acryl-datahub 0.15.0.2rc6__py3-none-any.whl → 0.15.0.2rc7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
- datahub/__init__.py,sha256=LkyndK4jD_kpbP5zlWtRZY_adYH59shEIFzUnoBjloM,576
1
+ datahub/__init__.py,sha256=0XE2YE6F4J4r3TSTgcSQx6URqCXP3V2-dy8N3yggN1w,576
2
2
  datahub/__main__.py,sha256=pegIvQ9hzK7IhqVeUi1MeADSZ2QlP-D3K0OQdEg55RU,106
3
- datahub/entrypoints.py,sha256=3-qSfXAx3Z0FEkBV5tlO8fQr4xk4ySeDRMVTpS5Xd6A,7793
3
+ datahub/entrypoints.py,sha256=IMtLWvGuiqoUSnNaCaFjhd86NHwuXSWXp2kUL-xDkk0,7950
4
4
  datahub/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  datahub/_codegen/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  datahub/_codegen/aspect.py,sha256=PJRa-Z4ouXHq3OkulfyWhwZn-fFUBDK_UPvmqaWdbWk,1063
@@ -67,7 +67,7 @@ datahub/cli/docker_cli.py,sha256=QGoWFp8ZZsXOSMbgu0Q4snMmMmtP3epWAN-fYglUNEc,364
67
67
  datahub/cli/env_utils.py,sha256=RQzjg4JE29hjPt4v7p-RuqoOr99w8E3DBHWiN2Sm7T4,252
68
68
  datahub/cli/exists_cli.py,sha256=IsuU86R-g7BJjAl1vULH6d-BWJHAKa4XHLZl5WxGUEM,1233
69
69
  datahub/cli/get_cli.py,sha256=VV80BCXfZ0-C8fr2k43SIuN9DB-fOYP9StWsTHnXwFw,2327
70
- datahub/cli/ingest_cli.py,sha256=nRoZvVpsGPXmEZCvSOBfsZ61Ep1fCqYRVp79RBnHSnI,22393
70
+ datahub/cli/ingest_cli.py,sha256=949TSI0MX9i16tKHU-Cirb4ps-7M6dxZpey5y-n_vAs,22534
71
71
  datahub/cli/json_file.py,sha256=nWo-VVthaaW4Do1eUqgrzk0fShb29MjiKXvZVOTq76c,943
72
72
  datahub/cli/lite_cli.py,sha256=UmlMMquce6lHiPaKUBBT0XQtqR9SHEmrGlJyKV9YY60,13030
73
73
  datahub/cli/migrate.py,sha256=1ngS-jT59v-a9AnfSB44mN0mBbzhGqIyteG142Ui77c,17937
@@ -191,13 +191,13 @@ datahub/ingestion/source/demo_data.py,sha256=PbtCHlZx3wrKlOPPgkWhDQuPm7ZfIx2neXJ
191
191
  datahub/ingestion/source/elastic_search.py,sha256=uT4I0GyqSiD16BURqsXWyPN9wNBc3wLomz1nG-OxHec,22634
192
192
  datahub/ingestion/source/feast.py,sha256=uZpeUkJsiNlvZcUkARiEuZT_3n6sbGc0yFzwqhtnefA,18103
193
193
  datahub/ingestion/source/file.py,sha256=pH-Qkjh5FQ2XvyYPE7Z8XEY4vUk_SUHxm8p8IxG12tU,15879
194
- datahub/ingestion/source/ge_data_profiler.py,sha256=7-ciHphLU8O259OU2WMDfCDpoqvDLUy_XcG4EM0agFc,64983
194
+ datahub/ingestion/source/ge_data_profiler.py,sha256=FdBEvZ5YjJ8XvzV972-sLHGszVKzA1LVnFMaC464dXA,64954
195
195
  datahub/ingestion/source/ge_profiling_config.py,sha256=P-9pd20koFvpxeEL_pqFvKWWz-qnpZ6XkELUyBKr7is,10807
196
196
  datahub/ingestion/source/glue_profiling_config.py,sha256=vpMJH4Lf_qgR32BZy58suabri1yV5geaAPjzg2eORDc,2559
197
197
  datahub/ingestion/source/ldap.py,sha256=Vnzg8tpwBYeyM-KBVVsUJvGZGBMJiCJ_i_FhxaFRQ9A,18627
198
198
  datahub/ingestion/source/metabase.py,sha256=m9Gfhrs8F1z23ci8CIxdE5cW--25stgxg_IQTKwkFrk,31532
199
199
  datahub/ingestion/source/mlflow.py,sha256=IPG_l2HH9Ec8wxu0MYb3QaOPmw1kB1gcS3t4wf9bZLs,12134
200
- datahub/ingestion/source/mode.py,sha256=cq1KIpLxuplETF7sUW0hoMQIZG1cgga5BGHP54a28wE,63467
200
+ datahub/ingestion/source/mode.py,sha256=XeWL2yX2aJ_jC15jgseetBNswhtPOZnySlRspy9LZmY,63499
201
201
