acryl-datahub 0.15.0.2rc4__py3-none-any.whl → 0.15.0.2rc6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub might be problematic. Click here for more details.

Files changed (50) hide show
  1. {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc6.dist-info}/METADATA +2440 -2440
  2. {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc6.dist-info}/RECORD +50 -46
  3. datahub/__init__.py +1 -1
  4. datahub/cli/delete_cli.py +3 -3
  5. datahub/cli/migrate.py +2 -2
  6. datahub/emitter/mcp_builder.py +27 -0
  7. datahub/emitter/rest_emitter.py +1 -1
  8. datahub/ingestion/api/source.py +2 -2
  9. datahub/ingestion/source/delta_lake/source.py +0 -5
  10. datahub/ingestion/source/demo_data.py +1 -1
  11. datahub/ingestion/source/fivetran/fivetran.py +1 -6
  12. datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py +6 -2
  13. datahub/ingestion/source/iceberg/iceberg.py +10 -3
  14. datahub/ingestion/source/iceberg/iceberg_common.py +49 -9
  15. datahub/ingestion/source/iceberg/iceberg_profiler.py +3 -1
  16. datahub/ingestion/source/kafka_connect/kafka_connect.py +1 -6
  17. datahub/ingestion/source/metabase.py +1 -6
  18. datahub/ingestion/source/mlflow.py +0 -5
  19. datahub/ingestion/source/nifi.py +0 -5
  20. datahub/ingestion/source/redash.py +0 -5
  21. datahub/ingestion/source/redshift/redshift.py +1 -0
  22. datahub/ingestion/source/snowflake/snowflake_config.py +13 -0
  23. datahub/ingestion/source/snowflake/snowflake_schema.py +5 -2
  24. datahub/ingestion/source/snowflake/snowflake_schema_gen.py +112 -20
  25. datahub/ingestion/source/snowflake/snowflake_tag.py +14 -4
  26. datahub/ingestion/source/snowflake/snowflake_v2.py +0 -6
  27. datahub/ingestion/source/sql/sql_types.py +1 -1
  28. datahub/ingestion/source/sql/sql_utils.py +5 -0
  29. datahub/ingestion/source/superset.py +1 -6
  30. datahub/ingestion/source/tableau/tableau.py +0 -6
  31. datahub/metadata/_schema_classes.py +314 -41
  32. datahub/metadata/_urns/urn_defs.py +54 -0
  33. datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py +2 -0
  34. datahub/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py +2 -0
  35. datahub/metadata/com/linkedin/pegasus2avro/versionset/__init__.py +17 -0
  36. datahub/metadata/schema.avsc +296 -87
  37. datahub/metadata/schemas/DatasetKey.avsc +2 -1
  38. datahub/metadata/schemas/MLFeatureProperties.avsc +51 -0
  39. datahub/metadata/schemas/MLModelDeploymentProperties.avsc +51 -0
  40. datahub/metadata/schemas/MLModelGroupProperties.avsc +96 -23
  41. datahub/metadata/schemas/MLModelKey.avsc +2 -1
  42. datahub/metadata/schemas/MLModelProperties.avsc +96 -48
  43. datahub/metadata/schemas/MLPrimaryKeyProperties.avsc +51 -0
  44. datahub/metadata/schemas/MetadataChangeEvent.avsc +98 -71
  45. datahub/metadata/schemas/VersionProperties.avsc +216 -0
  46. datahub/metadata/schemas/VersionSetKey.avsc +26 -0
  47. datahub/metadata/schemas/VersionSetProperties.avsc +49 -0
  48. {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc6.dist-info}/WHEEL +0 -0
  49. {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc6.dist-info}/entry_points.txt +0 -0
  50. {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc6.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- datahub/__init__.py,sha256=p_vuZBTCmvG7HqtMpeL-FQZeXWYJszD5ZoagGWD4_-w,576
1
+ datahub/__init__.py,sha256=LkyndK4jD_kpbP5zlWtRZY_adYH59shEIFzUnoBjloM,576
2
2
  datahub/__main__.py,sha256=pegIvQ9hzK7IhqVeUi1MeADSZ2QlP-D3K0OQdEg55RU,106
3
3
  datahub/entrypoints.py,sha256=3-qSfXAx3Z0FEkBV5tlO8fQr4xk4ySeDRMVTpS5Xd6A,7793
4
4
  datahub/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -61,7 +61,7 @@ datahub/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
61
  datahub/cli/check_cli.py,sha256=9dXNyzZayHeoFjwFjLkMVyx6DiCZfeESyI-sYtGA6bE,12850
62
62
  datahub/cli/cli_utils.py,sha256=d_Q9vPZTPxO7XyyghD-i1Nkr4DX0M8cs2IWrMUQAu0c,13539
63
63
  datahub/cli/config_utils.py,sha256=yuXw7RzpRY5x_-MAoqWbv46qUkIeRNAJL4_OeJpYdBE,4879
64
- datahub/cli/delete_cli.py,sha256=VLeHi7MLFCtTk7MI4y8r_k_7aLcCUZIglU2MNLsXU6M,23051
64
+ datahub/cli/delete_cli.py,sha256=rJpyQhuRb_BnA1Fyot3Yu6-_x_3CoSsgjrpyJJCwEJY,23050
65
65
  datahub/cli/docker_check.py,sha256=rED4wHXqxcQ_qNFyIgFEZ85BHT9ZTE5YC-oUKqbRqi0,9432
66
66
  datahub/cli/docker_cli.py,sha256=QGoWFp8ZZsXOSMbgu0Q4snMmMmtP3epWAN-fYglUNEc,36491
67
67
  datahub/cli/env_utils.py,sha256=RQzjg4JE29hjPt4v7p-RuqoOr99w8E3DBHWiN2Sm7T4,252
@@ -70,7 +70,7 @@ datahub/cli/get_cli.py,sha256=VV80BCXfZ0-C8fr2k43SIuN9DB-fOYP9StWsTHnXwFw,2327
70
70
  datahub/cli/ingest_cli.py,sha256=nRoZvVpsGPXmEZCvSOBfsZ61Ep1fCqYRVp79RBnHSnI,22393
71
71
  datahub/cli/json_file.py,sha256=nWo-VVthaaW4Do1eUqgrzk0fShb29MjiKXvZVOTq76c,943
72
72
  datahub/cli/lite_cli.py,sha256=UmlMMquce6lHiPaKUBBT0XQtqR9SHEmrGlJyKV9YY60,13030
73
- datahub/cli/migrate.py,sha256=p42vixwKzi9OHQnIa0K2FxwGvt-1OxXeuYGJzfu5Sqo,17939
73
+ datahub/cli/migrate.py,sha256=1ngS-jT59v-a9AnfSB44mN0mBbzhGqIyteG142Ui77c,17937
74
74
  datahub/cli/migration_utils.py,sha256=0qHo_9eSR4buyV_K_tdcHSLBufKphBWwwwT1iK_I4S8,9382
75
75
  datahub/cli/put_cli.py,sha256=4ol9aLdidX1VXjVxMG2tkfEMPyjLpgOk2pfl0Gvb8iU,3841
76
76
  datahub/cli/quickstart_versioning.py,sha256=MyWvw92s4b84wIEizjSUZjoMClwLbhpgMdHeDav-x2o,5713
@@ -116,10 +116,10 @@ datahub/emitter/generic_emitter.py,sha256=i37ZFm9VR_tmiZm9kIypEkQEB_cLKbzj_tJvVi
116
116
  datahub/emitter/kafka_emitter.py,sha256=Uix1W1WaXF8VqUTUfzdRZKca2XrR1w50Anx2LVkROlc,5822
117
117
  datahub/emitter/mce_builder.py,sha256=IqHOm0cpzdVC_mQOqk0yEVJUEj9xn8am2OFAwwQeX_8,16342
118
118
  datahub/emitter/mcp.py,sha256=hAAYziDdkwjazQU0DtWMbQWY8wS09ACrKJbqxoWXdgc,9637
119
- datahub/emitter/mcp_builder.py,sha256=eOcuz41c4a3oTkNk39yYl9bTxpksxqATPHLcqyhPGT0,9856
119
