acryl-datahub 0.15.0.2rc4__py3-none-any.whl → 0.15.0.2rc5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of acryl-datahub might be problematic. Click here for more details.
- {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc5.dist-info}/METADATA +2578 -2578
- {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc5.dist-info}/RECORD +49 -45
- datahub/__init__.py +1 -1
- datahub/cli/delete_cli.py +3 -3
- datahub/cli/migrate.py +2 -2
- datahub/emitter/mcp_builder.py +27 -0
- datahub/emitter/rest_emitter.py +1 -1
- datahub/ingestion/api/source.py +2 -2
- datahub/ingestion/source/delta_lake/source.py +0 -5
- datahub/ingestion/source/demo_data.py +1 -1
- datahub/ingestion/source/fivetran/fivetran.py +1 -6
- datahub/ingestion/source/iceberg/iceberg.py +10 -3
- datahub/ingestion/source/iceberg/iceberg_common.py +49 -9
- datahub/ingestion/source/iceberg/iceberg_profiler.py +3 -1
- datahub/ingestion/source/kafka_connect/kafka_connect.py +1 -6
- datahub/ingestion/source/metabase.py +1 -6
- datahub/ingestion/source/mlflow.py +0 -5
- datahub/ingestion/source/nifi.py +0 -5
- datahub/ingestion/source/redash.py +0 -5
- datahub/ingestion/source/redshift/redshift.py +1 -0
- datahub/ingestion/source/snowflake/snowflake_config.py +13 -0
- datahub/ingestion/source/snowflake/snowflake_schema.py +5 -2
- datahub/ingestion/source/snowflake/snowflake_schema_gen.py +112 -20
- datahub/ingestion/source/snowflake/snowflake_tag.py +14 -4
- datahub/ingestion/source/snowflake/snowflake_v2.py +0 -6
- datahub/ingestion/source/sql/sql_types.py +1 -1
- datahub/ingestion/source/sql/sql_utils.py +5 -0
- datahub/ingestion/source/superset.py +1 -6
- datahub/ingestion/source/tableau/tableau.py +0 -6
- datahub/metadata/_schema_classes.py +314 -41
- datahub/metadata/_urns/urn_defs.py +54 -0
- datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py +2 -0
- datahub/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py +2 -0
- datahub/metadata/com/linkedin/pegasus2avro/versionset/__init__.py +17 -0
- datahub/metadata/schema.avsc +296 -87
- datahub/metadata/schemas/DatasetKey.avsc +2 -1
- datahub/metadata/schemas/MLFeatureProperties.avsc +51 -0
- datahub/metadata/schemas/MLModelDeploymentProperties.avsc +51 -0
- datahub/metadata/schemas/MLModelGroupProperties.avsc +96 -23
- datahub/metadata/schemas/MLModelKey.avsc +2 -1
- datahub/metadata/schemas/MLModelProperties.avsc +96 -48
- datahub/metadata/schemas/MLPrimaryKeyProperties.avsc +51 -0
- datahub/metadata/schemas/MetadataChangeEvent.avsc +98 -71
- datahub/metadata/schemas/VersionProperties.avsc +216 -0
