acryl-datahub 0.15.0rc5__py3-none-any.whl → 0.15.0rc7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub might be problematic. Click here for more details.

Files changed (43) hide show
  1. {acryl_datahub-0.15.0rc5.dist-info → acryl_datahub-0.15.0rc7.dist-info}/METADATA +2456 -2426
  2. {acryl_datahub-0.15.0rc5.dist-info → acryl_datahub-0.15.0rc7.dist-info}/RECORD +43 -41
  3. {acryl_datahub-0.15.0rc5.dist-info → acryl_datahub-0.15.0rc7.dist-info}/entry_points.txt +1 -0
  4. datahub/__init__.py +1 -1
  5. datahub/api/entities/structuredproperties/structuredproperties.py +1 -1
  6. datahub/cli/put_cli.py +1 -1
  7. datahub/cli/specific/dataproduct_cli.py +1 -1
  8. datahub/emitter/mcp_patch_builder.py +43 -0
  9. datahub/ingestion/source/aws/sagemaker_processors/feature_groups.py +9 -4
  10. datahub/ingestion/source/aws/sagemaker_processors/models.py +30 -1
  11. datahub/ingestion/source/bigquery_v2/bigquery_audit.py +1 -1
  12. datahub/ingestion/source/common/subtypes.py +2 -0
  13. datahub/ingestion/source/csv_enricher.py +1 -1
  14. datahub/ingestion/source/dbt/dbt_common.py +7 -61
  15. datahub/ingestion/source/dremio/dremio_api.py +11 -0
  16. datahub/ingestion/source/dremio/dremio_aspects.py +19 -15
  17. datahub/ingestion/source/dremio/dremio_config.py +5 -0
  18. datahub/ingestion/source/dremio/dremio_entities.py +4 -0
  19. datahub/ingestion/source/dremio/dremio_source.py +7 -2
  20. datahub/ingestion/source/elastic_search.py +1 -1
  21. datahub/ingestion/source/gc/dataprocess_cleanup.py +6 -1
  22. datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py +1 -1
  23. datahub/ingestion/source/ge_data_profiler.py +23 -1
  24. datahub/ingestion/source/neo4j/__init__.py +0 -0
  25. datahub/ingestion/source/neo4j/neo4j_source.py +331 -0
  26. datahub/ingestion/source/qlik_sense/data_classes.py +1 -0
  27. datahub/ingestion/source/redshift/redshift.py +1 -0
  28. datahub/ingestion/source/snowflake/snowflake_schema_gen.py +1 -0
  29. datahub/ingestion/source/sql/athena.py +46 -22
  30. datahub/ingestion/source/sql/sql_types.py +85 -8
  31. datahub/ingestion/source/unity/proxy_types.py +1 -0
  32. datahub/ingestion/transformer/add_dataset_tags.py +1 -1
  33. datahub/ingestion/transformer/generic_aspect_transformer.py +1 -1
  34. datahub/integrations/assertion/common.py +1 -1
  35. datahub/lite/duckdb_lite.py +12 -17
  36. datahub/specific/chart.py +0 -39
  37. datahub/specific/dashboard.py +0 -39
  38. datahub/specific/datajob.py +3 -47
  39. datahub/utilities/urn_encoder.py +2 -1
  40. datahub/utilities/urns/_urn_base.py +1 -1
  41. datahub/utilities/urns/structured_properties_urn.py +1 -1
  42. {acryl_datahub-0.15.0rc5.dist-info → acryl_datahub-0.15.0rc7.dist-info}/WHEEL +0 -0
  43. {acryl_datahub-0.15.0rc5.dist-info → acryl_datahub-0.15.0rc7.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- datahub/__init__.py,sha256=c5YiGS9ajJPufFiwc_4_Bv9DF1Ha6s0H9dd-rtKRF3Y,574
1
+ datahub/__init__.py,sha256=M60UgnRqXe5phF4e_Q2BXeyiCsA0bLxvQhC2EMqTPto,574
2
2
  datahub/__main__.py,sha256=pegIvQ9hzK7IhqVeUi1MeADSZ2QlP-D3K0OQdEg55RU,106
3
3
  datahub/entrypoints.py,sha256=3-qSfXAx3Z0FEkBV5tlO8fQr4xk4ySeDRMVTpS5Xd6A,7793
4
4
  datahub/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -52,7 +52,7 @@ datahub/api/entities/forms/forms_graphql_constants.py,sha256=DKpnKlMKTjmnyrCTvp6
52
52
  datahub/api/entities/platformresource/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
53
  datahub/api/entities/platformresource/platform_resource.py,sha256=pVAjv6NoH746Mfvdak7ji0eqlEcEeV-Ji7M5gyNXmds,10603
54
54
  datahub/api/entities/structuredproperties/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
- datahub/api/entities/structuredproperties/structuredproperties.py,sha256=mqSvD_EtGs-G7tXQpcZ3hweFCrnWubdJnoDYKr7J0Pk,9274
55
+ datahub/api/entities/structuredproperties/structuredproperties.py,sha256=UeNPicCmrYJThv0msUlYUNArHGcjdc_0EX5yLijc_Ao,9267
56
56
  datahub/api/graphql/__init__.py,sha256=5yl0dJxO-2d_QuykdJrDIbWq4ja9bo0t2dAEh89JOog,142
57
57
  datahub/api/graphql/assertion.py,sha256=ponITypRQ8vE8kiqRNpvdoniNJzi4aeBK97UvkF0VhA,2818
58
58
  datahub/api/graphql/base.py,sha256=9q637r6v-RGOd8Mk8HW2g0vt9zpqFexsQ5R6TPEHVbs,1614
@@ -72,7 +72,7 @@ datahub/cli/json_file.py,sha256=nWo-VVthaaW4Do1eUqgrzk0fShb29MjiKXvZVOTq76c,943
72
72
  datahub/cli/lite_cli.py,sha256=UmlMMquce6lHiPaKUBBT0XQtqR9SHEmrGlJyKV9YY60,13030
73
73
  datahub/cli/migrate.py,sha256=p42vixwKzi9OHQnIa0K2FxwGvt-1OxXeuYGJzfu5Sqo,17939
74
74
  datahub/cli/migration_utils.py,sha256=0qHo_9eSR4buyV_K_tdcHSLBufKphBWwwwT1iK_I4S8,9382
75
- datahub/cli/put_cli.py,sha256=Dq1q2i3Fc-1tn08SdT4HRrG9FTZ4HInoY3miZawAb8o,3848
75
+ datahub/cli/put_cli.py,sha256=4ol9aLdidX1VXjVxMG2tkfEMPyjLpgOk2pfl0Gvb8iU,3841
76
76
  datahub/cli/quickstart_versioning.py,sha256=MyWvw92s4b84wIEizjSUZjoMClwLbhpgMdHeDav-x2o,5713
77
77
  datahub/cli/state_cli.py,sha256=TkIzohZOJYBowniJpTipPxiQTziErVeZCxq197GlvUQ,1142
78
78
  datahub/cli/telemetry.py,sha256=xw3SiAn2je48Qv4kXPYN5EPVKHWEWZc2LGoF7UzGs8U,489
@@ -80,7 +80,7 @@ datahub/cli/timeline_cli.py,sha256=kxs-kJNFxDT27RQeh2i3WiQ6a8SYkPeJbksWUc8kUhc,7
80
80
  datahub/cli/specific/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
81
81
  datahub/cli/specific/assertions_cli.py,sha256=I4_MCwYoWDturxYvdRuA-MbSvYMeM0yFQm9Bdj_4Uj4,5375
82
82
  datahub/cli/specific/datacontract_cli.py,sha256=IkBovwuPT5jNB8X-8AQJRO4C9cFSNm1at8v4YctLFgQ,2531
83
- datahub/cli/specific/dataproduct_cli.py,sha256=2LfUxiaHeVnW2XlY40TNCAVVWIWEcnkd9_fFzD2lVhY,15088
83