+ datahub/emitter/mcp_builder.py,sha256=AHSeMfcFxvJl2PXyDQ5HsnWbk6HkJqUtppNKjQtIbUI,10791
120
120
  datahub/emitter/mcp_patch_builder.py,sha256=oonC8iGOvDzqj890CxOjWlBdDEF1RnwvbSZy1sivlTY,4572
121
121
  datahub/emitter/request_helper.py,sha256=33ORG3S3OVy97_jlWBRn7yUM5XCIkRN6WSdJvN7Ofcg,670
122
- datahub/emitter/rest_emitter.py,sha256=O9IJ7r-AXL4Pi892pEFOygvUKTbD8V6ey8KObuqHqgk,17876
122
+ datahub/emitter/rest_emitter.py,sha256=v-A4eR_GSbXg-dsUgHAMcUd68qNEF5KO2MYlyhAYn8I,17880
123
123
  datahub/emitter/serialization_helper.py,sha256=q12Avmf70Vy4ttQGMJoTKlE5EsybMKNg2w3MQeZiHvk,3652
124
124
  datahub/emitter/sql_parsing_builder.py,sha256=Cr5imZrm3dYDSCACt5MFscgHCtVbHTD6IjUmsvsKoEs,11991
125
125
  datahub/emitter/synchronized_file_emitter.py,sha256=s4ATuxalI4GDAkrZTaGSegxBdvvNPZ9jRSdtElU0kNs,1805
@@ -138,7 +138,7 @@ datahub/ingestion/api/registry.py,sha256=LGElUdzhNQoEr-k2SN23mJaIYnA1PYfF97LQxBm
138
138
  datahub/ingestion/api/report.py,sha256=zb5Y_9ogmWm00KqX7_64sIMT24Wfpk7txRwEfKacw5I,4652
139
139
  datahub/ingestion/api/report_helpers.py,sha256=WbUC1kQeaKqIagGV3XzfPmPs7slAT1mfNY4og2BH2A8,994
140
140
  datahub/ingestion/api/sink.py,sha256=3jw7-x9gXGreOPwn49wG5fT3C8pYhaNMQITdMN6kbag,4478
141
- datahub/ingestion/api/source.py,sha256=BSG-xBmkl4xS6ttxnwFJs0vrpQq07Ts8ZcILGZwy-UQ,19034
141
+ datahub/ingestion/api/source.py,sha256=yLx_7TCyhflo0hloYzC4y2ovh3TWEVcDh1agvh8AQwI,19036
142
142
  datahub/ingestion/api/source_helpers.py,sha256=AVO0ogiCKgYmX1ubJaSs6L30TCCgOIalp6awXPF5XM0,19643
143
143
  datahub/ingestion/api/transform.py,sha256=X0GpjMJzYkLuZx8MTWxH50cWGm9rGsnn3k188mmC8J8,582
144
144
  datahub/ingestion/api/workunit.py,sha256=e8n8RfSjHZZm2R4ShNH0UuMtUkMjyqqM2j2t7oL74lo,6327
@@ -187,7 +187,7 @@ datahub/ingestion/sink/sink_registry.py,sha256=JRBWx8qEYg0ubSTyhqwgSWctgxwyp6fva
187
187
  datahub/ingestion/source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
188
188
  datahub/ingestion/source/confluent_schema_registry.py,sha256=_h9D8bUXoaGcwgwB94dX6aTyLY5ve7XGdcVFSJHGSJc,18804
189
189
  datahub/ingestion/source/csv_enricher.py,sha256=AIxQFkmSzFgCa_Fzt2EiFMyojQMFKmnPt878WypSPa4,29491
190
- datahub/ingestion/source/demo_data.py,sha256=yzA_R-wfSX2WPz0i5ukYlscpmpb0Pt8D7EkhtKfftvo,1286
190
+ datahub/ingestion/source/demo_data.py,sha256=PbtCHlZx3wrKlOPPgkWhDQuPm7ZfIx2neXJUzbUi9YY,1305
191
191
  datahub/ingestion/source/elastic_search.py,sha256=uT4I0GyqSiD16BURqsXWyPN9wNBc3wLomz1nG-OxHec,22634
192
192
  datahub/ingestion/source/feast.py,sha256=uZpeUkJsiNlvZcUkARiEuZT_3n6sbGc0yFzwqhtnefA,18103
193
193
  datahub/ingestion/source/file.py,sha256=pH-Qkjh5FQ2XvyYPE7Z8XEY4vUk_SUHxm8p8IxG12tU,15879
@@ -195,20 +195,20 @@ datahub/ingestion/source/ge_data_profiler.py,sha256=7-ciHphLU8O259OU2WMDfCDpoqvD
195
195
  datahub/ingestion/source/ge_profiling_config.py,sha256=P-9pd20koFvpxeEL_pqFvKWWz-qnpZ6XkELUyBKr7is,10807
196
196
  datahub/ingestion/source/glue_profiling_config.py,sha256=vpMJH4Lf_qgR32BZy58suabri1yV5geaAPjzg2eORDc,2559
197
197
  datahub/ingestion/source/ldap.py,sha256=Vnzg8tpwBYeyM-KBVVsUJvGZGBMJiCJ_i_FhxaFRQ9A,18627
198
- datahub/ingestion/source/metabase.py,sha256=oemiMdzjfr82Hx6rdwTNBzFM8962LDkosYh7SD_I5cY,31717
199
- datahub/ingestion/source/mlflow.py,sha256=-yWUuAEVBiNN-elz8Pgn0UeGsC3fVB20z1zKNIr4LXI,12309
198
+ datahub/ingestion/source/metabase.py,sha256=m9Gfhrs8F1z23ci8CIxdE5cW--25stgxg_IQTKwkFrk,31532
199
+ datahub/ingestion/source/mlflow.py,sha256=IPG_l2HH9Ec8wxu0MYb3QaOPmw1kB1gcS3t4wf9bZLs,12134
200
200
  datahub/ingestion/source/mode.py,sha256=cq1KIpLxuplETF7sUW0hoMQIZG1cgga5BGHP54a28wE,63467
201
201
  datahub/ingestion/source/mongodb.py,sha256=vZue4Nz0xaBoCUsQr3_0OIRkWRxeE_IH_Y_QKZ1s7S0,21077
202
- datahub/ingestion/source/nifi.py,sha256=ttsjZ9aRUvINmewvKFIQD8Rwa4jcl35WFG-F-jPGPWQ,56146
202
+ datahub/ingestion/source/nifi.py,sha256=ODXmZRxGq5V0R6PCYyy-_-dDWOb-cCkPzAVf-38-ACM,55965
203
203
  datahub/ingestion/source/openapi.py,sha256=3ea2ORz1cuq4e7L2hSjxG9Cw3__pVoJ5UNYTJS3EnKU,17386
204
204
  datahub/ingestion/source/openapi_parser.py,sha256=1_68wHWe_SzWYEyC1YVDw9vxoadKjW1yv8DecvyIhwY,13606
205
205
  datahub/ingestion/source/preset.py,sha256=fByqamRLnXxsfCGdLPzWN_5LJR_s2_G2f_zwSKUc8EA,3981
206
206
  datahub/ingestion/source/pulsar.py,sha256=7rTOEqYmeOuRZl5DG8d5OFkb4l9H6-1bETZfa-4DfmI,20163
207
- datahub/ingestion/source/redash.py,sha256=g-wBJ4e54EdA2A2D5XmoNBilCDyh5b32M_C_fY1bhmA,30055
207
+ datahub/ingestion/source/redash.py,sha256=GH0MGV_huvKio9hMQ-jKdYIxYcHN6WnivrhWCw3I03E,29880
208
208
  datahub/ingestion/source/salesforce.py,sha256=S6LSM6mzl8-zKbrJPoINhM1SCpYfM244Xb74pbEI-J0,31792
209
209
  datahub/ingestion/source/source_registry.py,sha256=a2mLjJPLkSI-gYCTb_7U7Jo4D8jGknNQ_yScPIihXFk,1208
210
210
  datahub/ingestion/source/sql_queries.py,sha256=Ip7UZub7fgMh7P5jL_zJPY7lSkc9GGTy8GJ8lqZrcsE,9502
211
- datahub/ingestion/source/superset.py,sha256=5hUI83QEArHoDy5tb8rx5P6t-1louxX1Ki1XIplIuFo,24777
211
+ datahub/ingestion/source/superset.py,sha256=-_90rfZtKG5vf5OSFS8lhqI-nGGtKPRwYYNAS_m1xmY,24592
212
212
  datahub/ingestion/source/abs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
213
213
  datahub/ingestion/source/abs/config.py,sha256=Doecl1mA6JshJTNar7oTVR7wnWl4gMu64MBHp3hIVJc,6737
214
214
  datahub/ingestion/source/abs/datalake_profiler_config.py,sha256=qh38q-Zw8TUTZD5RF0_hSoEfR6BilNGXyKPRsq1KQKE,3600
@@ -281,7 +281,7 @@ datahub/ingestion/source/delta_lake/__init__.py,sha256=u5oqUeus81ONAtdl6o9Puw33O
281
281
  datahub/ingestion/source/delta_lake/config.py,sha256=bVBwGjCPiXyjbCLQsamt4hAsKJMtMuxupKjwZEwtU78,3374
282
282
  datahub/ingestion/source/delta_lake/delta_lake_utils.py,sha256=VqIDPEXepOnlk4oWMeRaneSpQBlWmlCKAa1wGUl1sfk,1525
283
283
  datahub/ingestion/source/delta_lake/report.py,sha256=uqWWivPltlZ7dwpOOluTvHOKKsSusqihn67clCAwxoM,467
284