- datahub/metadata/schemas/VersionSetKey.avsc +26 -0
- datahub/metadata/schemas/VersionSetProperties.avsc +49 -0
- {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc5.dist-info}/WHEEL +0 -0
- {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc5.dist-info}/entry_points.txt +0 -0
- {acryl_datahub-0.15.0.2rc4.dist-info → acryl_datahub-0.15.0.2rc5.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
datahub/__init__.py,sha256=
|
|
1
|
+
datahub/__init__.py,sha256=ytRckpG4lVjyN5pUIlOJTPXvNHOEyI-zqLb7oyer--A,576
|
|
2
2
|
datahub/__main__.py,sha256=pegIvQ9hzK7IhqVeUi1MeADSZ2QlP-D3K0OQdEg55RU,106
|
|
3
3
|
datahub/entrypoints.py,sha256=3-qSfXAx3Z0FEkBV5tlO8fQr4xk4ySeDRMVTpS5Xd6A,7793
|
|
4
4
|
datahub/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -61,7 +61,7 @@ datahub/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
|
61
61
|
datahub/cli/check_cli.py,sha256=9dXNyzZayHeoFjwFjLkMVyx6DiCZfeESyI-sYtGA6bE,12850
|
|
62
62
|
datahub/cli/cli_utils.py,sha256=d_Q9vPZTPxO7XyyghD-i1Nkr4DX0M8cs2IWrMUQAu0c,13539
|
|
63
63
|
datahub/cli/config_utils.py,sha256=yuXw7RzpRY5x_-MAoqWbv46qUkIeRNAJL4_OeJpYdBE,4879
|
|
64
|
-
datahub/cli/delete_cli.py,sha256=
|
|
64
|
+
datahub/cli/delete_cli.py,sha256=rJpyQhuRb_BnA1Fyot3Yu6-_x_3CoSsgjrpyJJCwEJY,23050
|
|
65
65
|
datahub/cli/docker_check.py,sha256=rED4wHXqxcQ_qNFyIgFEZ85BHT9ZTE5YC-oUKqbRqi0,9432
|
|
66
66
|
datahub/cli/docker_cli.py,sha256=QGoWFp8ZZsXOSMbgu0Q4snMmMmtP3epWAN-fYglUNEc,36491
|
|
67
67
|
datahub/cli/env_utils.py,sha256=RQzjg4JE29hjPt4v7p-RuqoOr99w8E3DBHWiN2Sm7T4,252
|
|
@@ -70,7 +70,7 @@ datahub/cli/get_cli.py,sha256=VV80BCXfZ0-C8fr2k43SIuN9DB-fOYP9StWsTHnXwFw,2327
|
|
|
70
70
|
datahub/cli/ingest_cli.py,sha256=nRoZvVpsGPXmEZCvSOBfsZ61Ep1fCqYRVp79RBnHSnI,22393
|
|
71
71
|
datahub/cli/json_file.py,sha256=nWo-VVthaaW4Do1eUqgrzk0fShb29MjiKXvZVOTq76c,943
|
|
72
72
|
datahub/cli/lite_cli.py,sha256=UmlMMquce6lHiPaKUBBT0XQtqR9SHEmrGlJyKV9YY60,13030
|
|
73
|
-
datahub/cli/migrate.py,sha256=
|
|
73
|
+
datahub/cli/migrate.py,sha256=1ngS-jT59v-a9AnfSB44mN0mBbzhGqIyteG142Ui77c,17937
|
|
74
74
|
datahub/cli/migration_utils.py,sha256=0qHo_9eSR4buyV_K_tdcHSLBufKphBWwwwT1iK_I4S8,9382
|
|
75
75
|
datahub/cli/put_cli.py,sha256=4ol9aLdidX1VXjVxMG2tkfEMPyjLpgOk2pfl0Gvb8iU,3841
|
|
76
76
|
datahub/cli/quickstart_versioning.py,sha256=MyWvw92s4b84wIEizjSUZjoMClwLbhpgMdHeDav-x2o,5713
|
|
@@ -116,10 +116,10 @@ datahub/emitter/generic_emitter.py,sha256=i37ZFm9VR_tmiZm9kIypEkQEB_cLKbzj_tJvVi
|
|
|
116
116
|
datahub/emitter/kafka_emitter.py,sha256=Uix1W1WaXF8VqUTUfzdRZKca2XrR1w50Anx2LVkROlc,5822
|
|
117
117
|