+ datahub/cli/specific/dataproduct_cli.py,sha256=c22W35wuTiZR4MKHP-P6ER5ABok1tooV1JzECFhR9uY,15081
84
84
  datahub/cli/specific/dataset_cli.py,sha256=AwSmIiuV3XbgprW4_1Wj-EJq1OPqFyolSNczQm5BROs,3441
85
85
  datahub/cli/specific/file_loader.py,sha256=YMyv_evdKyHSft5Tm_kOcqJ4ALpRmMm54ZJAyl7Nxqs,773
86
86
  datahub/cli/specific/forms_cli.py,sha256=OLVeG8NtK1eDBuUKCT5Ald35np8__f8mLzbZM_zUfWU,1484
@@ -117,7 +117,7 @@ datahub/emitter/kafka_emitter.py,sha256=Uix1W1WaXF8VqUTUfzdRZKca2XrR1w50Anx2LVkR
117
117
  datahub/emitter/mce_builder.py,sha256=CMES7gTj4w_kZhOsWuxbLwdz5e2tdiilibnZXstRGhw,16117
118
118
  datahub/emitter/mcp.py,sha256=hAAYziDdkwjazQU0DtWMbQWY8wS09ACrKJbqxoWXdgc,9637
119
119
  datahub/emitter/mcp_builder.py,sha256=ju-1dZMKs5dlWcTi4zcNRVmhkfhmfX3JFULZSbgxSFs,9968
120
- datahub/emitter/mcp_patch_builder.py,sha256=AcWoeZmK_2AlCLOLLGrmwLT5GHZvUK9n05S8Df-saFk,2874
120
+ datahub/emitter/mcp_patch_builder.py,sha256=W85q1maVUMpOIo5lwLRn82rLXRVoZ_gurl_a-pvVCpE,4291
121
121
  datahub/emitter/request_helper.py,sha256=33ORG3S3OVy97_jlWBRn7yUM5XCIkRN6WSdJvN7Ofcg,670
122
122
  datahub/emitter/rest_emitter.py,sha256=rIWqEJjcSIM16_8DXqNqZ_h5s_nj46DTiyRKA5EQHXQ,15021
123
123
  datahub/emitter/serialization_helper.py,sha256=q12Avmf70Vy4ttQGMJoTKlE5EsybMKNg2w3MQeZiHvk,3652
@@ -184,12 +184,12 @@ datahub/ingestion/sink/file.py,sha256=SxXJPJpkIGoaqRjCcSmj2ZE3xE4rLlBABBGwpTj5LW
184
184
  datahub/ingestion/sink/sink_registry.py,sha256=JRBWx8qEYg0ubSTyhqwgSWctgxwyp6fva9GoN2LwBao,490
185
185
  datahub/ingestion/source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
186
186
  datahub/ingestion/source/confluent_schema_registry.py,sha256=_h9D8bUXoaGcwgwB94dX6aTyLY5ve7XGdcVFSJHGSJc,18804
187
- datahub/ingestion/source/csv_enricher.py,sha256=xjCbcsSMM8l_ASCRAnNsUGKuYMrD1lec19Waixub1EM,29498
187
+ datahub/ingestion/source/csv_enricher.py,sha256=AIxQFkmSzFgCa_Fzt2EiFMyojQMFKmnPt878WypSPa4,29491
188
188
  datahub/ingestion/source/demo_data.py,sha256=yzA_R-wfSX2WPz0i5ukYlscpmpb0Pt8D7EkhtKfftvo,1286
189
- datahub/ingestion/source/elastic_search.py,sha256=qFUVNzynTVJTabASTjGMu8Qhf9UpNbEtSBFjaPQjBJE,22641
189
+ datahub/ingestion/source/elastic_search.py,sha256=uT4I0GyqSiD16BURqsXWyPN9wNBc3wLomz1nG-OxHec,22634
190
190
  datahub/ingestion/source/feast.py,sha256=uZpeUkJsiNlvZcUkARiEuZT_3n6sbGc0yFzwqhtnefA,18103
191
191
  datahub/ingestion/source/file.py,sha256=pH-Qkjh5FQ2XvyYPE7Z8XEY4vUk_SUHxm8p8IxG12tU,15879
192
- datahub/ingestion/source/ge_data_profiler.py,sha256=JqTonv8y7Re4Rfn2YKOEaLufiiAOWKfK1XQvJfV5dvs,64126
192
+ datahub/ingestion/source/ge_data_profiler.py,sha256=7-ciHphLU8O259OU2WMDfCDpoqvDLUy_XcG4EM0agFc,64983
193
193
  datahub/ingestion/source/ge_profiling_config.py,sha256=P-9pd20koFvpxeEL_pqFvKWWz-qnpZ6XkELUyBKr7is,10807
194
194
  datahub/ingestion/source/glue_profiling_config.py,sha256=vpMJH4Lf_qgR32BZy58suabri1yV5geaAPjzg2eORDc,2559
195
195
  datahub/ingestion/source/ldap.py,sha256=Vnzg8tpwBYeyM-KBVVsUJvGZGBMJiCJ_i_FhxaFRQ9A,18627
@@ -221,18 +221,18 @@ datahub/ingestion/source/aws/s3_util.py,sha256=OFypcgmVC6jnZM90-gjcPpAMtTV1lbnre
221
221
  datahub/ingestion/source/aws/sagemaker.py,sha256=23m8a9-VofWDJZWm4uCrf0MLkFZKbxce7839qDYTh7w,4995
222
222
  datahub/ingestion/source/aws/sagemaker_processors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
223
223
  datahub/ingestion/source/aws/sagemaker_processors/common.py,sha256=SSvpOszqJAHoZB3jMZgx8odInEy3lTZZCThhpOWkyvE,2012
224
- datahub/ingestion/source/aws/sagemaker_processors/feature_groups.py,sha256=obHm_rwSQMh07iBxb6N9XBZcmcjdx5_Fdn5F3aJQU_8,10247
224
+ datahub/ingestion/source/aws/sagemaker_processors/feature_groups.py,sha256=bnx6uKwXvzafYhcIl112INTMmotu6xy8FjFNhTO4b6c,10384
225
225
  datahub/ingestion/source/aws/sagemaker_processors/job_classes.py,sha256=CfJkzjZU2uvZvw7qvmxfNgeWI1EvgHFY-7bn5Ih71no,9154
226
226
  datahub/ingestion/source/aws/sagemaker_processors/jobs.py,sha256=OHLiqeZCTR9GgfmSx6O8oX9ZCd983RiFnx23JTiKZ3I,32395
227
227
  datahub/ingestion/source/aws/sagemaker_processors/lineage.py,sha256=dvSCoiZhJLN4Hic5nRH3REI7SxMdMsm_4Ugmv0U8Zdg,9290
228
- datahub/ingestion/source/aws/sagemaker_processors/models.py,sha256=C2RVFpQUUe-7mRr8zz0yyPIuFRGK54mIisMkhqcUFZw,19017
228
+ datahub/ingestion/source/aws/sagemaker_processors/models.py,sha256=6Ltmy6MAwbexN_JRYu7LXlAKpihXGlW4WXxo7qdwEF8,19845
229
229
  datahub/ingestion/source/azure/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
230
230
  datahub/ingestion/source/azure/abs_folder_utils.py,sha256=7skXus-4fSIoKpqCeU-GG0ch1oF2SJSYDZ1JMB_Onso,7605
231
231
  datahub/ingestion/source/azure/abs_utils.py,sha256=KdAlCK-PMrn35kFHxz5vrsjajyx2PD5GRgoBKdoRvcg,2075
232
232
  datahub/ingestion/source/azure/azure_common.py,sha256=Zl0pPuE6L3QcM5B1P0LsPthZmD0h7fUUS0kg2okl6IY,4053
233
233
  datahub/ingestion/source/bigquery_v2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
234
234
  datahub/ingestion/source/bigquery_v2/bigquery.py,sha256=-12CZWeSIAkI6Kb4AY8NAF3wsC_2lxhPErm5o0oUUes,14116
235
- datahub/ingestion/source/bigquery_v2/bigquery_audit.py,sha256=oFccDfFNU3vjjfe5QlV0EtSp8Ow4SBd6h2KdGgj7XW8,25115
235
+ datahub/ingestion/source/bigquery_v2/bigquery_audit.py,sha256=IlbHA8a-gNJvnubgBfxVHpUk8rFNIG80gk5HWXa2lyE,25108
236
236
  datahub/ingestion/source/bigquery_v2/bigquery_audit_log_api.py,sha256=LuGJ6LgPViLIfDQfylxlQ3CA7fZYM5MDt8M-7sfzm84,5096
237
237
  datahub/ingestion/source/bigquery_v2/bigquery_config.py,sha256=xnYWxbhvv-rJRHLGkOWIAn4Ir__hwinEZF1F7TWWirE,26086
238
238
  datahub/ingestion/source/bigquery_v2/bigquery_data_reader.py,sha256=DeT3v_Z82__8En0FcZ0kavBAWQoRvSZ5Rppm9eeDAb8,2393
