acryl-datahub 1.0.0.3rc2__py3-none-any.whl → 1.0.0.3rc5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub might be problematic. Click here for more details.

datahub/sdk/mlmodel.py ADDED
@@ -0,0 +1,301 @@
1
+ from __future__ import annotations
2
+
3
+ from datetime import datetime
4
+ from typing import Dict, List, Optional, Sequence, Type, Union
5
+
6
+ from typing_extensions import Self
7
+
8
+ from datahub.emitter.mce_builder import DEFAULT_ENV
9
+ from datahub.metadata.schema_classes import (
10
+ AspectBag,
11
+ MLHyperParamClass,
12
+ MLMetricClass,
13
+ MLModelPropertiesClass,
14
+ )
15
+ from datahub.metadata.urns import (
16
+ DataProcessInstanceUrn,
17
+ MlModelGroupUrn,
18
+ MlModelUrn,
19
+ Urn,
20
+ )
21
+ from datahub.sdk._shared import (
22
+ DomainInputType,
23
+ HasDomain,
24
+ HasInstitutionalMemory,
25
+ HasOwnership,
26
+ HasPlatformInstance,
27
+ HasTags,
28
+ HasTerms,
29
+ HasVersion,
30
+ HyperParamsInputType,
31
+ LinksInputType,
32
+ MLTrainingJobInputType,
33
+ OwnersInputType,
34
+ TagsInputType,
35
+ TermsInputType,
36
+ TrainingMetricsInputType,
37
+ convert_hyper_params,
38
+ convert_training_metrics,
39
+ make_time_stamp,
40
+ parse_time_stamp,
41
+ )
42
+ from datahub.sdk.entity import Entity, ExtraAspectsType
43
+
44
+
45
+ class MLModel(
46
+ HasPlatformInstance,
47
+ HasOwnership,
48
+ HasInstitutionalMemory,
49
+ HasTags,
50
+ HasTerms,
51
+ HasDomain,
52
+ HasVersion,
53
+ Entity,
54
+ ):
55
+ __slots__ = ()
56
+
57
+ @classmethod
58
+ def get_urn_type(cls) -> Type[MlModelUrn]:
59
+ return MlModelUrn
60
+
61
+ def __init__(
62
+ self,
63
+ id: str,
64
+ platform: str,
65
+ version: Optional[str] = None,
66
+ aliases: Optional[List[str]] = None,
67
+ platform_instance: Optional[str] = None,
68
+ env: str = DEFAULT_ENV,
69
+ name: Optional[str] = None,
70
+ description: Optional[str] = None,
71
+ training_metrics: Optional[TrainingMetricsInputType] = None,
72
+ hyper_params: Optional[HyperParamsInputType] = None,
73
+ external_url: Optional[str] = None,
74
+ custom_properties: Optional[Dict[str, str]] = None,
75
+ created: Optional[datetime] = None,
76
+ last_modified: Optional[datetime] = None,
77
+ owners: Optional[OwnersInputType] = None,
78
+ links: Optional[LinksInputType] = None,
79
+ tags: Optional[TagsInputType] = None,
80
+ terms: Optional[TermsInputType] = None,
81
+ domain: Optional[DomainInputType] = None,
82
+ model_group: Optional[Union[str, MlModelGroupUrn]] = None,
83
+ training_jobs: Optional[MLTrainingJobInputType] = None,
84
+ downstream_jobs: Optional[MLTrainingJobInputType] = None,
85
+ extra_aspects: ExtraAspectsType = None,
86
+ ):
87
+ urn = MlModelUrn(platform=platform, name=id, env=env)
88
+ super().__init__(urn)
89
+ self._set_extra_aspects(extra_aspects)
90
+
91
+ self._set_platform_instance(urn.platform, platform_instance)
92
+
93
+ self._ensure_model_props()
94
+
95
+ if version is not None:
96
+ self.set_version(version)
97
+ if name is not None:
98
+ self.set_name(name)
99
+ if aliases is not None:
100
+ self.set_version_aliases(aliases)
101
+ if description is not None:
102
+ self.set_description(description)
103
+ if training_metrics is not None:
104
+ self.set_training_metrics(training_metrics)
105
+ if hyper_params is not None:
106
+ self.set_hyper_params(hyper_params)
107
+ if external_url is not None:
108
+ self.set_external_url(external_url)
109
+ if custom_properties is not None:
110
+ self.set_custom_properties(custom_properties)
111
+ if created is not None:
112
+ self.set_created(created)
113
+ if last_modified is not None:
114
+ self.set_last_modified(last_modified)