datahub/emitter/mce_builder.py,sha256=IqHOm0cpzdVC_mQOqk0yEVJUEj9xn8am2OFAwwQeX_8,16342
|
|
118
118
|
datahub/emitter/mcp.py,sha256=hAAYziDdkwjazQU0DtWMbQWY8wS09ACrKJbqxoWXdgc,9637
|
|
119
|
-
datahub/emitter/mcp_builder.py,sha256=
|
|
119
|
+
datahub/emitter/mcp_builder.py,sha256=AHSeMfcFxvJl2PXyDQ5HsnWbk6HkJqUtppNKjQtIbUI,10791
|
|
120
120
|
datahub/emitter/mcp_patch_builder.py,sha256=oonC8iGOvDzqj890CxOjWlBdDEF1RnwvbSZy1sivlTY,4572
|
|
121
121
|
datahub/emitter/request_helper.py,sha256=33ORG3S3OVy97_jlWBRn7yUM5XCIkRN6WSdJvN7Ofcg,670
|
|
122
|
-
datahub/emitter/rest_emitter.py,sha256=
|
|
122
|
+
datahub/emitter/rest_emitter.py,sha256=v-A4eR_GSbXg-dsUgHAMcUd68qNEF5KO2MYlyhAYn8I,17880
|
|
123
123
|
datahub/emitter/serialization_helper.py,sha256=q12Avmf70Vy4ttQGMJoTKlE5EsybMKNg2w3MQeZiHvk,3652
|
|
124
124
|
datahub/emitter/sql_parsing_builder.py,sha256=Cr5imZrm3dYDSCACt5MFscgHCtVbHTD6IjUmsvsKoEs,11991
|
|
125
125
|
datahub/emitter/synchronized_file_emitter.py,sha256=s4ATuxalI4GDAkrZTaGSegxBdvvNPZ9jRSdtElU0kNs,1805
|
|
@@ -138,7 +138,7 @@ datahub/ingestion/api/registry.py,sha256=LGElUdzhNQoEr-k2SN23mJaIYnA1PYfF97LQxBm
|
|
|
138
138
|
datahub/ingestion/api/report.py,sha256=zb5Y_9ogmWm00KqX7_64sIMT24Wfpk7txRwEfKacw5I,4652
|
|
139
139
|
datahub/ingestion/api/report_helpers.py,sha256=WbUC1kQeaKqIagGV3XzfPmPs7slAT1mfNY4og2BH2A8,994
|
|
140
140
|
datahub/ingestion/api/sink.py,sha256=3jw7-x9gXGreOPwn49wG5fT3C8pYhaNMQITdMN6kbag,4478
|
|
141
|
-
datahub/ingestion/api/source.py,sha256=
|
|
141
|
+
datahub/ingestion/api/source.py,sha256=yLx_7TCyhflo0hloYzC4y2ovh3TWEVcDh1agvh8AQwI,19036
|
|
142
142
|
datahub/ingestion/api/source_helpers.py,sha256=AVO0ogiCKgYmX1ubJaSs6L30TCCgOIalp6awXPF5XM0,19643
|
|
143
143
|
datahub/ingestion/api/transform.py,sha256=X0GpjMJzYkLuZx8MTWxH50cWGm9rGsnn3k188mmC8J8,582
|
|
144
144
|
datahub/ingestion/api/workunit.py,sha256=e8n8RfSjHZZm2R4ShNH0UuMtUkMjyqqM2j2t7oL74lo,6327
|
|
@@ -187,7 +187,7 @@ datahub/ingestion/sink/sink_registry.py,sha256=JRBWx8qEYg0ubSTyhqwgSWctgxwyp6fva
|
|
|
187
187
|
datahub/ingestion/source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
188
188
|
datahub/ingestion/source/confluent_schema_registry.py,sha256=_h9D8bUXoaGcwgwB94dX6aTyLY5ve7XGdcVFSJHGSJc,18804
|
|
189
189
|
datahub/ingestion/source/csv_enricher.py,sha256=AIxQFkmSzFgCa_Fzt2EiFMyojQMFKmnPt878WypSPa4,29491
|
|
190
|
-
datahub/ingestion/source/demo_data.py,sha256=
|
|
190
|
+
datahub/ingestion/source/demo_data.py,sha256=PbtCHlZx3wrKlOPPgkWhDQuPm7ZfIx2neXJUzbUi9YY,1305
|
|
191
191
|
datahub/ingestion/source/elastic_search.py,sha256=uT4I0GyqSiD16BURqsXWyPN9wNBc3wLomz1nG-OxHec,22634
