|
443
|
+
timestampMillis=0,
|
|
444
|
+
rowCount=100,
|
|
445
|
+
columnCount=10,
|
|
446
|
+
sizeInBytes=1000,
|
|
447
|
+
),
|
|
448
|
+
)
|
|
449
|
+
return mcp.as_workunit()
|
|
450
|
+
|
|
451
|
+
def _get_usage_aspect(self, table: str) -> MetadataWorkUnit:
|
|
452
|
+
urn = make_dataset_urn(
|
|
453
|
+
platform="fake",
|
|
454
|
+
name=table,
|
|
455
|
+
)
|
|
456
|
+
mcp = MetadataChangeProposalWrapper(
|
|
457
|
+
entityUrn=urn,
|
|
458
|
+
entityType="dataset",
|
|
459
|
+
aspect=DatasetUsageStatisticsClass(
|
|
460
|
+
timestampMillis=0,
|
|
461
|
+
eventGranularity=TimeWindowSizeClass(unit=CalendarIntervalClass.DAY),
|
|
462
|
+
uniqueUserCount=0,
|
|
463
|
+
totalSqlQueries=0,
|
|
464
|
+
topSqlQueries=[],
|
|
465
|
+
userCounts=[],
|
|
466
|
+
fieldCounts=[],
|
|
467
|
+
),
|
|
468
|
+
)
|
|
469
|
+
return mcp.as_workunit()
|
|
470
|
+
|
|
471
|
+
def get_report(self) -> SourceReport:
|
|
472
|
+
return self.report
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
from dataclasses import dataclass, field
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
from datahub.ingestion.api.source import SourceReport
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@dataclass
|
|
8
|
+
class DataHubMockDataReport(SourceReport):
|
|
9
|
+
first_urn_seen: Optional[str] = field(
|
|
10
|
+
default=None,
|
|
11
|
+
metadata={"description": "The first URN encountered during ingestion"},
|
|
12
|
+
)
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
from typing import Dict
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class TableNamingHelper:
|
|
5
|
+
"""
|
|
6
|
+
Helper class for managing table naming conventions in mock data generation.
|
|
7
|
+
|
|
8
|
+
Table naming pattern: "hops_{lineage_hops}_f_{lineage_fan_out}_h{level}_t{table_index}"
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
@staticmethod
|
|
12
|
+
def generate_table_name(
|
|
13
|
+
lineage_hops: int, lineage_fan_out: int, level: int, table_index: int
|
|
14
|
+
) -> str:
|
|
15
|
+
"""
|
|
16
|
+
Generate a table name following the standard naming convention.
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
lineage_hops: Total number of hops in the lineage graph
|
|
20
|
+
lineage_fan_out: Number of downstream tables per upstream table
|
|
21
|
+
level: Level of the table in the lineage graph (0-based)
|
|
22
|
+
table_index: Index of the table within its level (0-based)
|
|
23
|
+
|
|
24
|
+
Returns:
|
|
25
|
+
Table name following the pattern: "hops_{lineage_hops}_f_{lineage_fan_out}_h{level}_t{table_index}"
|
|
26
|
+
"""
|
|
27
|
+
return f"hops_{lineage_hops}_f_{lineage_fan_out}_h{level}_t{table_index}"
|
|
28
|
+
|
|
29
|
+
@staticmethod
|
|
30
|
+
def parse_table_name(table_name: str) -> Dict[str, int]:
|
|
31
|
+
"""
|
|
32
|
+
Parse a table name to extract its components.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
table_name: Table name following the standard naming convention
|
|
36
|
+
|
|
37
|
+
Returns:
|
|
38
|
+
Dictionary containing parsed components:
|
|
39
|
+
- lineage_hops: Total number of hops in the lineage graph
|
|
40
|
+
- lineage_fan_out: Number of downstream tables per upstream table
|
|
41
|
+
- level: Level of the table in the lineage graph (0-based)
|
|
42
|
+
- table_index: Index of the table within its level (0-based)
|
|
43
|
+
|
|
44
|
+
Raises:
|
|
45
|
+
ValueError: If the table name doesn't follow the expected pattern
|
|
46
|
+
"""
|
|
47
|
+
try:
|
|
48
|
+
# Expected pattern: "hops_{lineage_hops}_f_{lineage_fan_out}_h{level}_t{table_index}"
|
|
49
|
+
parts = table_name.split("_")
|
|
50
|
+
|
|
51
|
+
if (
|
|
52
|
+
len(parts) != 6
|
|
53
|
+
or parts[0] != "hops"
|
|
54
|
+
or parts[2] != "f"
|
|
55
|
+
or not parts[4].startswith("h")
|
|
56
|
+
or not parts[5].startswith("t")
|
|
57
|
+
):
|
|
58
|
+
raise ValueError(f"Invalid table name format: {table_name}")
|
|
59
|
+
|
|
60
|
+
lineage_hops = int(parts[1])
|
|
61
|
+
lineage_fan_out = int(parts[3]) # lineage_fan_out is at index 3
|
|
62
|
+
level = int(parts[4][1:]) # Remove 'h' prefix from parts[4]
|
|
63
|
+
table_index = int(parts[5][1:]) # Remove 't' prefix from parts[5]
|
|
64
|
+
|
|
65
|
+
return {
|
|
66
|
+
"lineage_hops": lineage_hops,
|
|
67
|
+
"lineage_fan_out": lineage_fan_out,
|
|
68
|
+
"level": level,
|
|
69
|
+
"table_index": table_index,
|
|
70
|
+
}
|
|
71
|
+
except (ValueError, IndexError) as e:
|
|
72
|
+
raise ValueError(
|
|
73
|
+
f"Failed to parse table name '{table_name}': {str(e)}"
|
|
74
|
+
) from e
|
|
75
|
+
|
|
76
|
+
@staticmethod
|
|
77
|
+
def is_valid_table_name(table_name: str) -> bool:
|
|
78
|
+
"""
|
|
79
|
+
Check if a table name follows the expected naming convention.