- datahub/ingestion/source/delta_lake/source.py,sha256=jLCN6SeAv3bCD4w4ZDw15eIbFF3yVWcxVtBklovFEBg,13548
284
+ datahub/ingestion/source/delta_lake/source.py,sha256=5VyE_ZYrop4JCTVhoXLjRXb1MRfWbIj0lMMmvNxsb80,13362
285
285
  datahub/ingestion/source/dremio/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
286
286
  datahub/ingestion/source/dremio/dremio_api.py,sha256=am8o_mQq7zteI4zasnkRb9B9-_BFrchTIA_oJkqRagA,33470
287
287
  datahub/ingestion/source/dremio/dremio_aspects.py,sha256=3VeHzCw9q1ytngmsq_K4Ll9tWD2V8EDFySBImHdhPAw,18287
@@ -298,14 +298,14 @@ datahub/ingestion/source/dynamodb/dynamodb.py,sha256=wcEQSfQak45yPNZN7pCUEQFmjyW
298
298
  datahub/ingestion/source/fivetran/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
299
299
  datahub/ingestion/source/fivetran/config.py,sha256=kTfsu7oC4BSzkcFtetZr0UmiQ-B2af-_jbNYSFbDim4,8749
300
300
  datahub/ingestion/source/fivetran/data_classes.py,sha256=ecdUJH5BEze0yv-uFpKWPNaNmV1gORDA2XMFk0zhcBw,595
301
- datahub/ingestion/source/fivetran/fivetran.py,sha256=uKbM5czPz-6LOseoh1FwavWDIuLk3WnspyWwdEYSVpk,13509
301
+ datahub/ingestion/source/fivetran/fivetran.py,sha256=mJ3gi4LWYqul0NyHdZ0U4fDv3WuKEl_yxc2oOd3q6bw,13318
302
302
  datahub/ingestion/source/fivetran/fivetran_log_api.py,sha256=EAak3hJpe75WZSgz6wP_CyAT5Cian2N4a-lb8x1NKHk,12776
303
303
  datahub/ingestion/source/fivetran/fivetran_query.py,sha256=vLrTj7e-0NxZ2U4bWTB57pih42WirqPlUvwtIRfStlQ,5275
304
304
  datahub/ingestion/source/gc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
305
305
  datahub/ingestion/source/gc/datahub_gc.py,sha256=6O-TxU2uCJ1Y8NNzJDufUd3ymapo--E3hTeIuy_QDtY,12763
306
306
  datahub/ingestion/source/gc/dataprocess_cleanup.py,sha256=86Tm3NNWMf0xM4TklNIEeNOjEingKpYy-XvCPeaAb4k,17125
307
307
  datahub/ingestion/source/gc/execution_request_cleanup.py,sha256=VbZ-Xzryl5TMRapu7nlxlsXS8T8lFZcHK9AJnEadJ8Q,11111
308
- datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py,sha256=PTx1XmD4Jv9SzXzHqUbFpT3vKGCtkD01MeBUaq1p4no,12083
308
+ datahub/ingestion/source/gc/soft_deleted_entity_cleanup.py,sha256=THKk2sdMIWLymgu0rJCwjL2qcaR9FfeX0_13NpA-F-c,12295
309
309
  datahub/ingestion/source/gcs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
310
310
  datahub/ingestion/source/gcs/gcs_source.py,sha256=iwvj4JwjyVWRP1Vq106sUtQhh0GuOYVSu9zCa1wCZN0,6189
311
311
  datahub/ingestion/source/gcs/gcs_utils.py,sha256=_78KM863XXgkVLmZLtYGF5PJNnZas1go-XRtOq-79lo,1047
@@ -314,9 +314,9 @@ datahub/ingestion/source/git/git_import.py,sha256=5CT6vMDb0MDctCtShnxb3JVihULtvk
314
314
  datahub/ingestion/source/grafana/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
315
315
  datahub/ingestion/source/grafana/grafana_source.py,sha256=3pU3xodPgS5lmnjuQ_u7F0XPzD_Y8MnPlMxRJ86qz4g,4960
316
316
  datahub/ingestion/source/iceberg/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
317
- datahub/ingestion/source/iceberg/iceberg.py,sha256=Pi2QD8v0HOpqr8M9la78Nlm3Be9iy3G4pCZqu2NitZM,27253
318
- datahub/ingestion/source/iceberg/iceberg_common.py,sha256=4efWbnj8iWWNcO6_lFXFZRIzaKVPWhd1MmmxdJafemw,8684
319
- datahub/ingestion/source/iceberg/iceberg_profiler.py,sha256=hLT1Le_TEUoFXvsJSlrRB1qbTiTe-YVGCof5TFHMyd8,9908
317
+ datahub/ingestion/source/iceberg/iceberg.py,sha256=tRPoThF6f8PlV_EbpIHjZPo8lcAzaiwE7G6E2m9rY-w,27485
318
+ datahub/ingestion/source/iceberg/iceberg_common.py,sha256=LEZaJleL5KJt1u_pLRUkeCqPEsthzH7tG8FgBwd9MC8,10218
319
+ datahub/ingestion/source/iceberg/iceberg_profiler.py,sha256=CkBB5fryMVoqqCM6eLSIeb4yP85ABHONNRm0QqZKrnw,9977
320
320
  datahub/ingestion/source/identity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
321
321
  datahub/ingestion/source/identity/azure_ad.py,sha256=GdmJFD4UMsb5353Z7phXRf-YsXR2woGLRJwBXUkgXq0,28809
322
322
  datahub/ingestion/source/identity/okta.py,sha256=PnRokWLG8wSoNZlXJiRZiW6APTEHO09q4n2j_l6m3V0,30756
@@ -325,7 +325,7 @@ datahub/ingestion/source/kafka/kafka.py,sha256=9SR7bqp9J0rPYde5IClhnAuVNy9ItsB8-
325
325
  datahub/ingestion/source/kafka/kafka_schema_registry_base.py,sha256=13XjSwqyVhH1CJUFHAbWdmmv_Rw0Ju_9HQdBmIzPNNA,566
326
326
  datahub/ingestion/source/kafka_connect/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
327
327
  datahub/ingestion/source/kafka_connect/common.py,sha256=Ekb1K_J1eTgiH7LSP1AbEIf7NQh_2Vyu1lYX_Ggcqk4,7049
328
- datahub/ingestion/source/kafka_connect/kafka_connect.py,sha256=8bjVFDkwjgs3gP7Y3itzABGfBcY_WbMQ5PWjrm-g93A,14249
328
+ datahub/ingestion/source/kafka_connect/kafka_connect.py,sha256=NwBZQypX7TfZHm_W3uhdMI9YclxTxazJoxQqL8Nfv4Y,14054
329
329
  datahub/ingestion/source/kafka_connect/sink_connectors.py,sha256=ESuJE5SFLLvss9OwDEIB8SAko4rhzaWZ-4dKY0Dh0N8,12900
330
330
  datahub/ingestion/source/kafka_connect/source_connectors.py,sha256=_765fSMDAWAe0Cf_F4VNHfOWKNhtqBA1Ep2jL3rf-qc,21263
331
331
  datahub/ingestion/source/looker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -393,7 +393,7 @@ datahub/ingestion/source/redshift/lineage.py,sha256=bUy0uJowrqSc33Z50fIxFlJkyhe-
393
393
  datahub/ingestion/source/redshift/lineage_v2.py,sha256=OcVW_27sSaZOYZPTd2j-LS9SzFQ1kXz6cMzM2ZDWhJQ,16751
394
394
  datahub/ingestion/source/redshift/profile.py,sha256=T4H79ycq2tPobLM1tTLRtu581Qa8LlKxEok49m0AirU,4294
395
395
  datahub/ingestion/source/redshift/query.py,sha256=bY1D9RoOHaw89LgcXal7GYlJN0RG7PxXRRC-YKIdC8E,43105
396
- datahub/ingestion/source/redshift/redshift.py,sha256=WR4IKGgcomSh8tYD0GigGyM6Z_Ar4bV3p5Ex74RnGkU,44409
396
+ datahub/ingestion/source/redshift/redshift.py,sha256=tBM4r9PiYDtRdZDccy4dwTTte842GADUS5Sfl9t5VHg,44436
397
397
  datahub/ingestion/source/redshift/redshift_data_reader.py,sha256=zc69jwXHdF-w8J4Hq-ZQ6BjHQ75Ij2iNDMpoRJlcmlU,1724
398
398
  datahub/ingestion/source/redshift/redshift_schema.py,sha256=9IYeUsnISenq3eVB3k-s7zK8nInWDAYViFnDrNjtkb0,19149
399
399