@@ -257,7 +257,7 @@ datahub/ingestion/source/cassandra/cassandra_profiling.py,sha256=Y1Gtb8QcXtdQaq1
257
257
  datahub/ingestion/source/cassandra/cassandra_utils.py,sha256=alZp0Pn-03nWKlFC121FmDrXPJG6TyPM4xMJKlhRRco,5232
258
258
  datahub/ingestion/source/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
259
259
  datahub/ingestion/source/common/data_reader.py,sha256=XbSxiRTYrk6seOz0ZjVjzSpGvP8lEjmqXrNI4cdYYmQ,1819
260
- datahub/ingestion/source/common/subtypes.py,sha256=q4uVXgeWfNRdJ266osRvSAQ0e1uyNCQxw67deuHq79U,2211
260
+ datahub/ingestion/source/common/subtypes.py,sha256=zxBQkRxsG_XMMz6Pmw_yMQiuFOhapOFVUOtXw8yHz7Q,2287
261
261
  datahub/ingestion/source/data_lake_common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
262
262
  datahub/ingestion/source/data_lake_common/config.py,sha256=qUk83B01hjuBKHvVz8SmXnVCy5eFj-2-2QLEOrAdbgk,359
263
263
  datahub/ingestion/source/data_lake_common/data_lake_utils.py,sha256=nxu7osuzqxScPFc-1ODA2M1c_xPNPpRH_SMMU7zKOIE,6212
@@ -272,7 +272,7 @@ datahub/ingestion/source/datahub/report.py,sha256=VHBfCbwFRzdLdB7hQG9ST4EiZxl_vB
272
272
  datahub/ingestion/source/datahub/state.py,sha256=PZoT7sSK1wadVf5vN6phrgr7I6LL7ePP-EJjP1OO0bQ,3507
273
273
  datahub/ingestion/source/dbt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
274
274
  datahub/ingestion/source/dbt/dbt_cloud.py,sha256=3bfcCi7xBvlCTGjnDCnyOShsxgVRn7wUYJOid_WT_Vk,17643
275
- datahub/ingestion/source/dbt/dbt_common.py,sha256=Sq27lqF-tt4kPYksL_F67DuW8VYZjGSL0vMWNL10ON4,82357
275
+ datahub/ingestion/source/dbt/dbt_common.py,sha256=0ddiqNx9sUAGZYDQ8tSr5Qh5ti-kgC4saW1yRRNJXgg,80493
276
276
  datahub/ingestion/source/dbt/dbt_core.py,sha256=m6cA9vVd4Nh2arc-T2_xeQoxvreRbMhTDIJuYsx3wHc,22722
277
277
  datahub/ingestion/source/dbt/dbt_tests.py,sha256=Q5KISW_AOOWqyxmyOgJQquyX7xlfOqKu9WhrHoLKC0M,9881
278
278
  datahub/ingestion/source/delta_lake/__init__.py,sha256=u5oqUeus81ONAtdl6o9Puw33ODSMun-0wLIamrZ4BUM,71
@@ -281,14 +281,14 @@ datahub/ingestion/source/delta_lake/delta_lake_utils.py,sha256=VqIDPEXepOnlk4oWM
281
281
  datahub/ingestion/source/delta_lake/report.py,sha256=uqWWivPltlZ7dwpOOluTvHOKKsSusqihn67clCAwxoM,467
282
282
  datahub/ingestion/source/delta_lake/source.py,sha256=jLCN6SeAv3bCD4w4ZDw15eIbFF3yVWcxVtBklovFEBg,13548
283
283
  datahub/ingestion/source/dremio/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
284
- datahub/ingestion/source/dremio/dremio_api.py,sha256=9567A7ELxGV_f0vZ3s_bdL5kwCsB7lNOEuw59uIe9mQ,28643
285
- datahub/ingestion/source/dremio/dremio_aspects.py,sha256=sDQ-NPA0fgiy7nu-8imfYsUMtcEBQo58OBrWyPgTGhc,18089
286
- datahub/ingestion/source/dremio/dremio_config.py,sha256=Mu9LjohVwVPdVgM53FhBDquJA0kvUVaedDWW77Mf-Ns,5626
284
+ datahub/ingestion/source/dremio/dremio_api.py,sha256=R7HLqAg845SdX4zWhl2Tm8AtxaFpUIX_zxRRvap2uCQ,28998
285
+ datahub/ingestion/source/dremio/dremio_aspects.py,sha256=3VeHzCw9q1ytngmsq_K4Ll9tWD2V8EDFySBImHdhPAw,18287
286
+ datahub/ingestion/source/dremio/dremio_config.py,sha256=5SP66ewGYN0OnyWgpU33EZOmtICsclTtBX5DSYLwl3c,5782
287
287
  datahub/ingestion/source/dremio/dremio_datahub_source_mapping.py,sha256=YkYC3-TB-Jn65z2GN_NMErQDovwU7krQ9b92DBh4uvY,3021
288
- datahub/ingestion/source/dremio/dremio_entities.py,sha256=cIupn6fRxYX3FrcsdoDTSmvOTHLuaoyuNEkHV70-ve0,14902
288
+ datahub/ingestion/source/dremio/dremio_entities.py,sha256=3H3vIvj5ab4d8gmB9-rbZfwRgW87gT1DdjWiMjNgqJ4,15069
289
289
  datahub/ingestion/source/dremio/dremio_profiling.py,sha256=TAcnpo8ZRKhLDHnQSJzJg3YdwTSyEa73LUAzENs7wG4,12287
290
290
  datahub/ingestion/source/dremio/dremio_reporting.py,sha256=IPgv7lOnhK6mQeqwRsPscKnXhzgVZG8Id3yNcsmG7nw,1273
291
- datahub/ingestion/source/dremio/dremio_source.py,sha256=vQTYxB-PQdoMsoEY69ewtfraDloKypHF6pXv8jbVlG4,25940
291
+ datahub/ingestion/source/dremio/dremio_source.py,sha256=NJxDXWd19A3MPplPiLPAjxTmjeJBA04PcPytRSslmYQ,26323
292
292
  datahub/ingestion/source/dremio/dremio_sql_queries.py,sha256=W0rcXawlwJOHNYr5o73rilMijtFOO3cVkn6pY-JLc6o,8186
293
293
  datahub/ingestion/source/dynamodb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
294
294
  datahub/ingestion/source/dynamodb/data_reader.py,sha256=vC77KpcP8LJN0g8wsPRDVw4sebv0ZWIP3tJkEIHaomA,3120
@@ -301,9 +301,9 @@ datahub/ingestion/source/fivetran/fivetran_log_api.py,sha256=EAak3hJpe75WZSgz6wP
301
301
  datahub/ingestion/source/fivetran/fivetran_query.py,sha256=vLrTj7e-0NxZ2U4bWTB57pih42WirqPlUvwtIRfStlQ,5275
302
302
  datahub/ingestion/source/gc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
303
303
  datahub/ingestion/source/gc/datahub_gc.py,sha256=f6Erj3KfD0Hx3ydwL5MUVCZgFzS9c6U2Pkr54JLIUOA,12394
304
- datahub/ingestion/source/gc/dataprocess_cleanup.py,sha256=IEEHO6UvDWWK3W5siqFrk4J1zUKbL6TrKNUaXdNiEW4,14362
304
+ datahub/ingestion/source/gc/dataprocess_cleanup.py,sha256=0mO0D9DmH6ypqlUCrPtrOS1WCKrL77yt9Djd5_TFDIs,14469
305
305
  datahub/ingestion/source/gc/execution_request_cleanup.py,sha256=cHJmxz4NmA7VjTX2iGEo3wZ_SDrjC_rCQcnRxKgfUVI,8713
306
- datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py,sha256=qLgdr-Rrsba0z_Y-CaHT9d1zSgy2jzg6CXaCKoN2jFk,7360
306
+ datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py,sha256=_tms5AqNAJRDRzQmyN_VydzXbdME2lkvTwa5u1La5z8,7353
307
307
  datahub/ingestion/source/gcs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
308
308
  datahub/ingestion/source/gcs/gcs_source.py,sha256=iwvj4JwjyVWRP1Vq106sUtQhh0GuOYVSu9zCa1wCZN0,6189
309
309
  datahub/ingestion/source/gcs/gcs_utils.py,sha256=_78KM863XXgkVLmZLtYGF5PJNnZas1go-XRtOq-79lo,1047