  datahub/ingestion/source/mongodb.py,sha256=vZue4Nz0xaBoCUsQr3_0OIRkWRxeE_IH_Y_QKZ1s7S0,21077
202
202
  datahub/ingestion/source/nifi.py,sha256=ODXmZRxGq5V0R6PCYyy-_-dDWOb-cCkPzAVf-38-ACM,55965
203
203
  datahub/ingestion/source/openapi.py,sha256=3ea2ORz1cuq4e7L2hSjxG9Cw3__pVoJ5UNYTJS3EnKU,17386
@@ -265,7 +265,7 @@ datahub/ingestion/source/data_lake_common/config.py,sha256=qUk83B01hjuBKHvVz8SmX
265
265
  datahub/ingestion/source/data_lake_common/data_lake_utils.py,sha256=nxu7osuzqxScPFc-1ODA2M1c_xPNPpRH_SMMU7zKOIE,6212
266
266
  datahub/ingestion/source/data_lake_common/path_spec.py,sha256=u3u2eMe70V5vur-j8mYtupZdoeA2hSeK262Whdsc2YU,23506
267
267
  datahub/ingestion/source/datahub/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
268
- datahub/ingestion/source/datahub/config.py,sha256=2_FRYjGpFprYHI73D7QJBxa4pLJOdTZe7hybd9jJM68,4618
268
+ datahub/ingestion/source/datahub/config.py,sha256=JohcVz2pYnHbmJd0SGcIDH7Lp-K6MIJlswkid0vTQO4,4762
269
269
  datahub/ingestion/source/datahub/datahub_api_reader.py,sha256=hlKADVEPoTFiRGKqRsMF5mL4fSu_IrIW8Nx7LpEzvkM,2134
270
270
  datahub/ingestion/source/datahub/datahub_database_reader.py,sha256=Rd61iHFhvrNmgzIk0jDDYxjxQUnEckbn1SKedoR5qic,8972
271
271
  datahub/ingestion/source/datahub/datahub_kafka_reader.py,sha256=gnxhhlK-jrfnHqD_4eVmfcdtBNW6pi1N_qkDZ7uSb3o,4187
@@ -302,10 +302,10 @@ datahub/ingestion/source/fivetran/fivetran.py,sha256=mJ3gi4LWYqul0NyHdZ0U4fDv3Wu
302
302
  datahub/ingestion/source/fivetran/fivetran_log_api.py,sha256=EAak3hJpe75WZSgz6wP_CyAT5Cian2N4a-lb8x1NKHk,12776
303
303
  datahub/ingestion/source/fivetran/fivetran_query.py,sha256=vLrTj7e-0NxZ2U4bWTB57pih42WirqPlUvwtIRfStlQ,5275
304
304
  datahub/ingestion/source/gc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
305
- datahub/ingestion/source/gc/datahub_gc.py,sha256=6O-TxU2uCJ1Y8NNzJDufUd3ymapo--E3hTeIuy_QDtY,12763
305
+ datahub/ingestion/source/gc/datahub_gc.py,sha256=EXO-Stj6gGMLTSTbSBC-C3_zpjpQtFN9pAMWR95ma0I,12830
306
306
  datahub/ingestion/source/gc/dataprocess_cleanup.py,sha256=86Tm3NNWMf0xM4TklNIEeNOjEingKpYy-XvCPeaAb4k,17125
307
307
  datahub/ingestion/source/gc/execution_request_cleanup.py,sha256=VbZ-Xzryl5TMRapu7nlxlsXS8T8lFZcHK9AJnEadJ8Q,11111
308
- datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py,sha256=THKk2sdMIWLymgu0rJCwjL2qcaR9FfeX0_13NpA-F-c,12295
308
+ datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py,sha256=2aq5Zmse3p9YTVbbkjOzqYyfzY5KJuNPJlIub0N_OAg,12921
309
309
  datahub/ingestion/source/gcs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
310
310
  datahub/ingestion/source/gcs/gcs_source.py,sha256=iwvj4JwjyVWRP1Vq106sUtQhh0GuOYVSu9zCa1wCZN0,6189
311
311
  datahub/ingestion/source/gcs/gcs_utils.py,sha256=_78KM863XXgkVLmZLtYGF5PJNnZas1go-XRtOq-79lo,1047
@@ -371,7 +371,7 @@ datahub/ingestion/source/powerbi/m_query/validator.py,sha256=crG-VZy2XPieiDliP9y
371
371
  datahub/ingestion/source/powerbi/rest_api_wrapper/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
372