|
|
192
192
|
datahub/ingestion/source/feast.py,sha256=uZpeUkJsiNlvZcUkARiEuZT_3n6sbGc0yFzwqhtnefA,18103
|
|
193
193
|
datahub/ingestion/source/file.py,sha256=pH-Qkjh5FQ2XvyYPE7Z8XEY4vUk_SUHxm8p8IxG12tU,15879
|
|
@@ -195,20 +195,20 @@ datahub/ingestion/source/ge_data_profiler.py,sha256=7-ciHphLU8O259OU2WMDfCDpoqvD
|
|
|
195
195
|
datahub/ingestion/source/ge_profiling_config.py,sha256=P-9pd20koFvpxeEL_pqFvKWWz-qnpZ6XkELUyBKr7is,10807
|
|
196
196
|
datahub/ingestion/source/glue_profiling_config.py,sha256=vpMJH4Lf_qgR32BZy58suabri1yV5geaAPjzg2eORDc,2559
|
|
197
197
|
datahub/ingestion/source/ldap.py,sha256=Vnzg8tpwBYeyM-KBVVsUJvGZGBMJiCJ_i_FhxaFRQ9A,18627
|
|
198
|
-
datahub/ingestion/source/metabase.py,sha256=
|
|
199
|
-
datahub/ingestion/source/mlflow.py,sha256
|
|
198
|
+
datahub/ingestion/source/metabase.py,sha256=m9Gfhrs8F1z23ci8CIxdE5cW--25stgxg_IQTKwkFrk,31532
|
|
199
|
+
datahub/ingestion/source/mlflow.py,sha256=IPG_l2HH9Ec8wxu0MYb3QaOPmw1kB1gcS3t4wf9bZLs,12134
|
|
200
200
|
datahub/ingestion/source/mode.py,sha256=cq1KIpLxuplETF7sUW0hoMQIZG1cgga5BGHP54a28wE,63467
|
|
201
201
|
datahub/ingestion/source/mongodb.py,sha256=vZue4Nz0xaBoCUsQr3_0OIRkWRxeE_IH_Y_QKZ1s7S0,21077
|
|
202
|
-
datahub/ingestion/source/nifi.py,sha256=
|
|
202
|
+
datahub/ingestion/source/nifi.py,sha256=ODXmZRxGq5V0R6PCYyy-_-dDWOb-cCkPzAVf-38-ACM,55965
|
|
203
203
|
datahub/ingestion/source/openapi.py,sha256=3ea2ORz1cuq4e7L2hSjxG9Cw3__pVoJ5UNYTJS3EnKU,17386
|
|
204
204
|
datahub/ingestion/source/openapi_parser.py,sha256=1_68wHWe_SzWYEyC1YVDw9vxoadKjW1yv8DecvyIhwY,13606
|
|
205
205
|
datahub/ingestion/source/preset.py,sha256=fByqamRLnXxsfCGdLPzWN_5LJR_s2_G2f_zwSKUc8EA,3981
|
|
206
206
|
datahub/ingestion/source/pulsar.py,sha256=7rTOEqYmeOuRZl5DG8d5OFkb4l9H6-1bETZfa-4DfmI,20163
|
|
207
|
-
datahub/ingestion/source/redash.py,sha256=
|
|
207
|
+
datahub/ingestion/source/redash.py,sha256=GH0MGV_huvKio9hMQ-jKdYIxYcHN6WnivrhWCw3I03E,29880
|
|
208
208
|
datahub/ingestion/source/salesforce.py,sha256=S6LSM6mzl8-zKbrJPoINhM1SCpYfM244Xb74pbEI-J0,31792
|
|
209
209
|
datahub/ingestion/source/source_registry.py,sha256=a2mLjJPLkSI-gYCTb_7U7Jo4D8jGknNQ_yScPIihXFk,1208
|
|
210
210
|
datahub/ingestion/source/sql_queries.py,sha256=Ip7UZub7fgMh7P5jL_zJPY7lSkc9GGTy8GJ8lqZrcsE,9502
|
|
211
|
-
datahub/ingestion/source/superset.py,sha256
|
|
211
|
+
datahub/ingestion/source/superset.py,sha256=-_90rfZtKG5vf5OSFS8lhqI-nGGtKPRwYYNAS_m1xmY,24592
|
|
212
212
|
datahub/ingestion/source/abs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
213
213
|