@@ -347,6 +347,8 @@ datahub/ingestion/source/looker/view_upstream.py,sha256=k278-uwh8uspdREpjE_uqks4
347
347
  datahub/ingestion/source/metadata/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
348
348
  datahub/ingestion/source/metadata/business_glossary.py,sha256=eRVRpQI0ZX5OofS1BUhNihFOfWih70TIAkJM7zaMH80,17577
349
349
  datahub/ingestion/source/metadata/lineage.py,sha256=XiZGuY6k3O9qBmgo7AzosIndJHwrvEhapVLdRlDxCuc,9507
350
+ datahub/ingestion/source/neo4j/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
351
+ datahub/ingestion/source/neo4j/neo4j_source.py,sha256=L9WiZ5yZrIDMrgj3gYU9j6zz3TRMXYpcWxeTegD7sFg,12409
350
352
  datahub/ingestion/source/powerbi/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
351
353
  datahub/ingestion/source/powerbi/config.py,sha256=LV8BOm2zzF9t0RMwQVVUNB0bStzBPo8A6JkaW0xlgsQ,23241
352
354
  datahub/ingestion/source/powerbi/dataplatform_instance_resolver.py,sha256=AIU89lVPoCWlzc_RfUjDJwRQ11akPtnGpBTluBMCKio,2242
@@ -374,7 +376,7 @@ datahub/ingestion/source/profiling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQe
374
376
  datahub/ingestion/source/profiling/common.py,sha256=4sZ58AeBV64KRfKAgjkg-UyNjAc3YERahQMmW4algAw,1426
375
377
  datahub/ingestion/source/qlik_sense/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
376
378
  datahub/ingestion/source/qlik_sense/config.py,sha256=oyCqkGrY9tmFJY9cPD9B7DdkmR7eQ30Awt-iqgY-HUs,3892
377
- datahub/ingestion/source/qlik_sense/data_classes.py,sha256=JWYxEnqnkdvRaX1ef5nkk1z9C3t93hBNBzLk5v8WdY4,6499
379
+ datahub/ingestion/source/qlik_sense/data_classes.py,sha256=3JBELAeadKTjDyfrhx6qhHwPChXRGOL95gRAUyPhKQU,6555
378
380
  datahub/ingestion/source/qlik_sense/qlik_api.py,sha256=fXJAo4ctDIx08ZRK1uEwFJta6nNgTqrqKAYy6h6QC8M,13185
379
381
  datahub/ingestion/source/qlik_sense/qlik_sense.py,sha256=bmhmOgSXzC6g-uqO1ljFLRNz2oo6Xjn400UQnWdMA1Y,22530
380
382
  datahub/ingestion/source/qlik_sense/websocket_connection.py,sha256=CsWRFAOaRKJ7SDJKh6qT3sd5EaIFA_4JsEWSGG-6tHc,1856
@@ -385,7 +387,7 @@ datahub/ingestion/source/redshift/lineage.py,sha256=bUy0uJowrqSc33Z50fIxFlJkyhe-
385
387
  datahub/ingestion/source/redshift/lineage_v2.py,sha256=OcVW_27sSaZOYZPTd2j-LS9SzFQ1kXz6cMzM2ZDWhJQ,16751
386
388
  datahub/ingestion/source/redshift/profile.py,sha256=T4H79ycq2tPobLM1tTLRtu581Qa8LlKxEok49m0AirU,4294
387
389
  datahub/ingestion/source/redshift/query.py,sha256=bY1D9RoOHaw89LgcXal7GYlJN0RG7PxXRRC-YKIdC8E,43105
388
- datahub/ingestion/source/redshift/redshift.py,sha256=j3yz9cct77IU2RaiaXDWiTZIGxoZGFUxGFWvNEVaw7E,44234
390
+ datahub/ingestion/source/redshift/redshift.py,sha256=doGZowVJBThrEoyt25NdowfgytYuNlN4Ca1776onSPQ,44294
389
391
  datahub/ingestion/source/redshift/redshift_data_reader.py,sha256=zc69jwXHdF-w8J4Hq-ZQ6BjHQ75Ij2iNDMpoRJlcmlU,1724
390
392
  datahub/ingestion/source/redshift/redshift_schema.py,sha256=9IYeUsnISenq3eVB3k-s7zK8nInWDAYViFnDrNjtkb0,19149
391
393
  datahub/ingestion/source/redshift/report.py,sha256=M19aUHBkd9n-BVBX4fRhyRNdVkN2b9Es6ZqInRx5ZGI,2958
@@ -430,7 +432,7 @@ datahub/ingestion/source/snowflake/snowflake_queries.py,sha256=fu-8S9eADIXZcd_kH
430
432
  datahub/ingestion/source/snowflake/snowflake_query.py,sha256=oNmtg-ZVcZ3-w1X5t-JGv2qTH64Z0qzEnaZaRxbRquo,38035
431
433
  datahub/ingestion/source/snowflake/snowflake_report.py,sha256=KjNvYufQMVkFP7F5sEFumKorkiFAmFVCQ1jYqXr0ev0,6419
432
434
  datahub/ingestion/source/snowflake/snowflake_schema.py,sha256=fatrKpBUY9CnzXhLJcFlHkHGt0QWFhkYH9ZXwWoQCLA,20392
433
- datahub/ingestion/source/snowflake/snowflake_schema_gen.py,sha256=4A9DxtEoGtEeTEy2YbKxllLFjsRFWjFsFzWq2TqOASw,38838
435
+ datahub/ingestion/source/snowflake/snowflake_schema_gen.py,sha256=JjzhhyEN9QBUv-64sHhkq-4Vq1XhDtz9npLMiqlSICo,38893
434
436
  datahub/ingestion/source/snowflake/snowflake_shares.py,sha256=ud3Ah4qHrmSfpD8Od-gPdzwtON9dJa0eqHt-8Yr5h2Q,6366
435
437
  datahub/ingestion/source/snowflake/snowflake_summary.py,sha256=kTmuCtRnvHqM8WBYhWeK4XafJq3ssFL9kcS03jEeWT4,5506
436
438
  datahub/ingestion/source/snowflake/snowflake_tag.py,sha256=fyfWmFVz2WZrpTJWNIe9m0WpDHgeFrGPf8diORJZUwo,6212
@@ -438,7 +440,7 @@ datahub/ingestion/source/snowflake/snowflake_usage_v2.py,sha256=PEmYNMXJRUvLQmVd
438
440
  datahub/ingestion/source/snowflake/snowflake_utils.py,sha256=Ux4sieWe79KZztquvrPkpJoOegLfTAWVv1A73UUlbGs,11365
439
441
  datahub/ingestion/source/snowflake/snowflake_v2.py,sha256=gO7egHNYnbpQ-xQb1SWgr4K0GQSL2VTVSTMdfwfgl-A,31733
440
442
  datahub/ingestion/source/sql/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
441
- datahub/ingestion/source/sql/athena.py,sha256=8rWQCvHt8vJqdN1tzdVSofhYRus3zxNwpeGRuSCXfoI,23230
443
+ datahub/ingestion/source/sql/athena.py,sha256=G3cIY8H_76lIUAzQWW2kLnZOEsfbakmojxbiHb3dYZ8,24059
442
444
  datahub/ingestion/source/sql/clickhouse.py,sha256=jzvaXP5Wr0SMhj2rtuvVE821xnfpKiXhO3cm0xblgHs,27299
443
445
  datahub/ingestion/source/sql/cockroachdb.py,sha256=XaD7eae34plU9ISRC6PzYX9q6RdT2qkzjH6CpTOgkx4,1443
444
446
  datahub/ingestion/source/sql/druid.py,sha256=lhO9CCOlHV-6LjBuAxAxtB9I1pvPtsGSdr63bz6_ilA,2837
@@ -455,7 +457,7 @@ datahub/ingestion/source/sql/sql_config.py,sha256=M-l_uXau0ODolLZHBzAXhy-Rq5yYxv
455
457
  datahub/ingestion/source/sql/sql_generic.py,sha256=9AERvkK8kdJUeDOzCYJDb93xdv6Z4DGho0NfeHj5Uyg,2740
456
458
  datahub/ingestion/source/sql/sql_generic_profiler.py,sha256=6QbhkQH_F13GV1HsavVTq3BE9F7Pr_vfGOjCX2o2c60,11675
457
459
  datahub/ingestion/source/sql/sql_report.py,sha256=19YVvatcCZsBP533HWn0X9Y30jo4TUxSkQ9rYpMQpT4,2487
458
- datahub/ingestion/source/sql/sql_types.py,sha256=XcZo5CYo1kHVkvD8lDCFqWQxaLL_CzJC-kV1gvXaXiY,12676