372
  datahub/ingestion/source/powerbi/rest_api_wrapper/data_classes.py,sha256=xqAsnNUCP44Wd1rE1m_phbKtNCMJTFJfOX4_2varadg,8298
373
373
  datahub/ingestion/source/powerbi/rest_api_wrapper/data_resolver.py,sha256=8_IIYzcGQR5jcJ3NKg_tIa7VobUEBXzVpvFBaFPUToM,39598
374
- datahub/ingestion/source/powerbi/rest_api_wrapper/powerbi_api.py,sha256=3nGU-_KQe1WMIAPdxtuzulqpAreNsqi0vX0XdrddCU8,26184
374
+ datahub/ingestion/source/powerbi/rest_api_wrapper/powerbi_api.py,sha256=ROLfaSWTNyNFO118kjOqFMTbFPT_D9XnnpMTfYcDchM,26193
375
375
  datahub/ingestion/source/powerbi/rest_api_wrapper/profiling_utils.py,sha256=bgcPheyqOj6KdRjDyANDK5yggItglcBIjbGFIwAxSds,1392
376
376
  datahub/ingestion/source/powerbi/rest_api_wrapper/query.py,sha256=VNw1Uvli6g0pnu9FpigYmnCdEPbVEipz7vdZU_WmHf4,616
377
377
  datahub/ingestion/source/powerbi_report_server/__init__.py,sha256=N9fGcrHXBbuPmx9rpGjd_jkMC3smXmfiwISDP1QZapk,324
@@ -463,7 +463,7 @@ datahub/ingestion/source/sql/sql_config.py,sha256=M-l_uXau0ODolLZHBzAXhy-Rq5yYxv
463
463
  datahub/ingestion/source/sql/sql_generic.py,sha256=9AERvkK8kdJUeDOzCYJDb93xdv6Z4DGho0NfeHj5Uyg,2740
464
464
  datahub/ingestion/source/sql/sql_generic_profiler.py,sha256=oLjqgsxVKGerj5dZnCCRMremrxjp-kr5_P45gFOM4Pg,11602
465
465
  datahub/ingestion/source/sql/sql_report.py,sha256=gw-OPHSExp_b6DRjvwqE1U6BpkwekxGrsvNMGYSGDio,2671
466
- datahub/ingestion/source/sql/sql_types.py,sha256=vuivhVDO27Hu_05Q1aYzsCuyCYXmdprW3gLt-fP_Yyk,15045
466
+ datahub/ingestion/source/sql/sql_types.py,sha256=uuU3taVe4oCTXkqg1wSMGzTwVleRyUR87LGNQXj6eas,15021
467
467
  datahub/ingestion/source/sql/sql_utils.py,sha256=q-Bsk6WxlsRtrw9RXBxvqI3zuaMTC_F25T2VrCziR9I,8418
468
468
  datahub/ingestion/source/sql/sqlalchemy_data_reader.py,sha256=FvHZ4JEK3aR2DYOBZiT_ZsAy12RjTu4t_KIR_92B11k,2644
469
469
  datahub/ingestion/source/sql/sqlalchemy_uri_mapper.py,sha256=KOpbmDIE2h1hyYEsbVHJi2B7FlsyUMTXZx4diyzltQg,1826
@@ -491,8 +491,8 @@ datahub/ingestion/source/state_provider/datahub_ingestion_checkpointing_provider
491
491
  datahub/ingestion/source/state_provider/file_ingestion_checkpointing_provider.py,sha256=xsH7Ao_05VTjqpkzLkhdf5B1ULMzFoD8vkJJIJU9w-U,4077
492
492
  datahub/ingestion/source/state_provider/state_provider_registry.py,sha256=SVq4mIyGNmLXE9OZx1taOiNPqDoQp03-Ot9rYnB5F3k,401
493
493
  datahub/ingestion/source/tableau/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
494
- datahub/ingestion/source/tableau/tableau.py,sha256=MVqu7X7TOhVOyfRlYFSx9_ZqlcXuhKGzy7q2VibMx7w,145707
495
- datahub/ingestion/source/tableau/tableau_common.py,sha256=a3Nu0Upy6_pnrd7XpSMcYHdnYca1JBW7H0jMqkYr0ME,26871
494
+ datahub/ingestion/source/tableau/tableau.py,sha256=fGpEsLNNBXRiNV77d9voYDD65sZKvrDPFKuMWrJMM7c,152538
495
+ datahub/ingestion/source/tableau/tableau_common.py,sha256=3AUgXxTGOKM609xvcDrRItGXhUfuNYku2LFaj8z2Hg4,26936
496
496
  datahub/ingestion/source/tableau/tableau_constant.py,sha256=ZcAeHsQUXVVL26ORly0ByZk_GJAFbxaKuJAlX_sYMac,2686
497
497