datahub/ingestion/source/abs/config.py,sha256=Doecl1mA6JshJTNar7oTVR7wnWl4gMu64MBHp3hIVJc,6737
|
|
214
214
|
datahub/ingestion/source/abs/datalake_profiler_config.py,sha256=qh38q-Zw8TUTZD5RF0_hSoEfR6BilNGXyKPRsq1KQKE,3600
|
|
@@ -281,7 +281,7 @@ datahub/ingestion/source/delta_lake/__init__.py,sha256=u5oqUeus81ONAtdl6o9Puw33O
|
|
|
281
281
|
datahub/ingestion/source/delta_lake/config.py,sha256=bVBwGjCPiXyjbCLQsamt4hAsKJMtMuxupKjwZEwtU78,3374
|
|
282
282
|
datahub/ingestion/source/delta_lake/delta_lake_utils.py,sha256=VqIDPEXepOnlk4oWMeRaneSpQBlWmlCKAa1wGUl1sfk,1525
|
|
283
283
|
datahub/ingestion/source/delta_lake/report.py,sha256=uqWWivPltlZ7dwpOOluTvHOKKsSusqihn67clCAwxoM,467
|
|
284
|
-
datahub/ingestion/source/delta_lake/source.py,sha256=
|
|
284
|
+
datahub/ingestion/source/delta_lake/source.py,sha256=5VyE_ZYrop4JCTVhoXLjRXb1MRfWbIj0lMMmvNxsb80,13362
|
|
285
285
|
datahub/ingestion/source/dremio/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
286
286
|
datahub/ingestion/source/dremio/dremio_api.py,sha256=am8o_mQq7zteI4zasnkRb9B9-_BFrchTIA_oJkqRagA,33470
|
|
287
287
|
datahub/ingestion/source/dremio/dremio_aspects.py,sha256=3VeHzCw9q1ytngmsq_K4Ll9tWD2V8EDFySBImHdhPAw,18287
|
|
@@ -298,7 +298,7 @@ datahub/ingestion/source/dynamodb/dynamodb.py,sha256=wcEQSfQak45yPNZN7pCUEQFmjyW
|
|
|
298
298
|
datahub/ingestion/source/fivetran/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
299
299
|
datahub/ingestion/source/fivetran/config.py,sha256=kTfsu7oC4BSzkcFtetZr0UmiQ-B2af-_jbNYSFbDim4,8749
|
|
300
300
|
datahub/ingestion/source/fivetran/data_classes.py,sha256=ecdUJH5BEze0yv-uFpKWPNaNmV1gORDA2XMFk0zhcBw,595
|
|
301
|
-
datahub/ingestion/source/fivetran/fivetran.py,sha256=
|
|
301
|
+
datahub/ingestion/source/fivetran/fivetran.py,sha256=mJ3gi4LWYqul0NyHdZ0U4fDv3WuKEl_yxc2oOd3q6bw,13318
|
|
302
302
|
datahub/ingestion/source/fivetran/fivetran_log_api.py,sha256=EAak3hJpe75WZSgz6wP_CyAT5Cian2N4a-lb8x1NKHk,12776
|
|
303
303
|
datahub/ingestion/source/fivetran/fivetran_query.py,sha256=vLrTj7e-0NxZ2U4bWTB57pih42WirqPlUvwtIRfStlQ,5275
|
|
304
304
|
datahub/ingestion/source/gc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -314,9 +314,9 @@ datahub/ingestion/source/git/git_import.py,sha256=5CT6vMDb0MDctCtShnxb3JVihULtvk
|
|
|
314
314
|
datahub/ingestion/source/grafana/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
315
315
|
datahub/ingestion/source/grafana/grafana_source.py,sha256=3pU3xodPgS5lmnjuQ_u7F0XPzD_Y8MnPlMxRJ86qz4g,4960
|
|
316
316
|
datahub/ingestion/source/iceberg/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
317
|
-