  datahub/ingestion/source/redshift/report.py,sha256=M19aUHBkd9n-BVBX4fRhyRNdVkN2b9Es6ZqInRx5ZGI,2958
@@ -429,7 +429,7 @@ datahub/ingestion/source/snowflake/constants.py,sha256=22n-0r04nuy-ImxWFFpmbrt_G
429
429
  datahub/ingestion/source/snowflake/oauth_config.py,sha256=ol9D3RmruGStJAeL8PYSQguSqcD2HfkjPkMF2AB_eZs,1277
430
430
  datahub/ingestion/source/snowflake/oauth_generator.py,sha256=fu2VnREGuJXeTqIV2jx4TwieVnznf83HQkrE0h2DGGM,3423
431
431
  datahub/ingestion/source/snowflake/snowflake_assertion.py,sha256=_l3k4aI9wvioE81xxdeizJn9nJCZ_nMIXgk9N6pEk5o,4803
432
- datahub/ingestion/source/snowflake/snowflake_config.py,sha256=UehWUvqTXRsWmE5bBS53IoLjUL06-wJq6K4O2MTT2R8,18374
432
+ datahub/ingestion/source/snowflake/snowflake_config.py,sha256=kNzNQhpnEO4dGvqQudqO4NAX0MypujvM23XN4ZrA5Es,18949
433
433
  datahub/ingestion/source/snowflake/snowflake_connection.py,sha256=yzv-01FdmfDSCJY5rqKNNodXxzg3SS5DF7oA4WXArOA,17793
434
434
  datahub/ingestion/source/snowflake/snowflake_data_reader.py,sha256=ffR5E2uhD71FUMXd3XOg2rHwrp1rbbGEFTAbqKcmI2s,2195
435
435
  datahub/ingestion/source/snowflake/snowflake_lineage_v2.py,sha256=FBmiONx4EGHWV8RNJT6zHZyntKinPFFyd2oKbTUIbhE,21319
@@ -437,14 +437,14 @@ datahub/ingestion/source/snowflake/snowflake_profiler.py,sha256=0DJiSwII6FY34url
437
437
  datahub/ingestion/source/snowflake/snowflake_queries.py,sha256=jTpnFWRqqFId6DKJvvAbNuFPxyNi1oQxxDUyMvh1iu4,26968
438
438
  datahub/ingestion/source/snowflake/snowflake_query.py,sha256=5po2FWz41UVowykJYbTFGxsltbmlHBCPcHG20VOhdOE,38469
439
439
  datahub/ingestion/source/snowflake/snowflake_report.py,sha256=9Jjrie9XhD1JsIL2Wgx6pVPCNi9HuuAg6nuS0OgbLoE,6331
440
- datahub/ingestion/source/snowflake/snowflake_schema.py,sha256=z5ZPgh-TILAz0DeIwDxRCsj980CM2BbftXiFpM1dV_Y,21674
441
- datahub/ingestion/source/snowflake/snowflake_schema_gen.py,sha256=kWR_5WMUP24i79d-rvfED1S3ginBcd0T0VKjAVlm70c,42435
440
+ datahub/ingestion/source/snowflake/snowflake_schema.py,sha256=qzQxugJJiDuF8LfSo9mTdshCexYyhjl_LlUwrwAcs8k,21806
441
+ datahub/ingestion/source/snowflake/snowflake_schema_gen.py,sha256=U0ELcn0YGlI16wv8VmTM1_UotcIDCSUwkAb0oUhAGCs,46209
442
442
  datahub/ingestion/source/snowflake/snowflake_shares.py,sha256=maZyFkfrbVogEFM0tTKRiNp9c_1muv6YfleSd3q0umI,6341
443
443
  datahub/ingestion/source/snowflake/snowflake_summary.py,sha256=kTmuCtRnvHqM8WBYhWeK4XafJq3ssFL9kcS03jEeWT4,5506
444
- datahub/ingestion/source/snowflake/snowflake_tag.py,sha256=fyfWmFVz2WZrpTJWNIe9m0WpDHgeFrGPf8diORJZUwo,6212
444
+ datahub/ingestion/source/snowflake/snowflake_tag.py,sha256=uWhNsaV9gK9i65w3Ii3UeMJQ5aWy7rjh2ItxyIk-V4U,6539
445
445
  datahub/ingestion/source/snowflake/snowflake_usage_v2.py,sha256=OI7MdARZcN1WjzRMF-hNIRSZyeVshlDVMD9Ga13W-SE,24846
446
446
  datahub/ingestion/source/snowflake/snowflake_utils.py,sha256=MoI8-DR9tuMuHMBQcpDo4GFjvcoQZWLNkdFZsTkgK-M,12786
447
- datahub/ingestion/source/snowflake/snowflake_v2.py,sha256=kqhd2Pcn14KupIqmEEl4-HIzHHJyrWNB0Fv2T6e8XC8,32143
447
+ datahub/ingestion/source/snowflake/snowflake_v2.py,sha256=dgvEx0TazQN17hruoe0kqqfJzAZF7mzUKk6LR0pGfjM,31949
448
448
  datahub/ingestion/source/sql/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
449
449
  datahub/ingestion/source/sql/athena.py,sha256=G3cIY8H_76lIUAzQWW2kLnZOEsfbakmojxbiHb3dYZ8,24059
450
450
  datahub/ingestion/source/sql/clickhouse.py,sha256=jzvaXP5Wr0SMhj2rtuvVE821xnfpKiXhO3cm0xblgHs,27299
@@ -463,8 +463,8 @@ datahub/ingestion/source/sql/sql_config.py,sha256=M-l_uXau0ODolLZHBzAXhy-Rq5yYxv
463
463
  datahub/ingestion/source/sql/sql_generic.py,sha256=9AERvkK8kdJUeDOzCYJDb93xdv6Z4DGho0NfeHj5Uyg,2740
464
464
  datahub/ingestion/source/sql/sql_generic_profiler.py,sha256=oLjqgsxVKGerj5dZnCCRMremrxjp-kr5_P45gFOM4Pg,11602
465
465
  datahub/ingestion/source/sql/sql_report.py,sha256=gw-OPHSExp_b6DRjvwqE1U6BpkwekxGrsvNMGYSGDio,2671
466
- datahub/ingestion/source/sql/sql_types.py,sha256=lrJpavRTE7aDVAKOrKZcrp4CsKydiiaza1wt2ieqWzs,15041
467
- datahub/ingestion/source/sql/sql_utils.py,sha256=w9YFNm_qJNjOcWAWBI_lUoFMbd0wT8q0LoT7Ia71tIE,8100
466
+ datahub/ingestion/source/sql/sql_types.py,sha256=vuivhVDO27Hu_05Q1aYzsCuyCYXmdprW3gLt-fP_Yyk,15045
467
+ datahub/ingestion/source/sql/sql_utils.py,sha256=q-Bsk6WxlsRtrw9RXBxvqI3zuaMTC_F25T2VrCziR9I,8418
468
468
  datahub/ingestion/source/sql/sqlalchemy_data_reader.py,sha256=FvHZ4JEK3aR2DYOBZiT_ZsAy12RjTu4t_KIR_92B11k,2644
469
469
  datahub/ingestion/source/sql/sqlalchemy_uri_mapper.py,sha256=KOpbmDIE2h1hyYEsbVHJi2B7FlsyUMTXZx4diyzltQg,1826
470
470
  datahub/ingestion/source/sql/teradata.py,sha256=M2txTIttQPXDrQfBwFfhPGqwWCZb2ei2yjxxtSodP1w,32499
@@ -491,7 +491,7 @@ datahub/ingestion/source/state_provider/datahub_ingestion_checkpointing_provider
491
491
  datahub/ingestion/source/state_provider/file_ingestion_checkpointing_provider.py,sha256=xsH7Ao_05VTjqpkzLkhdf5B1ULMzFoD8vkJJIJU9w-U,4077
492
492
  datahub/ingestion/source/state_provider/state_provider_registry.py,sha256=SVq4mIyGNmLXE9OZx1taOiNPqDoQp03-Ot9rYnB5F3k,401
493
493
  datahub/ingestion/source/tableau/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
494
- datahub/ingestion/source/tableau/tableau.py,sha256=4j951dqCO68ywujGXc3yY5va08eCVfgIqJQiZFQ7I6Q,145895
494
+ datahub/ingestion/source/tableau/tableau.py,sha256=MVqu7X7TOhVOyfRlYFSx9_ZqlcXuhKGzy7q2VibMx7w,145707
495
495
  datahub/ingestion/source/tableau/tableau_common.py,sha256=a3Nu0Upy6_pnrd7XpSMcYHdnYca1JBW7H0jMqkYr0ME,26871
496
496
  datahub/ingestion/source/tableau/tableau_constant.py,sha256=ZcAeHsQUXVVL26ORly0ByZk_GJAFbxaKuJAlX_sYMac,2686
497
497
  datahub/ingestion/source/tableau/tableau_server_wrapper.py,sha256=nSyx9RzC6TCQDm-cTVJ657qT8iDwzk_8JMKpohhmOc4,1046
@@ -566,12 +566,12 @@ datahub/lite/lite_registry.py,sha256=bpH0kasP-LtwwUFNA2QsOIehfekAYfJtN-AkQLmSWnw
566
566