  datahub/ingestion/source/tableau/tableau_server_wrapper.py,sha256=nSyx9RzC6TCQDm-cTVJ657qT8iDwzk_8JMKpohhmOc4,1046
498
498
  datahub/ingestion/source/tableau/tableau_validation.py,sha256=pd--LcTLTfrFsouhCOvGC_2IjeMfKbJV81EEo3ibMwE,1820
@@ -861,7 +861,7 @@ datahub/metadata/schemas/ViewProperties.avsc,sha256=3HhcbH5493dJUnEUtFMYMVfbYQ52
861
861
  datahub/metadata/schemas/__init__.py,sha256=uvLNC3VyCkWA_v8e9FdA1leFf46NFKDD0AajCfihepI,581
862
862
  datahub/secret/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
863
863
  datahub/secret/datahub_secret_store.py,sha256=9u9S87-15jwhj4h0EsAVIMdQLgvstKc8voQux2slxgU,2477
864
- datahub/secret/datahub_secrets_client.py,sha256=WkoJDip7IAKSGDM5oHeZVL8878pd4Bixz6LEfQ3sHSw,1504
864
+ datahub/secret/datahub_secrets_client.py,sha256=nDmhziKdvseJHlaDVUcAwK8Fv8maeAaG-ktZtWG2b70,1316
865
865
  datahub/secret/secret_common.py,sha256=PeRFNljPlGfNrmn3VtDVbazQE6J3Q1nA3L-z3cS8LEA,2522
866
866
  datahub/secret/secret_store.py,sha256=2VP_Vd336Cy7C-2kwp4rx8MAqtYgtwv8XyzzNTXE5x8,1124
867
867
  datahub/specific/__init__.py,sha256=r5RYM5mDnskLzin3vc87HV-9GSz3P6uQw8AlsN14LaI,88
@@ -885,11 +885,11 @@ datahub/sql_parsing/datajob.py,sha256=1X8KpEk-y3_8xJuA_Po27EHZgOcxK9QADI6Om9gSGn
885
885
  datahub/sql_parsing/query_types.py,sha256=FKjDzszZzsrCfYfm7dgD6T_8865qxWl767fdGyHWBh4,2720
886
886
  datahub/sql_parsing/schema_resolver.py,sha256=9INZWdxA2dMSLK6RXaVqjbjyLY_VKMhCkQv_Xd6Ln3I,10848
887
887
  datahub/sql_parsing/split_statements.py,sha256=uZhAXLaRxDfmK0lPBW2oM_YVdJfSMhdgndnfd9iIXuA,5001
888
- datahub/sql_parsing/sql_parsing_aggregator.py,sha256=ULvLZygN_LtZQg_DKLQ2lDzz3YsEhZBvZUx3wmYeP_Q,69976
888
+ datahub/sql_parsing/sql_parsing_aggregator.py,sha256=YY-lZXPVpkdeXej9lSaTV3tymv2XcSmSxnzRooiHb_0,70103
889
889
  datahub/sql_parsing/sql_parsing_common.py,sha256=h_V_m54hJ9EUh5kczq7cYOIeNeo4bgf0Px0H-Nq-UIg,2602
890
890
  datahub/sql_parsing/sql_parsing_result_utils.py,sha256=prwWTj1EB2fRPv1eMB4EkpFNafIYAt-X8TIK0NWqank,796
891
- datahub/sql_parsing/sqlglot_lineage.py,sha256=gUVq3NwZUzQByJs43JZXz8lZf0ZVzVt0FzaW5wZOwK4,47460
892
- datahub/sql_parsing/sqlglot_utils.py,sha256=n6yufzEGwSlFeCSU540hEldIuab0q8KGqm9x0vSawkc,14699
891
+ datahub/sql_parsing/sqlglot_lineage.py,sha256=VPyYOz6tpxBdboP3xVv2IKAsw-Gez9Wm5OikFyMVj98,47459
892
+ datahub/sql_parsing/sqlglot_utils.py,sha256=8tRSXkv0xbT5m8Nf1KexcB90yb7EWXpQi6rmwKTuINQ,14698
893
893
  datahub/sql_parsing/tool_meta_extractor.py,sha256=qEPq8RFWyK0tmSPNlluvd5cxgwbd2v6m9ViSY4hm2QM,6822
894
894
  datahub/telemetry/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
895
895
  datahub/telemetry/stats.py,sha256=YltbtC3fe6rl1kcxn1A-mSnVpECTPm5k-brrUt7QxTI,967
@@ -923,7 +923,7 @@ datahub/utilities/is_pytest.py,sha256=2m9T4S9IIKhI5RfTqrB2ZmumzHocdxBHpM1HroWj2X
923
923
  datahub/utilities/logging_manager.py,sha256=i1-iensxkgJrIXILsEt3Vwx6k8LcOrfvs0P7Np9KdBY,10073
924
924
  datahub/utilities/lossy_collections.py,sha256=M1B6hRM0sEvjf2NGKXPdIbG3egsdkimS7CrNp00H4Xs,5702