460
+ datahub/ingestion/source/sql/sql_types.py,sha256=lrJpavRTE7aDVAKOrKZcrp4CsKydiiaza1wt2ieqWzs,15041
459
461
  datahub/ingestion/source/sql/sql_utils.py,sha256=w9YFNm_qJNjOcWAWBI_lUoFMbd0wT8q0LoT7Ia71tIE,8100
460
462
  datahub/ingestion/source/sql/sqlalchemy_data_reader.py,sha256=FvHZ4JEK3aR2DYOBZiT_ZsAy12RjTu4t_KIR_92B11k,2644
461
463
  datahub/ingestion/source/sql/sqlalchemy_uri_mapper.py,sha256=KOpbmDIE2h1hyYEsbVHJi2B7FlsyUMTXZx4diyzltQg,1826
@@ -494,7 +496,7 @@ datahub/ingestion/source/unity/ge_profiler.py,sha256=DFQKOqryMWFg-NqwfFGPklNH2hH
494
496
  datahub/ingestion/source/unity/hive_metastore_proxy.py,sha256=IAWWJjaW0si_UF52Se2D7wmdYRY_afUG4QlVmQu6xaw,15351
495
497
  datahub/ingestion/source/unity/proxy.py,sha256=2-pYQ-3B9UVUwO1yB9iTdi3DqgqZ2JrpQknLodI7UjM,18976
496
498
  datahub/ingestion/source/unity/proxy_profiling.py,sha256=WLqvYP6MziaisA4LYL4T_GA-kPt6Xdde7bfaYsjYw40,9663
497
- datahub/ingestion/source/unity/proxy_types.py,sha256=g4qhREewta0vapO7JJPHPli_ZXmtYVmGBNzt_TtfNAQ,9307
499
+ datahub/ingestion/source/unity/proxy_types.py,sha256=qrvHiwPzl5cPX-KRvcIGGeJVdr0I8XUQmoAI6ErZ-v8,9371
498
500
  datahub/ingestion/source/unity/report.py,sha256=0Y-ciHVTI6ZKNCJ5zWoQh3Ze1c_GMqmTMKFwzXDuuOg,2788
499
501
  datahub/ingestion/source/unity/source.py,sha256=i2WU0H6Gvce51I3qWVOoEp6lZ1FAxEm_9u2qS6zmsL8,41482
500
502
  datahub/ingestion/source/unity/usage.py,sha256=r91-ishhv9QTNLevVhQ9HPZ47CRvVeeAMBtWuRsONxk,11089
@@ -517,7 +519,7 @@ datahub/ingestion/transformer/add_dataset_ownership.py,sha256=xuv6qymZceHYOtFIdo
517
519
  datahub/ingestion/transformer/add_dataset_properties.py,sha256=bNFu-Yv6nmiGuZCgPUnCHBuoDbVPpUTYKc_7zzgWZxg,5605
518
520
  datahub/ingestion/transformer/add_dataset_schema_tags.py,sha256=9bCgQNKhu0uGaQoQsfauNCcaBW64DMsSaJbmJfSp-zk,5664
519
521
  datahub/ingestion/transformer/add_dataset_schema_terms.py,sha256=-fHMP9xgJDSqAFW8zIP2TUR_XLX-Zcd93IBiSdyigB4,6548
520
- datahub/ingestion/transformer/add_dataset_tags.py,sha256=VF1524IZ0GqOzl9fI3FhGikvwt3YyCCltqNzVcWqOmU,4744
522
+ datahub/ingestion/transformer/add_dataset_tags.py,sha256=eyvQpb0hntSmaP9HSHcIiHLvLFtkEeX-BKmHVtuaF3Y,4737
521
523
  datahub/ingestion/transformer/add_dataset_terms.py,sha256=F3DgVFJfm_Ofh4NOt7caKbVx4FQE-tOns17E0qDn43o,5799
522
524
  datahub/ingestion/transformer/auto_helper_transformer.py,sha256=MuxoHr0_SPi8LpHbYYOYaEO8d-7XBu2zRn-PDnqrIHU,2843
523
525
  datahub/ingestion/transformer/base_transformer.py,sha256=j5HmnplhY1K_7oa9DNHhCegs6eMKndc-VFoT8GGxgpU,12383
@@ -526,7 +528,7 @@ datahub/ingestion/transformer/dataset_domain_based_on_tags.py,sha256=V_FGZ-H-cRn
526
528
  datahub/ingestion/transformer/dataset_transformer.py,sha256=dOK0oO6R6dbuxk5i5Za6hkzy8xCEpQxG8iKjXeIZKM4,5305
527
529
  datahub/ingestion/transformer/extract_dataset_tags.py,sha256=uCxf7L9AdMjVs7gvq1k1geuxcWDxv0LXEwXj6EQlWSE,2499
528
530
  datahub/ingestion/transformer/extract_ownership_from_tags.py,sha256=DQh0dETRzALR1qhN6aKeAs2YPCpquxu3wGU_MSospQs,6381
529
- datahub/ingestion/transformer/generic_aspect_transformer.py,sha256=X80Jt2XKbVn7leHJjW2sOvTYzbxzG73zag9GQNZKWdE,5602
531
+ datahub/ingestion/transformer/generic_aspect_transformer.py,sha256=-1g-tIgWPFhCmzTPcV60CIw8SAFD9ML5ai70lMxfXMo,5595
530
532
  datahub/ingestion/transformer/mark_dataset_status.py,sha256=mg-BWLxYmiEFBH8ErNcUPd-X4FThMWoloS9Lu15awC8,1323
531
533
  datahub/ingestion/transformer/pattern_cleanup_dataset_usage_user.py,sha256=jTURuh6tDJDnelxxsNzmJjyIucMUryEDOLa1i7rb9-o,2422
532
534
  datahub/ingestion/transformer/pattern_cleanup_ownership.py,sha256=axZYHbbYGRQmlc8jKdObDt1H3aM3SU9vV8TDJKZCLdw,2932
@@ -537,7 +539,7 @@ datahub/ingestion/transformer/tags_to_terms.py,sha256=-BC9GeZDz5oPBkaTWmKMNtyEUa
537
539
  datahub/ingestion/transformer/transform_registry.py,sha256=bartmA1zEaULNy5W1Q7gRF8h5Y57BFC6XNOGfCzh1Zw,251
538
540
  datahub/integrations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
539
541
  datahub/integrations/assertion/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
540
- datahub/integrations/assertion/common.py,sha256=VGd10aLAaNzw3kauC5cr-4J3FSEzUb60VK7mi_Kc6m4,2216
542
+ datahub/integrations/assertion/common.py,sha256=eYE8by2GubKe1xtWgAEKvrO4mqPtfCxL7XWH2jpi3cA,2209
541
543
  datahub/integrations/assertion/registry.py,sha256=mmeYpQREFVrLWpLcA0qYZtbrMX4vAGcDoQ59wtMgEcg,307
542
544
  datahub/integrations/assertion/snowflake/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
543
545
  datahub/integrations/assertion/snowflake/compiler.py,sha256=xL7TsGRAiLE53so1g8Xgk_OfPpp4gu6pJYQ5p63EoJI,9947
@@ -549,7 +551,7 @@ datahub/integrations/assertion/snowflake/metric_sql_generator.py,sha256=7lCSZJ9P
549
551
  datahub/integrations/great_expectations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
550
552
  datahub/integrations/great_expectations/action.py,sha256=78ywIwsfmxXbQQ0emou15ziasdr852dDk9qqSolaHac,100
551
553
  datahub/lite/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
552
- datahub/lite/duckdb_lite.py,sha256=UvDtLZYfIK1wbGVaFT2dI3QhhGaQ0e8MEhG-ujn6xu4,32892
554
+ datahub/lite/duckdb_lite.py,sha256=eB4DL_qhfOLmhjmbMSYM37Q4cO5dm1uoVCA9AtENXLA,32712
553
555
  datahub/lite/duckdb_lite_config.py,sha256=PGY5Hab_xbbqoA1hf7OKySBJ2JQJaLNKl-4CO39ad3g,157
554
556
  datahub/lite/lite_local.py,sha256=Aa-_E9o1y-z8ks9b1JuBeaECdgi6oU8xGb1drPA9Q6E,2846
555
557
  datahub/lite/lite_registry.py,sha256=bpH0kasP-LtwwUFNA2QsOIehfekAYfJtN-AkQLmSWnw,286
@@ -848,10 +850,10 @@ datahub/secret/datahub_secrets_client.py,sha256=WkoJDip7IAKSGDM5oHeZVL8878pd4Bix
848
850