datahub/ingestion/source/iceberg/iceberg.py,sha256=
|
|
318
|
-
datahub/ingestion/source/iceberg/iceberg_common.py,sha256=
|
|
319
|
-
datahub/ingestion/source/iceberg/iceberg_profiler.py,sha256=
|
|
317
|
+
datahub/ingestion/source/iceberg/iceberg.py,sha256=tRPoThF6f8PlV_EbpIHjZPo8lcAzaiwE7G6E2m9rY-w,27485
|
|
318
|
+
datahub/ingestion/source/iceberg/iceberg_common.py,sha256=LEZaJleL5KJt1u_pLRUkeCqPEsthzH7tG8FgBwd9MC8,10218
|
|
319
|
+
datahub/ingestion/source/iceberg/iceberg_profiler.py,sha256=CkBB5fryMVoqqCM6eLSIeb4yP85ABHONNRm0QqZKrnw,9977
|
|
320
320
|
datahub/ingestion/source/identity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
321
321
|
datahub/ingestion/source/identity/azure_ad.py,sha256=GdmJFD4UMsb5353Z7phXRf-YsXR2woGLRJwBXUkgXq0,28809
|
|
322
322
|
datahub/ingestion/source/identity/okta.py,sha256=PnRokWLG8wSoNZlXJiRZiW6APTEHO09q4n2j_l6m3V0,30756
|
|
@@ -325,7 +325,7 @@ datahub/ingestion/source/kafka/kafka.py,sha256=9SR7bqp9J0rPYde5IClhnAuVNy9ItsB8-
|
|
|
325
325
|
datahub/ingestion/source/kafka/kafka_schema_registry_base.py,sha256=13XjSwqyVhH1CJUFHAbWdmmv_Rw0Ju_9HQdBmIzPNNA,566
|
|
326
326
|
datahub/ingestion/source/kafka_connect/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
327
327
|
datahub/ingestion/source/kafka_connect/common.py,sha256=Ekb1K_J1eTgiH7LSP1AbEIf7NQh_2Vyu1lYX_Ggcqk4,7049
|
|
328
|
-
datahub/ingestion/source/kafka_connect/kafka_connect.py,sha256=
|
|
328
|
+
datahub/ingestion/source/kafka_connect/kafka_connect.py,sha256=NwBZQypX7TfZHm_W3uhdMI9YclxTxazJoxQqL8Nfv4Y,14054
|
|
329
329
|
datahub/ingestion/source/kafka_connect/sink_connectors.py,sha256=ESuJE5SFLLvss9OwDEIB8SAko4rhzaWZ-4dKY0Dh0N8,12900
|
|
330
330
|
datahub/ingestion/source/kafka_connect/source_connectors.py,sha256=_765fSMDAWAe0Cf_F4VNHfOWKNhtqBA1Ep2jL3rf-qc,21263
|
|
331
331
|
datahub/ingestion/source/looker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -393,7 +393,7 @@ datahub/ingestion/source/redshift/lineage.py,sha256=bUy0uJowrqSc33Z50fIxFlJkyhe-
|
|
|
393
393
|
datahub/ingestion/source/redshift/lineage_v2.py,sha256=OcVW_27sSaZOYZPTd2j-LS9SzFQ1kXz6cMzM2ZDWhJQ,16751
|
|
394
394
|
datahub/ingestion/source/redshift/profile.py,sha256=T4H79ycq2tPobLM1tTLRtu581Qa8LlKxEok49m0AirU,4294
|
|
395
395
|
datahub/ingestion/source/redshift/query.py,sha256=bY1D9RoOHaw89LgcXal7GYlJN0RG7PxXRRC-YKIdC8E,43105
|
|
396
|
-
datahub/ingestion/source/redshift/redshift.py,sha256=
|
|
396
|
+
datahub/ingestion/source/redshift/redshift.py,sha256=tBM4r9PiYDtRdZDccy4dwTTte842GADUS5Sfl9t5VHg,44436
|
|
397
397
|