925
925
  datahub/utilities/mapping.py,sha256=PmgwnaT7WmTJR0VQJg7SQhEiVaKecTGoShZw0c5A4CQ,17976
926
- datahub/utilities/memory_footprint.py,sha256=6tHu0Tvm0axMXKqSsx0FneXJlXwhZdnK969KxzqXt9E,1564
926
+ datahub/utilities/memory_footprint.py,sha256=mJj2lN3egTvOQPXfz8e3nsYmssaUREINCtxMsgg9e0s,1569
927
927
  datahub/utilities/openapi_utils.py,sha256=VNiNo1Pjvtn2MLShQ1vCjc27id7LmI-pnLdjlUatNk4,2233
928
928
  datahub/utilities/ordered_set.py,sha256=p2DdvbD98ELTLCxgdZdOKQ50VnnMDKr3l9fmqCzu5g4,1135
929
929
  datahub/utilities/parsing_util.py,sha256=FrMJRgkJWoyPXmjtIfPT3fc886uA2i5_PqhplRDN3NI,598
@@ -955,7 +955,7 @@ datahub/utilities/yaml_sync_utils.py,sha256=65IEe8quW3_zHCR8CyoDkZyopeZJazU-IyMr
955
955
  datahub/utilities/registries/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
956
956
  datahub/utilities/registries/domain_registry.py,sha256=0SfcZNop-PXBbl-AWw92vAyb28i0YXTr-TKdBwixmOw,2452
957
957
  datahub/utilities/urns/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
958
- datahub/utilities/urns/_urn_base.py,sha256=oly7C6EWmEA0kAfy9TxidH8U97ouRFo2CyJuXZgfLi8,9211
958
+ datahub/utilities/urns/_urn_base.py,sha256=3JVe4u2fZvFwLCGaDwqDmEgbnveVVbX52cE4GleI634,10420
959
959
  datahub/utilities/urns/corp_group_urn.py,sha256=6H5Q6nZvAXu80IZBDCeM8xo_9ap9pgwtyi60QXx3hzY,75
960
960
  datahub/utilities/urns/corpuser_urn.py,sha256=h-Yh-9QRbtQOhxxzxEBc7skoavpGaKDKVNrsxSXZ1yQ,88
961
961
  datahub/utilities/urns/data_flow_urn.py,sha256=w1Z7ET1L1OtYD1w-xiUYtyCczsxZZ1l3LRyTRv5NdpE,73
@@ -990,8 +990,8 @@ datahub_provider/operators/datahub_assertion_operator.py,sha256=uvTQ-jk2F0sbqqxp
990
990
  datahub_provider/operators/datahub_assertion_sensor.py,sha256=lCBj_3x1cf5GMNpHdfkpHuyHfVxsm6ff5x2Z5iizcAo,140
991
991
  datahub_provider/operators/datahub_operation_operator.py,sha256=aevDp2FzX7FxGlXrR0khoHNbxbhKR2qPEX5e8O2Jyzw,174
992
992
  datahub_provider/operators/datahub_operation_sensor.py,sha256=8fcdVBCEPgqy1etTXgLoiHoJrRt_nzFZQMdSzHqSG7M,168
993
- acryl_datahub-0.15.0.2rc6.dist-info/METADATA,sha256=FVQAozQ0fqRIJ7tEhjR6fc0rsuJXRUoyABPabW540vM,173662
994
- acryl_datahub-0.15.0.2rc6.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
995
- acryl_datahub-0.15.0.2rc6.dist-info/entry_points.txt,sha256=xnPSPLK3bJGADxe4TDS4wL4u0FT_PGlahDa-ENYdYCQ,9512
996
- acryl_datahub-0.15.0.2rc6.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
997
- acryl_datahub-0.15.0.2rc6.dist-info/RECORD,,
993
+ acryl_datahub-0.15.0.2rc7.dist-info/METADATA,sha256=nUAGcLngHBrJZ5kEsfUXOBXKXGCoWgWCTYpomWAeJ2A,173341
994
+ acryl_datahub-0.15.0.2rc7.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
995
+ acryl_datahub-0.15.0.2rc7.dist-info/entry_points.txt,sha256=xnPSPLK3bJGADxe4TDS4wL4u0FT_PGlahDa-ENYdYCQ,9512
996
+ acryl_datahub-0.15.0.2rc7.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
997
+ acryl_datahub-0.15.0.2rc7.dist-info/RECORD,,
datahub/__init__.py CHANGED
@@ -3,7 +3,7 @@ import warnings
3
3
 