  datahub/secret/secret_common.py,sha256=PeRFNljPlGfNrmn3VtDVbazQE6J3Q1nA3L-z3cS8LEA,2522
849
851
  datahub/secret/secret_store.py,sha256=2VP_Vd336Cy7C-2kwp4rx8MAqtYgtwv8XyzzNTXE5x8,1124
850
852
  datahub/specific/__init__.py,sha256=r5RYM5mDnskLzin3vc87HV-9GSz3P6uQw8AlsN14LaI,88
851
- datahub/specific/chart.py,sha256=xLHinaUFWNSSt9_UUnRScVvO1U9ECUZ-qXQ8yHhl1N8,12657
853
+ datahub/specific/chart.py,sha256=DsLA5qHBIMNc1pIZ1AC5kLvwpRDd79Q56N4SANOofps,11324
852
854
  datahub/specific/custom_properties.py,sha256=Ob8L9b9QIbUvHfzWo4L-SNY1QSRhgRy30kLRDdenGEs,1024
853
- datahub/specific/dashboard.py,sha256=MMB9AGgk3lQHMGgmP2qPXMULB3WEgRXstk7v6S4E80M,16433
854
- datahub/specific/datajob.py,sha256=Y_0L3F9ifBHmZthrnuNtGMDaqBtGEvs991FqxUoBnhw,20390
855
+ datahub/specific/dashboard.py,sha256=kRfyJsm7piugxBg0IfIbLmvv6Smk3D44IGVw8THLqPE,15100
856
+ datahub/specific/datajob.py,sha256=Yp_LSy12ogbz9KYKTkdg6J9ScaFgg-o5--VkRfC1qRo,18793
855
857
  datahub/specific/dataproduct.py,sha256=Mt-QlndY4Die87XwakYTAcvyDzaB5fmyn1NpQGGcZyI,5235
856
858
  datahub/specific/dataset.py,sha256=TAI8SRhhhsv1zEi3lGv24NX6PTJDrEyt5v0Sdg-uFY8,13568
857
859
  datahub/specific/form.py,sha256=jVI0JD-o2-XkD1suW_ITnTZUF0GNbGjaNb9-PXdfdkA,4549
@@ -932,12 +934,12 @@ datahub/utilities/topological_sort.py,sha256=kcK5zPSR393fgItr-KSLV3bDqfJfBRS8E5k
932
934
  datahub/utilities/type_annotations.py,sha256=FvcB__a6X0CLoz-sBXwqpdceqSqTHgkLXGQ6wSmiV8w,970
933
935
  datahub/utilities/unified_diff.py,sha256=8uRvM_kN-sdAzR4Ym6CgmpjrmO4CrcKtzZ4P-Cn6aEA,8422
934
936
  datahub/utilities/url_util.py,sha256=CJ_mddw76p0RM7FqVjX-g8QgQ3Dq0IjkcP75sUaamJE,172
935
- datahub/utilities/urn_encoder.py,sha256=tcbIsM3oU6srL3ovy2uDyX7G0rPN3zVB-hUolz2S9QI,1423
937
+ datahub/utilities/urn_encoder.py,sha256=YPSP23PYM1mrFJBqotjz3qA79xWxjD6gh8SJeqSQrHQ,1495
936
938
  datahub/utilities/yaml_sync_utils.py,sha256=65IEe8quW3_zHCR8CyoDkZyopeZJazU-IyMrK9_0nj0,1054
937
939
  datahub/utilities/registries/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
938
940
  datahub/utilities/registries/domain_registry.py,sha256=0SfcZNop-PXBbl-AWw92vAyb28i0YXTr-TKdBwixmOw,2452
939
941
  datahub/utilities/urns/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
940
- datahub/utilities/urns/_urn_base.py,sha256=HoB-h8QOOaUh4a563C7Y4_uGQOkeZKBEHx4O7sgczbg,9302
942
+ datahub/utilities/urns/_urn_base.py,sha256=IOYjC3NPn0DlB26cPdyihFAah3mUc4CHpS2dVM65ctI,9295
941
943
  datahub/utilities/urns/corp_group_urn.py,sha256=6H5Q6nZvAXu80IZBDCeM8xo_9ap9pgwtyi60QXx3hzY,75
942
944
  datahub/utilities/urns/corpuser_urn.py,sha256=h-Yh-9QRbtQOhxxzxEBc7skoavpGaKDKVNrsxSXZ1yQ,88
943
945
  datahub/utilities/urns/data_flow_urn.py,sha256=w1Z7ET1L1OtYD1w-xiUYtyCczsxZZ1l3LRyTRv5NdpE,73
@@ -949,7 +951,7 @@ datahub/utilities/urns/domain_urn.py,sha256=wfpQx33jRtq0TGx2JVIZGJJf_L_BYeNn1RCE
949
951
  datahub/utilities/urns/error.py,sha256=1MMg3UyN4rQSdka1O0489rsZ7t5Hs2aDxIaHyPbE80E,43
950
952
  datahub/utilities/urns/field_paths.py,sha256=ra-o_fMGkBRLgzMewAJN5-HqAyo3PIpXQ0KbHeymjU4,521
951
953
  datahub/utilities/urns/notebook_urn.py,sha256=CHqGrV45ReVODlFx7js2WUxjcXxt8B63-xsBZpujmtY,73
952
- datahub/utilities/urns/structured_properties_urn.py,sha256=XgT-_Lf-ExL4jjVQD8wTTVqvHp-OcjHZsfposd5fG3A,278
954
+ datahub/utilities/urns/structured_properties_urn.py,sha256=fjA1Ysg7IQSly8IVYx1R8HnwnojQz6jZWbqfk_XVvno,271
953
955
  datahub/utilities/urns/tag_urn.py,sha256=MqEJdIaCnAyjYe_8VdNnUjOVV4TS8xMlv4pRsy8wwXY,63
954
956
  datahub/utilities/urns/urn.py,sha256=B4nYxiFT8s5DLA2NJsWg0KoiUDp9UWg1nvL0j7Sx-h8,218
955
957
  datahub/utilities/urns/urn_iter.py,sha256=m5--PO-Oohw_BQXUCW1z-Ku3vtTcT81AxGLDkMiTaAs,4734
@@ -972,8 +974,8 @@ datahub_provider/operators/datahub_assertion_operator.py,sha256=uvTQ-jk2F0sbqqxp
972
974
  datahub_provider/operators/datahub_assertion_sensor.py,sha256=lCBj_3x1cf5GMNpHdfkpHuyHfVxsm6ff5x2Z5iizcAo,140
973
975
  datahub_provider/operators/datahub_operation_operator.py,sha256=aevDp2FzX7FxGlXrR0khoHNbxbhKR2qPEX5e8O2Jyzw,174
974
976
  datahub_provider/operators/datahub_operation_sensor.py,sha256=8fcdVBCEPgqy1etTXgLoiHoJrRt_nzFZQMdSzHqSG7M,168
975
- acryl_datahub-0.15.0rc5.dist-info/METADATA,sha256=SiiSRUUBz-MJZHnnGpn6342w8hkW9COEktKjlJDQQuw,171117
976
- acryl_datahub-0.15.0rc5.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
977
- acryl_datahub-0.15.0rc5.dist-info/entry_points.txt,sha256=3jOfMXB66r8zRDaqzRYpNc0tK-oUO-3tXlnGYDdVAmg,9440
978
- acryl_datahub-0.15.0rc5.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
979
- acryl_datahub-0.15.0rc5.dist-info/RECORD,,
977
+ acryl_datahub-0.15.0rc7.dist-info/METADATA,sha256=MVwPfhXyIwKGxe7sNM9tRwAvKKpuEsp4j-vrvvu2LDw,172484
978
+ acryl_datahub-0.15.0rc7.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
979
+ acryl_datahub-0.15.0rc7.dist-info/entry_points.txt,sha256=Yj0PWB0LQOq4Rj2fyR6ETx4BUGw4TOcNL0ZNoAZ9kQg,9504
980
+ acryl_datahub-0.15.0rc7.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
981
+ acryl_datahub-0.15.0rc7.dist-info/RECORD,,
@@ -68,6 +68,7 @@ mode = datahub.ingestion.source.mode:ModeSource
68
68
  mongodb = datahub.ingestion.source.mongodb:MongoDBSource
69
69
  mssql = datahub.ingestion.source.sql.mssql:SQLServerSource
70
70
  mysql = datahub.ingestion.source.sql.mysql:MySQLSource
71
+ neo4j = datahub.ingestion.source.neo4j.neo4j_source:Neo4jSource
71
72
  nifi = datahub.ingestion.source.nifi:NifiSource
72
73
  okta = datahub.ingestion.source.identity.okta:OktaSource
73
74
  openapi = datahub.ingestion.source.openapi:OpenApiSource
datahub/__init__.py CHANGED
@@ -3,7 +3,7 @@ import warnings
3
3
 