115
+
116
+ if owners is not None:
117
+ self.set_owners(owners)
118
+ if links is not None:
119
+ self.set_links(links)
120
+ if tags is not None:
121
+ self.set_tags(tags)
122
+ if terms is not None:
123
+ self.set_terms(terms)
124
+ if domain is not None:
125
+ self.set_domain(domain)
126
+ if model_group is not None:
127
+ self.set_model_group(model_group)
128
+ if training_jobs is not None:
129
+ self.set_training_jobs(training_jobs)
130
+ if downstream_jobs is not None:
131
+ self.set_downstream_jobs(downstream_jobs)
132
+
133
+ @classmethod
134
+ def _new_from_graph(cls, urn: Urn, current_aspects: AspectBag) -> Self:
135
+ assert isinstance(urn, MlModelUrn)
136
+ entity = cls(
137
+ id=urn.name,
138
+ platform=urn.platform,
139
+ env=urn.env,
140
+ )
141
+ return entity._init_from_graph(current_aspects)
142
+
143
+ @property
144
+ def urn(self) -> MlModelUrn:
145
+ return self._urn # type: ignore
146
+
147
+ def _ensure_model_props(
148
+ self,
149
+ ) -> MLModelPropertiesClass:
150
+ return self._setdefault_aspect(MLModelPropertiesClass())
151
+
152
+ @property
153
+ def name(self) -> Optional[str]:
154
+ return self._ensure_model_props().name
155
+
156
+ def set_name(self, name: str) -> None:
157
+ self._ensure_model_props().name = name
158
+
159
+ @property
160
+ def description(self) -> Optional[str]:
161
+ return self._ensure_model_props().description
162
+
163
+ def set_description(self, description: str) -> None:
164
+ self._ensure_model_props().description = description
165
+
166
+ @property
167
+ def external_url(self) -> Optional[str]:
168
+ return self._ensure_model_props().externalUrl
169
+
170
+ def set_external_url(self, external_url: str) -> None:
171
+ self._ensure_model_props().externalUrl = external_url
172
+
173
+ @property
174
+ def custom_properties(self) -> Optional[Dict[str, str]]:
175
+ return self._ensure_model_props().customProperties
176
+
177
+ def set_custom_properties(self, custom_properties: Dict[str, str]) -> None:
178
+ self._ensure_model_props().customProperties = custom_properties
179
+
180
+ @property
181
+ def created(self) -> Optional[datetime]:
182
+ return parse_time_stamp(self._ensure_model_props().created)
183
+
184
+ def set_created(self, created: datetime) -> None:
185
+ self._ensure_model_props().created = make_time_stamp(created)
186
+
187
+ @property
188
+ def last_modified(self) -> Optional[datetime]:
189
+ return parse_time_stamp(self._ensure_model_props().lastModified)
190
+
191
+ def set_last_modified(self, last_modified: datetime) -> None:
192
+ self._ensure_model_props().lastModified = make_time_stamp(last_modified)
193
+
194
+ @property
195
+ def training_metrics(self) -> Optional[List[MLMetricClass]]:
196
+ return self._ensure_model_props().trainingMetrics
197
+
198
+ def set_training_metrics(self, metrics: TrainingMetricsInputType) -> None:
199
+ self._ensure_model_props().trainingMetrics = convert_training_metrics(metrics)
200
+
201
+ def add_training_metrics(self, metrics: TrainingMetricsInputType) -> None:
202
+ props = self._ensure_model_props()
203
+ if props.trainingMetrics is None:
204
+ props.trainingMetrics = []
205
+ if isinstance(metrics, list):
206
+ props.trainingMetrics.extend(
207
+ [
208
+ MLMetricClass(name=metric.name, value=metric.value)
209
+ for metric in metrics
210
+ ]
211
+ )
212
+ else:
213
+ # For dictionary case, use the key as name and value as value
214
+ for name, value in metrics.items():
215
+ props.trainingMetrics.append(MLMetricClass(name=name, value=value))
216
+
217
+ @property
218
+ def hyper_params(self) -> Optional[List[MLHyperParamClass]]:
219
+ return self._ensure_model_props().hyperParams
220
+
221
+ def set_hyper_params(self, params: HyperParamsInputType) -> None:
222
+ self._ensure_model_props().hyperParams = convert_hyper_params(params)
223
+
224
+ def add_hyper_params(self, params: HyperParamsInputType) -> None:
225
+ props = self._ensure_model_props()
226
+ if props.hyperParams is None:
227
+ props.hyperParams = []
228
+ if isinstance(params, list):
229
+ props.hyperParams.extend(
230
+ [
231
+ MLHyperParamClass(name=param.name, value=param.value)
232
+ for param in params
233
+ ]
234
+ )
235
+ else:
236
+ # For dictionary case, iterate through key-value pairs
237
+ for name, value in params.items():
238
+ props.hyperParams.append(MLHyperParamClass(name=name, value=value))
239
+
240
+ @property
241
+ def model_group(self) -> Optional[str]:
242
+ props = self._ensure_model_props()
243
+ groups = props.groups
244
+ if groups is None or len(groups) == 0:
245
+ return None
246
+ return groups[0]
247
+
248
+ def set_model_group(self, group: Union[str, MlModelGroupUrn]) -> None:
249
+ self._ensure_model_props().groups = [str(group)]
250
+
251
+ @property
252
+ def training_jobs(self) -> Optional[List[str]]:
253
+ return self._ensure_model_props().trainingJobs
254
+
255
+ def set_training_jobs(self, training_jobs: MLTrainingJobInputType) -> None:
256
+ self._ensure_model_props().trainingJobs = [str(job) for job in training_jobs]
257
+
258
+ def add_training_job(
259
+ self, training_job: Union[str, DataProcessInstanceUrn]
260
+ ) -> None:
261
+ props = self._ensure_model_props()
262
+ if props.trainingJobs is None:
263
+ props.trainingJobs = []
264
+ props.trainingJobs.append(str(training_job))
265
+
266
+ def remove_training_job(
267
+ self, training_job: Union[str, DataProcessInstanceUrn]
268
+ ) -> None:
269
+ props = self._ensure_model_props()
270
+ if props.trainingJobs is not None:
271
+ job_str = str(training_job)
272
+ props.trainingJobs = [job for job in props.trainingJobs if job != job_str]
273
+
274
+ @property
275
+ def downstream_jobs(self) -> Optional[List[str]]:
276
+ return self._ensure_model_props().downstreamJobs
277
+
278
+ def set_downstream_jobs(
279
+ self, downstream_jobs: Sequence[Union[str, DataProcessInstanceUrn]]
280
+ ) -> None:
281
+ self._ensure_model_props().downstreamJobs = [
282
+ str(job) for job in downstream_jobs
283
+ ]
284
+
285
+ def add_downstream_job(
286
+ self, downstream_job: Union[str, DataProcessInstanceUrn]
287
+ ) -> None:
288
+ props = self._ensure_model_props()
289
+ if props.downstreamJobs is None:
290
+ props.downstreamJobs = []
291
+ props.downstreamJobs.append(str(downstream_job))
292
+
293
+ def remove_downstream_job(
294
+ self, downstream_job: Union[str, DataProcessInstanceUrn]
295
+ ) -> None:
296
+ props = self._ensure_model_props()
297
+ if props.downstreamJobs is not None:
298
+ job_str = str(downstream_job)
299
+ props.downstreamJobs = [
300
+ job for job in props.downstreamJobs if job != job_str
301
+ ]
@@ -0,0 +1,233 @@
1
+ from __future__ import annotations
2
+
3
+ from datetime import datetime
4
+ from typing import Dict, List, Optional, Sequence, Type, Union
5
+
6
+ from typing_extensions import Self
7
+
8
+ from datahub.emitter.mce_builder import DEFAULT_ENV
9
+ from datahub.metadata.schema_classes import (
10
+ AspectBag,
11
+ MLModelGroupPropertiesClass,
12
+ )
13
+ from datahub.metadata.urns import DataProcessInstanceUrn, MlModelGroupUrn, Urn
14
+ from datahub.sdk._shared import (
15
+ DomainInputType,
16
+ HasDomain,
17
+ HasInstitutionalMemory,
18
+ HasOwnership,
19