4
4
  # Published at https://pypi.org/project/acryl-datahub/.
5
5
  __package_name__ = "acryl-datahub"
6
- __version__ = "0.15.0.2rc6"
6
+ __version__ = "0.15.0.2rc7"
7
7
 
8
8
 
9
9
  def is_dev_mode() -> bool:
datahub/cli/ingest_cli.py CHANGED
@@ -507,15 +507,11 @@ def list_source_runs(page_offset: int, page_size: int, urn: str, source: str) ->
507
507
  click.echo("No response received from the server.")
508
508
  return
509
509
 
510
- # when urn or source filter does not match, exit gracefully
511
- if (
512
- not isinstance(data.get("data"), dict)
513
- or "listIngestionSources" not in data["data"]
514
- ):
515
- click.echo("No matching ingestion sources found. Please check your filters.")
516
- return
510
+ # a lot of responses can be null if there's errors in the run
511
+ ingestion_sources = (
512
+ data.get("data", {}).get("listIngestionSources", {}).get("ingestionSources", [])
513
+ )
517
514
 
518
- ingestion_sources = data["data"]["listIngestionSources"]["ingestionSources"]
519
515
  if not ingestion_sources:
520
516
  click.echo("No ingestion sources or executions found.")
521
517
  return
@@ -526,18 +522,32 @@ def list_source_runs(page_offset: int, page_size: int, urn: str, source: str) ->
526
522
  name = ingestion_source.get("name", "N/A")
527
523
 
528
524
  executions = ingestion_source.get("executions", {}).get("executionRequests", [])
525
+
529
526
  for execution in executions:
527
+ if execution is None:
528
+ continue
529
+
530
530
  execution_id = execution.get("id", "N/A")
531
- start_time = execution.get("result", {}).get("startTimeMs", "N/A")
532
- start_time = (
533
- datetime.fromtimestamp(start_time / 1000).strftime("%Y-%m-%d %H:%M:%S")
534
- if start_time != "N/A"
535
- else "N/A"
536
- )
537
- status = execution.get("result", {}).get("status", "N/A")
531
+ result = execution.get("result") or {}
532
+ status = result.get("status", "N/A")
533
+
534
+ try:
535
+ start_time = (
536
+ datetime.fromtimestamp(
537
+ result.get("startTimeMs", 0) / 1000
538
+ ).strftime("%Y-%m-%d %H:%M:%S")
539
+ if status != "DUPLICATE" and result.get("startTimeMs") is not None
540
+ else "N/A"
541
+ )
542
+ except (TypeError, ValueError):
543
+ start_time = "N/A"
538
544
 