4
4
  # Published at https://pypi.org/project/acryl-datahub/.
5
5
  __package_name__ = "acryl-datahub"
6
- __version__ = "0.15.0rc5"
6
+ __version__ = "0.15.0rc7"
7
7
 
8
8
 
9
9
  def is_dev_mode() -> bool:
@@ -121,7 +121,7 @@ class StructuredProperties(ConfigModel):
121
121
  return (
122
122
  self.qualified_name
123
123
  or self.id
124
- or Urn.create_from_string(self.urn).get_entity_id()[0]
124
+ or Urn.from_string(self.urn).get_entity_id()[0]
125
125
  )
126
126
 
127
127
  @validator("urn", pre=True, always=True)
datahub/cli/put_cli.py CHANGED
@@ -105,7 +105,7 @@ def platform(
105
105
  """
106
106
 
107
107
  if name.startswith(f"urn:li:{DataPlatformUrn.ENTITY_TYPE}"):
108
- platform_urn = DataPlatformUrn.create_from_string(name)
108
+ platform_urn = DataPlatformUrn.from_string(name)
109
109
  platform_name = platform_urn.get_entity_id_as_string()
110
110
  else:
111
111
  platform_name = name.lower()
@@ -45,7 +45,7 @@ def _get_owner_urn(maybe_urn: str) -> str:
45
45
 
46
46
  def _abort_if_non_existent_urn(graph: DataHubGraph, urn: str, operation: str) -> None:
47
47
  try:
48
- parsed_urn: Urn = Urn.create_from_string(urn)
48
+ parsed_urn: Urn = Urn.from_string(urn)
49
49
  entity_type = parsed_urn.get_type()
50
50
  except Exception:
51
51
  click.secho(f"Provided urn {urn} does not seem valid", fg="red")
@@ -1,4 +1,5 @@
1
1
  import json
2
+ import time
2
3
  from collections import defaultdict
3
4
  from dataclasses import dataclass
4
5
  from typing import Any, Dict, Iterable, List, Optional, Sequence, Union
@@ -6,12 +7,15 @@ from typing import Any, Dict, Iterable, List, Optional, Sequence, Union
6
7
  from datahub.emitter.aspect import JSON_PATCH_CONTENT_TYPE
7
8
  from datahub.emitter.serialization_helper import pre_json_transform
8
9
  from datahub.metadata.schema_classes import (
10
+ AuditStampClass,
9
11
  ChangeTypeClass,
12
+ EdgeClass,
10
13
  GenericAspectClass,
11
14
  KafkaAuditHeaderClass,
12
15
  MetadataChangeProposalClass,
13
16
  SystemMetadataClass,
14
17
  )
18
+ from datahub.metadata.urns import Urn
15
19
  from datahub.utilities.urns.urn import guess_entity_type
16
20
 
17
21
 
@@ -89,3 +93,42 @@ class MetadataPatchProposal:
89
93
  )
90
94
  for aspect_name, patches in self.patches.items()
91
95
  ]
96
+
97
+ @classmethod
98
+ def _mint_auditstamp(cls, message: Optional[str] = None) -> AuditStampClass:
99
+ """
100
+ Creates an AuditStampClass instance with the current timestamp and other default values.
101
+
102
+ Args:
103
+ message: The message associated with the audit stamp (optional).
104
+
105
+ Returns:
106
+ An instance of AuditStampClass.
107
+ """
108
+ return AuditStampClass(
109
+ time=int(time.time() * 1000.0),
110
+ actor="urn:li:corpuser:datahub",
111
+ message=message,
112
+ )
113
+
114
+ @classmethod
115
+ def _ensure_urn_type(
116
+ cls, entity_type: str, edges: List[EdgeClass], context: str
117
+ ) -> None:
118
+ """
119
+ Ensures that the destination URNs in the given edges have the specified entity type.
120
+
121
+ Args:
122
+ entity_type: The entity type to check against.
123
+ edges: A list of Edge objects.
124
+ context: The context or description of the operation.
125
+
126
+ Raises:
127
+ ValueError: If any of the destination URNs is not of the specified entity type.
128
+ """
129
+ for e in edges:
130
+ urn = Urn.from_string(e.destinationUrn)
131
+ if not urn.entity_type == entity_type:
132
+ raise ValueError(
133
+ f"{context}: {e.destinationUrn} is not of type {entity_type}"
134
+ )
@@ -1,3 +1,5 @@
1
+ import logging
2
+ import textwrap
1
3
  from dataclasses import dataclass
2
4
  from typing import TYPE_CHECKING, Iterable, List
3
5
 
@@ -28,6 +30,8 @@ if TYPE_CHECKING:
28
30
  FeatureGroupSummaryTypeDef,
29
31
  )
30
32
 
33
+ logger = logging.getLogger(__name__)
34
+
31
35
 
32
36
  @dataclass
33
37
  class FeatureGroupProcessor:
@@ -197,11 +201,12 @@ class FeatureGroupProcessor:
197
201
 
198
202
  full_table_name = f"{glue_database}.{glue_table}"
199
203
 
200
- self.report.report_warning(
201
- full_table_name,
202
- f"""Note: table {full_table_name} is an AWS Glue object.
204
+ logging.info(
205
+ textwrap.dedent(
206
+ f"""Note: table {full_table_name} is an AWS Glue object. This source does not ingest all metadata for Glue tables.
203
207
  To view full table metadata, run Glue ingestion
204
- (see https://datahubproject.io/docs/metadata-ingestion/#aws-glue-glue)""",
208
+ (see https://datahubproject.io/docs/generated/ingestion/sources/glue)"""
209
+ )
205
210
  )
206
211
 
207
212
  feature_sources.append(
@@ -1,3 +1,4 @@
1
+ import logging
1
2
  from collections import defaultdict
2
3
  from dataclasses import dataclass, field
3
4
  from datetime import datetime
@@ -65,6 +66,8 @@ ENDPOINT_STATUS_MAP: Dict[str, str] = {
65
66
  "Unknown": DeploymentStatusClass.UNKNOWN,
66
67
  }
67
68
 