  datahub/lite/lite_server.py,sha256=p9Oa2nNs65mqcssSIVOr7VOzWqfVstz6ZQEdT4f82S0,1949
567
567
  datahub/lite/lite_util.py,sha256=pgBpT3vTO1YCQ2njZRNyicSkHYeEmQCt41BaXU8WvMo,4503
568
568
  datahub/metadata/__init__.py,sha256=AjhXPjI6cnpdcrBRrE5gOWo15vv2TTl2ctU4UAnUN7A,238
569
- datahub/metadata/_schema_classes.py,sha256=gWKn2rcsptEOQn4wWc7rZyeyXvDf4v7Q2UbIr9oU6Cg,964662
570
- datahub/metadata/schema.avsc,sha256=CeVb_Z7k0e5kmeqDUXUW7JDL6KSKBCdfAZzqRI_mLZo,729869
569
+ datahub/metadata/_schema_classes.py,sha256=yqNgYrOGdIQ5XsTPo1XEFCjWDsThT3Qjl4IRUTSCYh0,975069
570
+ datahub/metadata/schema.avsc,sha256=US1MViEE4IunE2Q9zFmDsj1YZm8FwqUI5tNqp68UBUk,735960
571
571
  datahub/metadata/schema_classes.py,sha256=X5Jl5EaSxyHdXOQv14pJ5WkQALun4MRpJ4q12wVFE18,1299
572
572
  datahub/metadata/urns.py,sha256=nfrCTExR-k2P9w272WVtWSN3xW1VUJngPwP3xnvULjU,1217
573
573
  datahub/metadata/_urns/__init__.py,sha256=cOF3GHMDgPhmbLKbN02NPpuLGHSu0qNgQyBRv08eqF0,243
574
- datahub/metadata/_urns/urn_defs.py,sha256=UNmGpVCcFB9_mXuSA4V3xwD_WtHaJ8WHjLTtdP7ojoQ,107852
574
+ datahub/metadata/_urns/urn_defs.py,sha256=7wLzbGE-UnPZiJlCm8RcU3hROhHJ3QtwxJLGFLLjJlw,109984
575
575
  datahub/metadata/com/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
576
576
  datahub/metadata/com/linkedin/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
577
577
  datahub/metadata/com/linkedin/events/__init__.py,sha256=s_dR0plZF-rOxxIbE8ojekJqwiHzl2WYR-Z3kW6kKS0,298
@@ -581,7 +581,7 @@ datahub/metadata/com/linkedin/pegasus2avro/access/token/__init__.py,sha256=P9M7N
581
581
  datahub/metadata/com/linkedin/pegasus2avro/assertion/__init__.py,sha256=PgK5O-6pVRaEcvmwXAsSkwRLe8NjGiLH8AVBXeArqK8,5751
582
582
  datahub/metadata/com/linkedin/pegasus2avro/businessattribute/__init__.py,sha256=N8kO-eUi0_Rt7weizIExxlnJ2_kZRtPrZLWCC1xtDMA,653
583
583
  datahub/metadata/com/linkedin/pegasus2avro/chart/__init__.py,sha256=RNyyHLBNp_fxgFcBOLWO2UsXR1ofD_JczcBdPEQSusg,848
584
- datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py,sha256=ukX0VnveTrMx9G6uDaTkuk4Z2kxXr2hUK8srZuRPxj0,5520
584
+ datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py,sha256=x3AG1BxTAQijzsm_eKaP0P9VFraUT32d0glfvbQBrVI,5618
585
585
  datahub/metadata/com/linkedin/pegasus2avro/common/fieldtransformer/__init__.py,sha256=FN63vLiB3FCmIRqBjTA-0Xt7M6i7h5NhaVzbA1ysv18,396
586
586
  datahub/metadata/com/linkedin/pegasus2avro/connection/__init__.py,sha256=qRtw-dB14pzVzgQ0pDK8kyBplNdpRxVKNj4D70e_FqI,564
587
587
  datahub/metadata/com/linkedin/pegasus2avro/container/__init__.py,sha256=3yWt36KqDKFhRc9pzvt0AMnbMTlhKurGvT3BUvc25QU,510
@@ -609,7 +609,7 @@ datahub/metadata/com/linkedin/pegasus2avro/identity/__init__.py,sha256=1U583fdMT
609
609
  datahub/metadata/com/linkedin/pegasus2avro/incident/__init__.py,sha256=HEnbvzkz1KpPcomySyJFkuHfSUjH2d2mHQXhXU5uY7Q,735
610
610
  datahub/metadata/com/linkedin/pegasus2avro/ingestion/__init__.py,sha256=1bfG2naq4iS_pwU4J-BVer_gfL0hDbJbnH0gh1MPNgA,871
611
611
  datahub/metadata/com/linkedin/pegasus2avro/metadata/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
612
- datahub/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py,sha256=YyYTzE1s5lLvNYIozaZNQDBCaE5L1Ygre-9TwghUI_o,4725
612
+ datahub/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py,sha256=kooj_lICFtq7GjWmYFtQOGuXYy9u4QomKrhTTVKFnDg,4812
613
613
  datahub/metadata/com/linkedin/pegasus2avro/metadata/query/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
614
614
  datahub/metadata/com/linkedin/pegasus2avro/metadata/query/filter/__init__.py,sha256=DBP_QtxkFmC5q_kuk4dGjb4uOKbB4xKgqTWXGxmNbBQ,532
615
615
  datahub/metadata/com/linkedin/pegasus2avro/metadata/snapshot/__init__.py,sha256=OPboF8SV11wGnjvWQB-rxtB0otMdCsE7Tcy7xkOUgz8,2358
@@ -641,6 +641,7 @@ datahub/metadata/com/linkedin/pegasus2avro/test/__init__.py,sha256=Z4DlDtf-NELFp
641
641
  datahub/metadata/com/linkedin/pegasus2avro/timeseries/__init__.py,sha256=6Pbit2drar8n99RFNQiXfYj7PhIzrO1SIpsGELZR4oA,637
642
642
  datahub/metadata/com/linkedin/pegasus2avro/upgrade/__init__.py,sha256=o3U2TuzRSU1uPL-4AOMCPDqEwngqRb6g4-CBFY7eSvQ,525
643
643
  datahub/metadata/com/linkedin/pegasus2avro/usage/__init__.py,sha256=vhCBrCM6hTXcl_U_OIexO9vdK8OKrGImAmi9BxTDNeY,602
644
+ datahub/metadata/com/linkedin/pegasus2avro/versionset/__init__.py,sha256=TJ9PXc6rctPWNTY1yYW5lwIh91jD5EDoKex2WYxOLXM,406
644
645
  datahub/metadata/com/linkedin/pegasus2avro/view/__init__.py,sha256=-Le-jOqUJKv3ppwMhJHFFV3WwKTKjj1ETTkl9r7fY0o,498
645
646
  datahub/metadata/schemas/Access.avsc,sha256=gdEfWJLkvjIz-jzlceK4Dl5pBDdCHG423Ba_EYGQgUk,1562
646
647
  datahub/metadata/schemas/Actors.avsc,sha256=M76L2_Dlp7VyhVtu9__jhnh8rBNvNobtNJUfvl7bcPE,1188
@@ -727,7 +728,7 @@ datahub/metadata/schemas/DataTypeKey.avsc,sha256=Gs5uc_azwg10e36ZbwDTFQMevr0IfiF
727
728
  datahub/metadata/schemas/DatahubIngestionCheckpoint.avsc,sha256=m2Zyrx3ZWDc5gHuwbmBSRJ3JN4NFkpUhDEKM2Yeuqrw,5681
728
729
  datahub/metadata/schemas/DatahubIngestionRunSummary.avsc,sha256=_Ek7NqfJVTLqlM0NR9BRA57N9_ejwDdQvz7B1tVxSEE,9367
729
730
  datahub/metadata/schemas/DatasetDeprecation.avsc,sha256=ucXxaDcAUib9_y0k5qOINMn5VK2X3trHK2dcpNcsR2Q,1256
730
- datahub/metadata/schemas/DatasetKey.avsc,sha256=BsAKX-hHKOWKFQQoZLn2HhCHjcIJ_zGBlhRpH8e7Igo,3136
731
+ datahub/metadata/schemas/DatasetKey.avsc,sha256=ACxwY5rfK695wdd7Z2rlCs15TSPW7GeG79dB30z9H9g,3163
731
732
  datahub/metadata/schemas/DatasetProfile.avsc,sha256=3ZCU9JD6l2razACp0AY6LLMgnkMTj6D_5Xk9np6WWRM,9965
732
733
  datahub/metadata/schemas/DatasetProperties.avsc,sha256=DFJn75feqaoQk84zin_o_lqsFFhqkwya5LGC5LLJXbU,4209
733
734
  datahub/metadata/schemas/DatasetUpstreamLineage.avsc,sha256=PjAWPbsqwH7FjX2kFDy0dE6ENYOwRynH9vJerWisr2A,5365
@@ -788,22 +789,22 @@ datahub/metadata/schemas/IntendedUse.avsc,sha256=IKZSWdvc0uAyyT-FtdQOGbMC-P7RS9c