539
545
  rows.append([execution_id, name, start_time, status, urn])
540
546
 
547
+ if not rows:
548
+ click.echo("No execution data found.")
549
+ return
550
+
541
551
  click.echo(
542
552
  tabulate(
543
553
  rows,
datahub/entrypoints.py CHANGED
@@ -45,6 +45,12 @@ _logging_configured: Optional[ContextManager] = None
45
45
 
46
46
  MAX_CONTENT_WIDTH = 120
47
47
 
48
+ if sys.version_info >= (3, 12):
49
+ click.secho(
50
+ "Python versions above 3.11 are not tested with. Please use Python 3.11.",
51
+ fg="red",
52
+ )
53
+
48
54
 
49
55
  @click.group(
50
56
  context_settings=dict(
@@ -25,6 +25,10 @@ DEFAULT_EXCLUDE_ASPECTS = {
25
25
  "globalSettingsKey",
26
26
  "globalSettingsInfo",
27
27
  "testResults",
28
+ "dataHubExecutionRequestKey",
29
+ "dataHubExecutionRequestInput",
30
+ "dataHubExecutionRequestSignal",
31
+ "dataHubExecutionRequestResult",
28
32
  }
29
33
 
30
34
 
@@ -292,6 +292,7 @@ class DataHubGcSource(Source):
292
292
  tokens = list_access_tokens.get("tokens", [])
293
293
  total = list_access_tokens.get("total", 0)
294
294
  if tokens == []:
295
+ # Due to a server bug we cannot rely on just total
295
296
  break
296
297
  for token in tokens:
297
298
  self.report.expired_tokens_revoked += 1
@@ -99,6 +99,7 @@ class SoftDeletedEntitiesCleanupConfig(ConfigModel):
99
99
 
100
100
  @dataclass
101
101
  class SoftDeletedEntitiesReport(SourceReport):
102
+ num_calls_made: Dict[str, int] = field(default_factory=dict)
102
103
  num_entities_found: Dict[str, int] = field(default_factory=dict)
103
104
  num_soft_deleted_entity_processed: int = 0
104
105
  num_soft_deleted_retained_due_to_age: int = 0
@@ -242,6 +243,11 @@ class SoftDeletedEntitiesCleanup:
242
243
 
243
244
  while True:
244
245
  try:
246
+ if entity_type not in self.report.num_calls_made:
247
+ self.report.num_calls_made[entity_type] = 1
248
+ else:
249
+ self.report.num_calls_made[entity_type] += 1
250
+ self._print_report()
245
251
  result = self.ctx.graph.execute_graphql(
246
252
  graphql_query,
247
253
  {
@@ -270,7 +276,13 @@ class SoftDeletedEntitiesCleanup:
270
276
  )
271
277
  break
272
278
  scroll_across_entities = result.get("scrollAcrossEntities")
273
- if not scroll_across_entities or not scroll_across_entities.get("count"):
279
+ if not scroll_across_entities:
280
+ break
281
+ search_results = scroll_across_entities.get("searchResults")
282
+ count = scroll_across_entities.get("count")
283
+ if not count or not search_results:
284
+ # Due to a server bug we cannot rely on just count as it was returning response like this
285
+ # {'count': 1, 'nextScrollId': None, 'searchResults': []}
274
286
  break
275
287
  if entity_type == "DATA_PROCESS_INSTANCE":
276
288
  # Temp workaround. See note in beginning of the function
@@ -282,7 +294,7 @@ class SoftDeletedEntitiesCleanup:
282
294
  self.report.num_entities_found[entity_type] += scroll_across_entities.get(
283
295
  "count"
284
296
  )
285
- for query in scroll_across_entities.get("searchResults"):
297
+ for query in search_results:
286
298
  yield query["entity"]["urn"]
287
299
 