+ HasPlatformInstance,
20
+ HasTags,
21
+ HasTerms,
22
+ LinksInputType,
23
+ OwnersInputType,
24
+ TagsInputType,
25
+ TermsInputType,
26
+ make_time_stamp,
27
+ parse_time_stamp,
28
+ )
29
+ from datahub.sdk.entity import Entity, ExtraAspectsType
30
+
31
+
32
+ class MLModelGroup(
33
+ HasPlatformInstance,
34
+ HasOwnership,
35
+ HasInstitutionalMemory,
36
+ HasTags,
37
+ HasTerms,
38
+ HasDomain,
39
+ Entity,
40
+ ):
41
+ __slots__ = ()
42
+
43
+ @classmethod
44
+ def get_urn_type(cls) -> Type[MlModelGroupUrn]:
45
+ return MlModelGroupUrn
46
+
47
+ def __init__(
48
+ self,
49
+ id: str,
50
+ platform: str,
51
+ name: Optional[str] = "",
52
+ platform_instance: Optional[str] = None,
53
+ env: str = DEFAULT_ENV,
54
+ # Model group properties
55
+ description: Optional[str] = None,
56
+ display_name: Optional[str] = None,
57
+ external_url: Optional[str] = None,
58
+ custom_properties: Optional[Dict[str, str]] = None,
59
+ created: Optional[datetime] = None,
60
+ last_modified: Optional[datetime] = None,
61
+ # Standard aspects
62
+ owners: Optional[OwnersInputType] = None,
63
+ links: Optional[LinksInputType] = None,
64
+ tags: Optional[TagsInputType] = None,
65
+ terms: Optional[TermsInputType] = None,
66
+ domain: Optional[DomainInputType] = None,
67
+ training_jobs: Optional[Sequence[Union[str, DataProcessInstanceUrn]]] = None,
68
+ downstream_jobs: Optional[Sequence[Union[str, DataProcessInstanceUrn]]] = None,
69
+ extra_aspects: ExtraAspectsType = None,
70
+ ):
71
+ urn = MlModelGroupUrn(platform=platform, name=id, env=env)
72
+ super().__init__(urn)
73
+ self._set_extra_aspects(extra_aspects)
74
+
75
+ self._set_platform_instance(urn.platform, platform_instance)
76
+
77
+ # Set MLModelGroupProperties aspect
78
+ self._ensure_model_group_props(name=display_name or name)
79
+
80
+ if description is not None:
81
+ self.set_description(description)
82
+ if external_url is not None:
83
+ self.set_external_url(external_url)
84
+ if custom_properties is not None:
85
+ self.set_custom_properties(custom_properties)
86
+ if created is not None:
87
+ self.set_created(created)
88
+ if last_modified is not None:
89
+ self.set_last_modified(last_modified)
90
+
91
+ # Standard aspects
92
+ if owners is not None:
93
+ self.set_owners(owners)
94
+ if links is not None:
95
+ self.set_links(links)
96
+ if tags is not None:
97
+ self.set_tags(tags)
98
+ if terms is not None:
99
+ self.set_terms(terms)
100
+ if domain is not None:
101
+ self.set_domain(domain)
102
+
103
+ # ML model group specific aspects
104
+ if training_jobs is not None:
105
+ self.set_training_jobs(training_jobs)
106
+ if downstream_jobs is not None:
107
+ self.set_downstream_jobs(downstream_jobs)
108
+
109
+ @classmethod
110
+ def _new_from_graph(cls, urn: Urn, current_aspects: AspectBag) -> Self:
111
+ assert isinstance(urn, MlModelGroupUrn)
112
+ entity = cls(
113
+ platform=urn.platform,
114
+ id=urn.name,
115
+ env=urn.env,
116
+ )
117
+ return entity._init_from_graph(current_aspects)
118
+
119
+ @property
120
+ def urn(self) -> MlModelGroupUrn:
121
+ return self._urn # type: ignore
122
+
123
+ def _ensure_model_group_props(
124
+ self, *, name: Optional[str] = None
125
+ ) -> MLModelGroupPropertiesClass:
126
+ if name is not None:
127
+ return self._setdefault_aspect(MLModelGroupPropertiesClass(name=name))
128
+
129
+ props = self._get_aspect(MLModelGroupPropertiesClass)
130
+ if props is None:
131
+ # If we need properties but they don't exist and no name was provided
132
+ return self._setdefault_aspect(
133
+ MLModelGroupPropertiesClass(name=self.urn.name)
134
+ )