788
789
  datahub/metadata/schemas/InviteToken.avsc,sha256=8k_9MxHu9GVf7gvS0SlnQu7tJfpbXsRFdz6lQrFKPNc,737
789
790
  datahub/metadata/schemas/InviteTokenKey.avsc,sha256=MuQUlQaeVjaBkjSshB9gsx5Fm0civYgWD8UhCiRLdOQ,434
790
791
  datahub/metadata/schemas/MLFeatureKey.avsc,sha256=sm4S8_G_YGwllESFk4LFwGS11MWrr84gkV9R68gQhzw,1110
791
- datahub/metadata/schemas/MLFeatureProperties.avsc,sha256=hxp0aqIP9aHpdgC1xXY53Upi-QJVAYHKWKGOrS1p6lA,4617
792
+ datahub/metadata/schemas/MLFeatureProperties.avsc,sha256=HpF7VcnH2FvDsqy2g5AMJPqU7upkTVADW1ps-9bjINo,6893
792
793
  datahub/metadata/schemas/MLFeatureTableKey.avsc,sha256=VUG2pxBfyMJNf8J_yCyQVBGh9gpxsUN_8jXVPYadAus,1384
793
794
  datahub/metadata/schemas/MLFeatureTableProperties.avsc,sha256=BtrqcsxoQXObPZXSGRNYtIBJCoeHkMK_Zr_imBWF2Zk,2008
794
795
  datahub/metadata/schemas/MLHyperParam.avsc,sha256=dE6i5r6LTYMNrQe9yy-jKoP09GOJUf__1bO69ldpydc,833
795
796
  datahub/metadata/schemas/MLMetric.avsc,sha256=y8WPVVwjhu3YGtqpFFJYNYK8w778RRL_d2sHG1Dc7uM,804
796
797
  datahub/metadata/schemas/MLModelDeploymentKey.avsc,sha256=gmXaUYxII8BVLnXOFdlPmyhD1rUhrw455R_hL77foSU,2406
797
- datahub/metadata/schemas/MLModelDeploymentProperties.avsc,sha256=88nJ4uEBeT6kGrZnhYnZF4Co8rq2SBjqszQ-owtskQ4,3133
798
+ datahub/metadata/schemas/MLModelDeploymentProperties.avsc,sha256=I3v-uNOeYxO4hooPHOjafWWHuVyeGvG90oma0tzpNFg,5409
798
799
  datahub/metadata/schemas/MLModelFactorPrompts.avsc,sha256=8kX-P4F4mVLFT980z3MwIautt1_6uA-c_Z87nYNDK-k,2712
799
800
  datahub/metadata/schemas/MLModelGroupKey.avsc,sha256=eb4qdIdQLvvQ7u1e_FHIHTkWrvIwYQji0yKoGrxCiWI,2460
800
- datahub/metadata/schemas/MLModelGroupProperties.avsc,sha256=r4ZeqDnn1wfpT6zdg8_rT8uciJWO6nMZO4kXZFALksE,3590
801
- datahub/metadata/schemas/MLModelKey.avsc,sha256=deK5u7b9S9-qYUNtlflj2OUxqS_PlUYWN_NYRzZiVtI,2802
802
- datahub/metadata/schemas/MLModelProperties.avsc,sha256=FwhPz9P0k61LYFJLLUObFzKe24iAnsMyAPLbQCvqL7g,10079
801
+ datahub/metadata/schemas/MLModelGroupProperties.avsc,sha256=zMl6ab6zfcYJmt31f-AUrrfeqfLoaSZQpfB3_S9JFFQ,6534
802
+ datahub/metadata/schemas/MLModelKey.avsc,sha256=NeUHF1dNWpBc4422fp3YDqHCaDIlggQWuTD1PSfCMCM,2829
803
+ datahub/metadata/schemas/MLModelProperties.avsc,sha256=hDCBHxGe-cmCBeU1k0ANuQlKjtZsDcTfl2X_jWmtFqo,12355
803
804
  datahub/metadata/schemas/MLPrimaryKeyKey.avsc,sha256=mX4CQcoN3FC_VQDBCkhlmJk4pfQKDrSeuqqCTTXTmq8,1092
804
- datahub/metadata/schemas/MLPrimaryKeyProperties.avsc,sha256=akhjegh2q_4pm4_C2mP0rWpCGVqmJ8Ta6X8lqNtbVbg,4468
805
+ datahub/metadata/schemas/MLPrimaryKeyProperties.avsc,sha256=URIuOpS93RVk8MZVcbZ-dmTwu_cN3KSOKxSR8fm-eTo,6744
805
806
  datahub/metadata/schemas/MLTrainingRunProperties.avsc,sha256=WGgj0MuQrGD4UgvyHCJHzTnHja2LlJTOr1gLu8SySj0,4269
806
- datahub/metadata/schemas/MetadataChangeEvent.avsc,sha256=2cR4D52wiIrEtWUfJIINhuTSan1495Q8lznVk72lty8,371387
807
+ datahub/metadata/schemas/MetadataChangeEvent.avsc,sha256=mk-ggA71SFW1H_BdzaLXMgH01wVzImCNPviGiH_v94Y,372781
807
808
  datahub/metadata/schemas/MetadataChangeLog.avsc,sha256=mpdodpx25E6M1Gq_7slEcPAm-1Es5xPsoqV60HgO7zg,12167
808
809
  datahub/metadata/schemas/MetadataChangeProposal.avsc,sha256=EMfQrYsuHf1p6UvBjoLtfdTHGe-vGNJaCFEHz8hdKU0,9698
809
810
  datahub/metadata/schemas/Metrics.avsc,sha256=O7DJGjOwmHbb1x_Zj7AuM_HaHKjBvkfJKfUsX8icXD4,690
@@ -853,6 +854,9 @@ datahub/metadata/schemas/TrainingData.avsc,sha256=7p7sFBA_UyV5IbNU5qLgS3vVu70yev
853
854
  datahub/metadata/schemas/UpstreamLineage.avsc,sha256=iaeFRbL2aVSYFwj-HQHyfIVaHRrK3kLbkkLXgIfJTsk,10639
854
855
  datahub/metadata/schemas/UsageAggregation.avsc,sha256=QaF6lyWGUq8IlRel2h4qIXOXCMxBhrwjoaUELsd-I6g,4538
855
856
  datahub/metadata/schemas/VersionInfo.avsc,sha256=9gMcZ8tjuhgcZiq2gOAp_EOV9q9jvuOgfph6m6v_X7c,1189
857
+ datahub/metadata/schemas/VersionProperties.avsc,sha256=knGNZxD_tOdnzFXqtrUy_JyXue3uJS9JqsxYy7CLKG4,7328
858
+ datahub/metadata/schemas/VersionSetKey.avsc,sha256=psjGNNcFua3Zs9Xlh4HnUHNmBEU74uYdJR5g20NhRJU,659
859
+ datahub/metadata/schemas/VersionSetProperties.avsc,sha256=yrhhVNioD11nFlDO7IfUbxAQjhA9Tr-4wnAYH5I9W74,1172
856
860
  datahub/metadata/schemas/ViewProperties.avsc,sha256=3HhcbH5493dJUnEUtFMYMVfbYQ52aDedm5L4j77Nym4,1032
857
861
  datahub/metadata/schemas/__init__.py,sha256=uvLNC3VyCkWA_v8e9FdA1leFf46NFKDD0AajCfihepI,581
858
862
  datahub/secret/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -986,8 +990,8 @@ datahub_provider/operators/datahub_assertion_operator.py,sha256=uvTQ-jk2F0sbqqxp
986
990
  datahub_provider/operators/datahub_assertion_sensor.py,sha256=lCBj_3x1cf5GMNpHdfkpHuyHfVxsm6ff5x2Z5iizcAo,140
987
991
  datahub_provider/operators/datahub_operation_operator.py,sha256=aevDp2FzX7FxGlXrR0khoHNbxbhKR2qPEX5e8O2Jyzw,174
988
992
  datahub_provider/operators/datahub_operation_sensor.py,sha256=8fcdVBCEPgqy1etTXgLoiHoJrRt_nzFZQMdSzHqSG7M,168
989
- acryl_datahub-0.15.0.2rc4.dist-info/METADATA,sha256=27j9HorUgTZCHO9ZGywLNkPIBkNDl5RHU6xVV_v5fpI,173662
990
- acryl_datahub-0.15.0.2rc4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
991
- acryl_datahub-0.15.0.2rc4.dist-info/entry_points.txt,sha256=xnPSPLK3bJGADxe4TDS4wL4u0FT_PGlahDa-ENYdYCQ,9512
992
- acryl_datahub-0.15.0.2rc4.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
993
- acryl_datahub-0.15.0.2rc4.dist-info/RECORD,,
993
+ acryl_datahub-0.15.0.2rc6.dist-info/METADATA,sha256=FVQAozQ0fqRIJ7tEhjR6fc0rsuJXRUoyABPabW540vM,173662
994
+ acryl_datahub-0.15.0.2rc6.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
995
+ acryl_datahub-0.15.0.2rc6.dist-info/entry_points.txt,sha256=xnPSPLK3bJGADxe4TDS4wL4u0FT_PGlahDa-ENYdYCQ,9512
996
+ acryl_datahub-0.15.0.2rc6.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
997
+ acryl_datahub-0.15.0.2rc6.dist-info/RECORD,,
datahub/__init__.py CHANGED
@@ -3,7 +3,7 @@ import warnings
3
3
 