288
300
  def _get_urns(self) -> Iterable[str]:
@@ -1,5 +1,3 @@
1
- from datahub.utilities._markupsafe_compat import MARKUPSAFE_PATCHED
2
-
3
1
  import collections
4
2
  import concurrent.futures
5
3
  import contextlib
@@ -12,6 +10,7 @@ import threading
12
10
  import traceback
13
11
  import unittest.mock
14
12
  import uuid
13
+ from datahub.utilities._markupsafe_compat import MARKUPSAFE_PATCHED
15
14
  from functools import lru_cache
16
15
  from typing import (
17
16
  TYPE_CHECKING,
@@ -267,7 +266,6 @@ def _is_single_row_query_method(query: Any) -> bool:
267
266
  "get_column_max",
268
267
  "get_column_mean",
269
268
  "get_column_stdev",
270
- "get_column_stdev",
271
269
  "get_column_nonnull_count",
272
270
  "get_column_unique_count",
273
271
  }
@@ -893,11 +893,11 @@ class ModeSource(StatefulIngestionSourceBase):
893
893
  jinja_params[key] = parameters[key].get("default", "")
894
894
 
895
895
  normalized_query = re.sub(
896
- r"{% form %}(.*){% endform %}",
897
- "",
898
- query,
899
- 0,
900
- re.MULTILINE | re.DOTALL,
896
+ pattern=r"{% form %}(.*){% endform %}",
897
+ repl="",
898
+ string=query,
899
+ count=0,
900
+ flags=re.MULTILINE | re.DOTALL,
901
901
  )
902
902
 
903
903
  # Wherever we don't resolve the jinja params, we replace it with NULL
@@ -96,7 +96,7 @@ class PowerBiAPI:
96
96
  url: str = e.request.url if e.request else "URL not available"
97
97
  self.reporter.warning(
98
98
  title="Metadata API Timeout",
99
- message=f"Metadata endpoints are not reachable. Check network connectivity to PowerBI Service.",
99
+ message="Metadata endpoints are not reachable. Check network connectivity to PowerBI Service.",
100
100
  context=f"url={url}",
101
101
  )
102
102
 
@@ -173,7 +173,7 @@ class PowerBiAPI:
173
173
  entity=entity_name,
174
174
  entity_id=entity_id,
175
175
  )
176
- except: # It will catch all type of exception
176
+ except Exception:
177
177
  e = self.log_http_error(
178
178
  message=f"Unable to fetch users for {entity_name}({entity_id})."
179
179
  )
@@ -210,7 +210,7 @@ class PowerBiAPI:
210
210
  message="A cross-workspace reference that failed to be resolved. Please ensure that no global workspace is being filtered out due to the workspace_id_pattern.",
211
211
  context=f"report-name: {report.name} and dataset-id: {report.dataset_id}",
212
212
  )
213
- except:
213
+ except Exception:
214
214
  self.log_http_error(
215
215
  message=f"Unable to fetch reports for workspace {workspace.name}"
216
216
  )
@@ -260,7 +260,7 @@ class PowerBiAPI:
260
260
 
261
261
  groups = self._get_resolver().get_groups(filter_=filter_)
262
262
 
263
- except:
263
+ except Exception:
264
264
  self.log_http_error(message="Unable to fetch list of workspaces")
265
265
  # raise # we want this exception to bubble up
266
266
 
@@ -292,7 +292,7 @@ class PowerBiAPI:
292
292
  modified_workspace_ids = self.__admin_api_resolver.get_modified_workspaces(
293
293
  self.__config.modified_since
294
294
  )
295
- except:
295
+ except Exception:
296
296
  self.log_http_error(message="Unable to fetch list of modified workspaces.")
297
297
 
298
298
  return modified_workspace_ids
@@ -303,8 +303,8 @@ class PowerBiAPI:
303
303
  scan_id = self.__admin_api_resolver.create_scan_job(
304
304
  workspace_ids=workspace_ids
305
305
  )
306
- except:
307
- e = self.log_http_error(message=f"Unable to fetch get scan result.")
306
+ except Exception:
307
+ e = self.log_http_error(message="Unable to fetch get scan result.")
308
308
  if data_resolver.is_permission_error(cast(Exception, e)):
309
309
  logger.warning(
310
310
  "Dataset lineage can not be ingestion because this user does not have access to the PowerBI Admin "
@@ -384,7 +384,6 @@ TRINO_SQL_TYPES_MAP: Dict[str, Any] = {
384
384
  "varchar": StringType,
385
385
  "char": StringType,
386
386
  "varbinary": BytesType,
387
- "json": RecordType,
388
387
  "date": DateType,
389
388
  "time": TimeType,
390
389
  "timestamp": TimeType,