135
+ return props
136
+
137
+ @property
138
+ def name(self) -> Optional[str]:
139
+ return self._ensure_model_group_props().name
140
+
141
+ def set_name(self, display_name: str) -> None:
142
+ self._ensure_model_group_props().name = display_name
143
+
144
+ @property
145
+ def description(self) -> Optional[str]:
146
+ return self._ensure_model_group_props().description
147
+
148
+ def set_description(self, description: str) -> None:
149
+ self._ensure_model_group_props().description = description
150
+
151
+ @property
152
+ def external_url(self) -> Optional[str]:
153
+ return self._ensure_model_group_props().externalUrl
154
+
155
+ def set_external_url(self, external_url: str) -> None:
156
+ self._ensure_model_group_props().externalUrl = external_url
157
+
158
+ @property
159
+ def custom_properties(self) -> Optional[Dict[str, str]]:
160
+ return self._ensure_model_group_props().customProperties
161
+
162
+ def set_custom_properties(self, custom_properties: Dict[str, str]) -> None:
163
+ self._ensure_model_group_props().customProperties = custom_properties
164
+
165
+ @property
166
+ def created(self) -> Optional[datetime]:
167
+ return parse_time_stamp(self._ensure_model_group_props().created)
168
+
169
+ def set_created(self, created: datetime) -> None:
170
+ self._ensure_model_group_props().created = make_time_stamp(created)
171
+
172
+ @property
173
+ def last_modified(self) -> Optional[datetime]:
174
+ return parse_time_stamp(self._ensure_model_group_props().lastModified)
175
+
176
+ def set_last_modified(self, last_modified: datetime) -> None:
177
+ self._ensure_model_group_props().lastModified = make_time_stamp(last_modified)
178
+
179
+ @property
180
+ def training_jobs(self) -> Optional[List[str]]:
181
+ return self._ensure_model_group_props().trainingJobs
182
+
183
+ def set_training_jobs(
184
+ self, training_jobs: Sequence[Union[str, DataProcessInstanceUrn]]
185
+ ) -> None:
186
+ self._ensure_model_group_props().trainingJobs = [
187
+ str(job) for job in training_jobs
188
+ ]
189
+
190
+ def add_training_job(
191
+ self, training_job: Union[str, DataProcessInstanceUrn]
192
+ ) -> None:
193
+ props = self._ensure_model_group_props()
194
+ if props.trainingJobs is None:
195
+ props.trainingJobs = []
196
+ props.trainingJobs.append(str(training_job))
197
+
198
+ def remove_training_job(
199
+ self, training_job: Union[str, DataProcessInstanceUrn]
200
+ ) -> None:
201
+ props = self._ensure_model_group_props()
202
+ if props.trainingJobs is not None:
203
+ props.trainingJobs = [
204
+ job for job in props.trainingJobs if job != str(training_job)
205
+ ]
206
+
207
+ @property
208
+ def downstream_jobs(self) -> Optional[List[str]]:
209
+ return self._ensure_model_group_props().downstreamJobs
210
+
211
+ def set_downstream_jobs(
212
+ self, downstream_jobs: Sequence[Union[str, DataProcessInstanceUrn]]
213
+ ) -> None:
214
+ self._ensure_model_group_props().downstreamJobs = [
215
+ str(job) for job in downstream_jobs
216
+ ]
217
+
218
+ def add_downstream_job(
219
+ self, downstream_job: Union[str, DataProcessInstanceUrn]
220
+ ) -> None:
221
+ props = self._ensure_model_group_props()
222
+ if props.downstreamJobs is None:
223
+ props.downstreamJobs = []
224
+ props.downstreamJobs.append(str(downstream_job))
225
+
226
+ def remove_downstream_job(
227
+ self, downstream_job: Union[str, DataProcessInstanceUrn]
228
+ ) -> None:
229
+ props = self._ensure_model_group_props()
230
+ if props.downstreamJobs is not None:
231
+ props.downstreamJobs = [
232
+ job for job in props.downstreamJobs if job != str(downstream_job)
233
+ ]