4
4
  # Published at https://pypi.org/project/acryl-datahub/.
5
5
  __package_name__ = "acryl-datahub"
6
- __version__ = "0.15.0.2rc4"
6
+ __version__ = "0.15.0.2rc6"
7
7
 
8
8
 
9
9
  def is_dev_mode() -> bool:
datahub/cli/delete_cli.py CHANGED
@@ -1,8 +1,8 @@
1
1
  import logging
2
+ import random
2
3
  from concurrent.futures import ThreadPoolExecutor, as_completed
3
4
  from dataclasses import dataclass
4
5
  from datetime import datetime
5
- from random import choices
6
6
  from typing import Dict, List, Optional
7
7
 
8
8
  import click
@@ -457,11 +457,11 @@ def by_filter(
457
457
  click.echo("Found urns of multiple entity types")
458
458
  for entity_type, entity_urns in urns_by_type.items():
459
459
  click.echo(
460
- f"- {len(entity_urns)} {entity_type} urn(s). Sample: {choices(entity_urns, k=min(5, len(entity_urns)))}"
460
+ f"- {len(entity_urns)} {entity_type} urn(s). Sample: {random.sample(entity_urns, k=min(5, len(entity_urns)))}"
461
461
  )
462
462
  else:
463
463
  click.echo(
464
- f"Found {len(urns)} {entity_type} urn(s). Sample: {choices(urns, k=min(5, len(urns)))}"
464
+ f"Found {len(urns)} {entity_type} urn(s). Sample: {random.sample(urns, k=min(5, len(urns)))}"
465
465
  )
466
466
 
467
467
  if not force and not dry_run:
datahub/cli/migrate.py CHANGED
@@ -179,7 +179,7 @@ def dataplatform2instance_func(
179
179
 
180
180
  if not force and not dry_run:
181
181
  # get a confirmation from the operator before proceeding if this is not a dry run
182
- sampled_urns_to_migrate = random.choices(
182
+ sampled_urns_to_migrate = random.sample(
183
183
  urns_to_migrate, k=min(10, len(urns_to_migrate))
184
184
  )
185
185
  sampled_new_urns: List[str] = [
@@ -193,7 +193,7 @@ def dataplatform2instance_func(
193
193
  if key
194
194
  ]
195
195
  click.echo(
196
- f"Will migrate {len(urns_to_migrate)} urns such as {random.choices(urns_to_migrate, k=min(10, len(urns_to_migrate)))}"
196
+ f"Will migrate {len(urns_to_migrate)} urns such as {random.sample(urns_to_migrate, k=min(10, len(urns_to_migrate)))}"
197
197
  )
198
198
  click.echo(f"New urns will look like {sampled_new_urns}")
199
199
  click.confirm("Ok to proceed?", abort=True)
@@ -31,9 +31,12 @@ from datahub.metadata.schema_classes import (
31
31
  OwnershipClass,
32
32
  OwnershipTypeClass,
33
33
  StatusClass,
34
+ StructuredPropertiesClass,
35
+ StructuredPropertyValueAssignmentClass,
34
36
  SubTypesClass,
35
37
  TagAssociationClass,
36
38
  )
39
+ from datahub.metadata.urns import StructuredPropertyUrn
37
40
 
38
41
  # In https://github.com/datahub-project/datahub/pull/11214, we added a
39
42
  # new env field to container properties. However, populating this field
@@ -187,12 +190,31 @@ def add_tags_to_entity_wu(
187
190
  ).as_workunit()
188
191
 