69
+ logger = logging.getLogger(__name__)
70
+
68
71
 
69
72
  @dataclass
70
73
  class ModelProcessor:
@@ -385,6 +388,26 @@ class ModelProcessor:
385
388
  model_metrics,
386
389
  )
387
390
 
391
+ @staticmethod
392
+ def get_group_name_from_arn(arn: str) -> str:
393
+ """
394
+ Extract model package group name from a SageMaker ARN.
395
+
396
+ Args:
397
+ arn (str): Full ARN of the model package group
398
+
399
+ Returns:
400
+ str: Name of the model package group
401
+
402
+ Example:
403
+ >>> ModelProcessor.get_group_name_from_arn("arn:aws:sagemaker:eu-west-1:123456789:model-package-group/my-model-group")
404
+ 'my-model-group'
405
+ """
406
+ logger.debug(
407
+ f"Extracting group name from ARN: {arn} because group was not seen before"
408
+ )
409
+ return arn.split("/")[-1]
410
+
388
411
  def get_model_wu(
389
412
  self,
390
413
  model_details: "DescribeModelOutputTypeDef",
@@ -425,8 +448,14 @@ class ModelProcessor:
425
448
  model_group_arns = model_uri_groups | model_image_groups
426
449
 
427
450
  model_group_names = sorted(
428
- [self.group_arn_to_name[x] for x in model_group_arns]
451
+ [
452
+ self.group_arn_to_name[x]
453
+ if x in self.group_arn_to_name
454
+ else self.get_group_name_from_arn(x)
455
+ for x in model_group_arns
456
+ ]
429
457
  )
458
+
430
459
  model_group_urns = [
431
460
  builder.make_ml_model_group_urn("sagemaker", x, self.env)
432
461
  for x in model_group_names
@@ -190,7 +190,7 @@ class BigQueryTableRef:
190
190
  @classmethod
191
191
  def from_urn(cls, urn: str) -> "BigQueryTableRef":
192
192
  """Raises: ValueError if urn is not a valid BigQuery table URN."""
193
- dataset_urn = DatasetUrn.create_from_string(urn)
193
+ dataset_urn = DatasetUrn.from_string(urn)
194
194
  split = dataset_urn.name.rsplit(".", 3)
195
195
  if len(split) == 3:
196
196
  project, dataset, table = split
@@ -22,6 +22,8 @@ class DatasetSubTypes(StrEnum):
22
22
  SAC_MODEL = "Model"
23
23
  SAC_IMPORT_DATA_MODEL = "Import Data Model"
24
24
  SAC_LIVE_DATA_MODEL = "Live Data Model"
25
+ NEO4J_NODE = "Neo4j Node"
26
+ NEO4J_RELATIONSHIP = "Neo4j Relationship"
25
27
 
26
28
  # TODO: Create separate entity...
27
29
  NOTEBOOK = "Notebook"
@@ -653,7 +653,7 @@ class CSVEnricherSource(Source):
653
653
 
654
654
  is_resource_row: bool = not row["subresource"]
655
655
  entity_urn = row["resource"]
656
- entity_type = Urn.create_from_string(row["resource"]).get_type()
656
+ entity_type = Urn.from_string(row["resource"]).get_type()
657
657
 
658
658
  term_associations: List[
659
659
  GlossaryTermAssociationClass
@@ -53,19 +53,7 @@ from datahub.ingestion.source.dbt.dbt_tests import (
53
53
  make_assertion_from_test,
54
54
  make_assertion_result_from_test,
55
55
  )
56
- from datahub.ingestion.source.sql.sql_types import (
57
- ATHENA_SQL_TYPES_MAP,
58
- BIGQUERY_TYPES_MAP,
59
- POSTGRES_TYPES_MAP,
60
- SNOWFLAKE_TYPES_MAP,
61
- SPARK_SQL_TYPES_MAP,
62
- TRINO_SQL_TYPES_MAP,
63
- VERTICA_SQL_TYPES_MAP,
64
- resolve_athena_modified_type,
65
- resolve_postgres_modified_type,
66
- resolve_trino_modified_type,
67
- resolve_vertica_modified_type,
68
- )
56
+ from datahub.ingestion.source.sql.sql_types import resolve_sql_type
69
57
  from datahub.ingestion.source.state.stale_entity_removal_handler import (
70
58
  StaleEntityRemovalHandler,
71
59
  StaleEntityRemovalSourceReport,
@@ -89,17 +77,11 @@ from datahub.metadata.com.linkedin.pegasus2avro.dataset import (
89
77
  from datahub.metadata.com.linkedin.pegasus2avro.metadata.snapshot import DatasetSnapshot
90
78
  from datahub.metadata.com.linkedin.pegasus2avro.mxe import MetadataChangeEvent
91
79
  from datahub.metadata.com.linkedin.pegasus2avro.schema import (
92
- BooleanTypeClass,
93
- DateTypeClass,
94
80
  MySqlDDL,
95
81
  NullTypeClass,
96
- NumberTypeClass,
97
- RecordType,
98
82
  SchemaField,
99
83
  SchemaFieldDataType,
100
84
  SchemaMetadata,
101
- StringTypeClass,
102
- TimeTypeClass,
103
85
  )
104
86
  from datahub.metadata.schema_classes import (
105
87
  DataPlatformInstanceClass,
@@ -804,28 +786,6 @@ def make_mapping_upstream_lineage(
804
786
  )
805
787
 
806
788
 
807
- # See https://github.com/fishtown-analytics/dbt/blob/master/core/dbt/adapters/sql/impl.py
808
- _field_type_mapping = {
809
- "boolean": BooleanTypeClass,
810
- "date": DateTypeClass,
811
- "time": TimeTypeClass,
812
- "numeric": NumberTypeClass,
813
- "text": StringTypeClass,
814
- "timestamp with time zone": DateTypeClass,
815
- "timestamp without time zone": DateTypeClass,
816
- "integer": NumberTypeClass,
817
- "float8": NumberTypeClass,
818
- "struct": RecordType,
819
- **POSTGRES_TYPES_MAP,
820
- **SNOWFLAKE_TYPES_MAP,
821
- **BIGQUERY_TYPES_MAP,
822
- **SPARK_SQL_TYPES_MAP,
823
- **TRINO_SQL_TYPES_MAP,
824
- **ATHENA_SQL_TYPES_MAP,
825
- **VERTICA_SQL_TYPES_MAP,
826
- }
827
-
828
-
829
789
  def get_column_type(
830
790
  report: DBTSourceReport,
831
791
  dataset_name: str,
@@ -835,24 +795,10 @@ def get_column_type(
835
795
  """
836
796
  Maps known DBT types to datahub types
837
797
  """
838
- TypeClass: Any = _field_type_mapping.get(column_type) if column_type else None
839
-
840
- if TypeClass is None and column_type:
841
- # resolve a modified type
842
- if dbt_adapter == "trino":
843
- TypeClass = resolve_trino_modified_type(column_type)
844
- elif dbt_adapter == "athena":
845
- TypeClass = resolve_athena_modified_type(column_type)
846
- elif dbt_adapter == "postgres" or dbt_adapter == "redshift":
847
- # Redshift uses a variant of Postgres, so we can use the same logic.
848
- TypeClass = resolve_postgres_modified_type(column_type)
849
- elif dbt_adapter == "vertica":
850
- TypeClass = resolve_vertica_modified_type(column_type)
851
- elif dbt_adapter == "snowflake":
852
- # Snowflake types are uppercase, so we check that.
853
- TypeClass = _field_type_mapping.get(column_type.upper())
854
-
855
- # if still not found, report the warning
798
+
799
+ TypeClass = resolve_sql_type(column_type, dbt_adapter)
800
+
801
+ # if still not found, report a warning
856
802
  if TypeClass is None:
857
803
  if column_type:
858
804
  report.info(
@@ -861,9 +807,9 @@ def get_column_type(
861
807
  context=f"{dataset_name} - {column_type}",
862
808
  log=False,
863
809
  )
864
- TypeClass = NullTypeClass
810
+ TypeClass = NullTypeClass()
865
811
 
866
- return SchemaFieldDataType(type=TypeClass())
812
+ return SchemaFieldDataType(type=TypeClass)
867
813
 
868
814
 
869
815
  @platform_name("dbt")