|
|
80
|
+
|
|
81
|
+
Args:
|
|
82
|
+
table_name: Table name to validate
|
|
83
|
+
|
|
84
|
+
Returns:
|
|
85
|
+
True if the table name follows the expected pattern, False otherwise
|
|
86
|
+
"""
|
|
87
|
+
try:
|
|
88
|
+
TableNamingHelper.parse_table_name(table_name)
|
|
89
|
+
return True
|
|
90
|
+
except ValueError:
|
|
91
|
+
return False
|
datahub/ingestion/source/nifi.py
CHANGED
|
@@ -72,7 +72,7 @@ NIFI = "nifi"
|
|
|
72
72
|
# and here - https://github.com/psf/requests/issues/1573
|
|
73
73
|
class SSLAdapter(HTTPAdapter):
|
|
74
74
|
def __init__(self, certfile, keyfile, password=None):
|
|
75
|
-
self.context = ssl.create_default_context(ssl.Purpose.
|
|
75
|
+
self.context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH)
|
|
76
76
|
self.context.load_cert_chain(
|
|
77
77
|
certfile=certfile, keyfile=keyfile, password=password
|
|
78
78
|
)
|
|
@@ -294,8 +294,6 @@ class Mapper:
|
|
|
294
294
|
logger.debug(f"Dataset urn = {ds_urn} and its lineage = {upstream_lineage}")
|
|
295
295
|
|
|
296
296
|
mcp = MetadataChangeProposalWrapper(
|
|
297
|
-
entityType=Constant.DATASET,
|
|
298
|
-
changeType=ChangeTypeClass.UPSERT,
|
|
299
297
|
entityUrn=ds_urn,
|
|
300
298
|
aspect=upstream_lineage_class,
|
|
301
299
|
)
|
|
@@ -538,9 +536,7 @@ class Mapper:
|
|
|
538
536
|
profile.columnCount = table.column_count
|
|
539
537
|
|
|
540
538
|
mcp = MetadataChangeProposalWrapper(
|
|
541
|
-
entityType="dataset",
|
|
542
539
|
entityUrn=ds_urn,
|
|
543
|
-
aspectName="datasetProfile",
|
|
544
540
|
aspect=profile,
|
|
545
541
|
)
|
|
546
542
|
dataset_mcps.append(mcp)
|
|
@@ -796,7 +792,6 @@ class Mapper:
|
|
|
796
792
|
guid=container_key.guid(),
|
|
797
793
|
)
|
|
798
794
|
mcp = MetadataChangeProposalWrapper(
|
|
799
|
-
changeType=ChangeTypeClass.UPSERT,
|
|
800
795
|
entityUrn=entity_urn,
|
|
801
796
|
aspect=ContainerClass(container=f"{container_urn}"),
|
|
802
797
|
)
|
|
@@ -1253,6 +1248,7 @@ class Mapper:
|
|
|
1253
1248
|
SourceCapability.DATA_PROFILING,
|
|
1254
1249
|
"Optionally enabled via configuration profiling.enabled",
|
|
1255
1250
|
)
|
|
1251
|
+
@capability(SourceCapability.TEST_CONNECTION, "Enabled by default")
|
|
1256
1252
|
class PowerBiDashboardSource(StatefulIngestionSourceBase, TestableSource):
|
|
1257
1253
|
"""
|
|
1258
1254
|
This plugin extracts the following:
|
|
@@ -673,7 +673,6 @@ class PowerBiAPI:
|
|
|
673
673
|
fill_dashboard_tags()
|
|
674
674
|
self._fill_independent_datasets(workspace=workspace)
|
|
675
675
|
|
|
676
|
-
# flake8: noqa: C901
|
|
677
676
|
def fill_workspaces(
|
|
678
677
|
self, workspaces: List[Workspace], reporter: PowerBiDashboardSourceReport
|
|
679
678
|
) -> Iterable[Workspace]:
|