189
192
 
193
+ def add_structured_properties_to_entity_wu(
194
+ entity_urn: str, structured_properties: Dict[StructuredPropertyUrn, str]
195
+ ) -> Iterable[MetadataWorkUnit]:
196
+ aspect = StructuredPropertiesClass(
197
+ properties=[
198
+ StructuredPropertyValueAssignmentClass(
199
+ propertyUrn=urn.urn(),
200
+ values=[value],
201
+ )
202
+ for urn, value in structured_properties.items()
203
+ ]
204
+ )
205
+ yield MetadataChangeProposalWrapper(
206
+ entityUrn=entity_urn,
207
+ aspect=aspect,
208
+ ).as_workunit()
209
+
210
+
190
211
  def gen_containers(
191
212
  container_key: KeyType,
192
213
  name: str,
193
214
  sub_types: List[str],
194
215
  parent_container_key: Optional[ContainerKey] = None,
195
216
  extra_properties: Optional[Dict[str, str]] = None,
217
+ structured_properties: Optional[Dict[StructuredPropertyUrn, str]] = None,
196
218
  domain_urn: Optional[str] = None,
197
219
  description: Optional[str] = None,
198
220
  owner_urn: Optional[str] = None,
@@ -282,6 +304,11 @@ def gen_containers(
282
304
  tags=sorted(tags),
283
305
  )
284
306
 
307
+ if structured_properties:
308
+ yield from add_structured_properties_to_entity_wu(
309
+ entity_urn=container_urn, structured_properties=structured_properties
310
+ )
311
+
285
312
 
286
313
  def add_dataset_to_container(
287
314
  container_key: KeyType, dataset_urn: str
@@ -374,7 +374,7 @@ class DataHubRestEmitter(Closeable, Emitter):
374
374
  # the size when chunking, and again for the actual request.
375
375
  payload_dict: dict = {"proposals": mcp_obj_chunk}
376
376
  if async_flag is not None:
377
- payload_dict["async"] = True if async_flag else False
377
+ payload_dict["async"] = "true" if async_flag else "false"
378
378
 
379
379
  payload = json.dumps(payload_dict)
380
380
  self._emit_generic(url, payload)
@@ -23,7 +23,7 @@ from typing import (
23
23
  )
24
24
 
25
25
  from pydantic import BaseModel
26
- from typing_extensions import LiteralString
26
+ from typing_extensions import LiteralString, Self
27
27
 
28
28
  from datahub.configuration.common import ConfigModel
29
29
  from datahub.configuration.source_common import PlatformInstanceConfigMixin
@@ -400,7 +400,7 @@ class Source(Closeable, metaclass=ABCMeta):
400
400
  ctx: PipelineContext
401
401
 
402
402
  @classmethod
403
- def create(cls, config_dict: dict, ctx: PipelineContext) -> "Source":
403
+ def create(cls, config_dict: dict, ctx: PipelineContext) -> Self:
404
404
  # Technically, this method should be abstract. However, the @config_class
405
405
  # decorator automatically generates a create method at runtime if one is
406
406
  # not defined. Python still treats the class as abstract because it thinks
@@ -122,11 +122,6 @@ class DeltaLakeSource(Source):
122
122
  config_report,
123
123
  )
124
124
 
125
- @classmethod
126
- def create(cls, config_dict: dict, ctx: PipelineContext) -> "Source":
127
- config = DeltaLakeSourceConfig.parse_obj(config_dict)
128
- return cls(config, ctx)
129
-
130
125
  def _parse_datatype(self, raw_field_json_str: str) -> List[SchemaFieldClass]:
131
126
  raw_field_json = json.loads(raw_field_json_str)
132
127
 
@@ -29,7 +29,7 @@ class DemoDataSource(Source):
29
29
 
30
30
  def __init__(self, ctx: PipelineContext, config: DemoDataConfig):
31
31
  file_config = FileSourceConfig(path=str(download_sample_data()))
32
- self.file_source = GenericFileSource(ctx, file_config)
32
+ self.file_source: GenericFileSource = GenericFileSource(ctx, file_config)
33
33
 
34
34
  def get_workunits(self) -> Iterable[MetadataWorkUnit]:
35
35
  yield from self.file_source.get_workunits()
@@ -16,7 +16,7 @@ from datahub.ingestion.api.decorators import (
16
16
  platform_name,
17
17
  support_status,
18
18
  )
19
- from datahub.ingestion.api.source import MetadataWorkUnitProcessor, Source, SourceReport
19
+ from datahub.ingestion.api.source import MetadataWorkUnitProcessor, SourceReport
20
20
  from datahub.ingestion.api.workunit import MetadataWorkUnit
21
21
  from datahub.ingestion.source.fivetran.config import (
22
22
  KNOWN_DATA_PLATFORM_MAPPING,
@@ -291,11 +291,6 @@ class FivetranSource(StatefulIngestionSourceBase):
291
291
  dpi = self._generate_dpi_from_job(job, datajob)
292
292
  yield from self._get_dpi_workunits(job, dpi)
293
293
 
294
- @classmethod
295
- def create(cls, config_dict: dict, ctx: PipelineContext) -> Source:
296
- config = FivetranSourceConfig.parse_obj(config_dict)
297
- return cls(config, ctx)
298
-
299
294
  def get_workunit_processors(self) -> List[Optional[MetadataWorkUnitProcessor]]:
300
295
  return [
301
296
  *super().get_workunit_processors(),
@@ -99,7 +99,7 @@ class SoftDeletedEntitiesCleanupConfig(ConfigModel):
99
99
 
100
100
  @dataclass
101
101
  class SoftDeletedEntitiesReport(SourceReport):
102
- num_queries_found: int = 0
102
+ num_entities_found: Dict[str, int] = field(default_factory=dict)
103
103
  num_soft_deleted_entity_processed: int = 0
104
104
  num_soft_deleted_retained_due_to_age: int = 0
105
105
  num_soft_deleted_entity_removal_started: int = 0
@@ -277,7 +277,11 @@ class SoftDeletedEntitiesCleanup:
277
277
  # We make the batch size = config after call has succeeded once
278
278
  batch_size = self.config.batch_size
279
279
  scroll_id = scroll_across_entities.get("nextScrollId")
280
- self.report.num_queries_found += scroll_across_entities.get("count")
280
+ if entity_type not in self.report.num_entities_found:
281
+ self.report.num_entities_found[entity_type] = 0
282
+ self.report.num_entities_found[entity_type] += scroll_across_entities.get(
283
+ "count"
284
+ )
281
285
  for query in scroll_across_entities.get("searchResults"):
282
286
  yield query["entity"]["urn"]
283
287
 
@@ -203,7 +203,9 @@ class IcebergSource(StatefulIngestionSourceBase):
203
203
  with PerfTimer() as timer:
204
204
  table = thread_local.local_catalog.load_table(dataset_path)
205
205
  time_taken = timer.elapsed_seconds()
206
- self.report.report_table_load_time(time_taken)
206
+ self.report.report_table_load_time(
207
+ time_taken, dataset_name, table.metadata_location
208
+ )
207
209
  LOGGER.debug(f"Loaded table: {table.name()}, time taken: {time_taken}")
208
210
  yield from self._create_iceberg_workunit(dataset_name, table)
209
211
  except NoSuchPropertyException as e:
@@ -247,7 +249,10 @@ class IcebergSource(StatefulIngestionSourceBase):
247
249
  f"Iceberg Rest Catalog server error (500 status) encountered when processing table {dataset_path}, skipping it."
248
250
  )
249
251
  except Exception as e:
250
- self.report.report_failure("general", f"Failed to create workunit: {e}")
252
+ self.report.report_failure(
253
+ "general",
254
+ f"Failed to create workunit for dataset {dataset_name}: {e}",
255
+ )
251
256
  LOGGER.exception(
252
257
  f"Exception while processing table {dataset_path}, skipping it.",
253
258
  )
@@ -312,7 +317,9 @@ class IcebergSource(StatefulIngestionSourceBase):
312
317
  dataset_snapshot.aspects.append(schema_metadata)
313
318
 
314
319
  mce = MetadataChangeEvent(proposedSnapshot=dataset_snapshot)
315
- self.report.report_table_processing_time(timer.elapsed_seconds())
320
+ self.report.report_table_processing_time(
321
+ timer.elapsed_seconds(), dataset_name, table.metadata_location
322
+ )
316
323
  yield MetadataWorkUnit(id=dataset_name, mce=mce)
317
324
 
318
325
  dpi_aspect = self._get_dataplatform_instance_aspect(dataset_urn=dataset_urn)