datahub/ingestion/source/redshift/redshift_data_reader.py,sha256=zc69jwXHdF-w8J4Hq-ZQ6BjHQ75Ij2iNDMpoRJlcmlU,1724
|
|
398
398
|
datahub/ingestion/source/redshift/redshift_schema.py,sha256=9IYeUsnISenq3eVB3k-s7zK8nInWDAYViFnDrNjtkb0,19149
|
|
399
399
|
datahub/ingestion/source/redshift/report.py,sha256=M19aUHBkd9n-BVBX4fRhyRNdVkN2b9Es6ZqInRx5ZGI,2958
|
|
@@ -429,7 +429,7 @@ datahub/ingestion/source/snowflake/constants.py,sha256=22n-0r04nuy-ImxWFFpmbrt_G
|
|
|
429
429
|
datahub/ingestion/source/snowflake/oauth_config.py,sha256=ol9D3RmruGStJAeL8PYSQguSqcD2HfkjPkMF2AB_eZs,1277
|
|
430
430
|
datahub/ingestion/source/snowflake/oauth_generator.py,sha256=fu2VnREGuJXeTqIV2jx4TwieVnznf83HQkrE0h2DGGM,3423
|
|
431
431
|
datahub/ingestion/source/snowflake/snowflake_assertion.py,sha256=_l3k4aI9wvioE81xxdeizJn9nJCZ_nMIXgk9N6pEk5o,4803
|
|
432
|
-
datahub/ingestion/source/snowflake/snowflake_config.py,sha256=
|
|
432
|
+
datahub/ingestion/source/snowflake/snowflake_config.py,sha256=kNzNQhpnEO4dGvqQudqO4NAX0MypujvM23XN4ZrA5Es,18949
|
|
433
433
|
datahub/ingestion/source/snowflake/snowflake_connection.py,sha256=yzv-01FdmfDSCJY5rqKNNodXxzg3SS5DF7oA4WXArOA,17793
|
|
434
434
|
datahub/ingestion/source/snowflake/snowflake_data_reader.py,sha256=ffR5E2uhD71FUMXd3XOg2rHwrp1rbbGEFTAbqKcmI2s,2195
|
|
435
435
|
datahub/ingestion/source/snowflake/snowflake_lineage_v2.py,sha256=FBmiONx4EGHWV8RNJT6zHZyntKinPFFyd2oKbTUIbhE,21319
|
|
@@ -437,14 +437,14 @@ datahub/ingestion/source/snowflake/snowflake_profiler.py,sha256=0DJiSwII6FY34url
|
|
|
437
437
|
datahub/ingestion/source/snowflake/snowflake_queries.py,sha256=jTpnFWRqqFId6DKJvvAbNuFPxyNi1oQxxDUyMvh1iu4,26968
|
|
438
438
|
datahub/ingestion/source/snowflake/snowflake_query.py,sha256=5po2FWz41UVowykJYbTFGxsltbmlHBCPcHG20VOhdOE,38469
|
|
439
439
|
datahub/ingestion/source/snowflake/snowflake_report.py,sha256=9Jjrie9XhD1JsIL2Wgx6pVPCNi9HuuAg6nuS0OgbLoE,6331
|
|
440
|
-
datahub/ingestion/source/snowflake/snowflake_schema.py,sha256=
|
|
441
|
-
datahub/ingestion/source/snowflake/snowflake_schema_gen.py,sha256=
|
|
440
|
+
datahub/ingestion/source/snowflake/snowflake_schema.py,sha256=qzQxugJJiDuF8LfSo9mTdshCexYyhjl_LlUwrwAcs8k,21806
|
|
441
|
+
datahub/ingestion/source/snowflake/snowflake_schema_gen.py,sha256=U0ELcn0YGlI16wv8VmTM1_UotcIDCSUwkAb0oUhAGCs,46209
|
|
442
442
|
datahub/ingestion/source/snowflake/snowflake_shares.py,sha256=maZyFkfrbVogEFM0tTKRiNp9c_1muv6YfleSd3q0umI,6341
|
|
443
443
|
datahub/ingestion/source/snowflake/snowflake_summary.py,sha256=kTmuCtRnvHqM8WBYhWeK4XafJq3ssFL9kcS03jEeWT4,5506
|
|
444
|
-
datahub/ingestion/source/snowflake/snowflake_tag.py,sha256=
|
|
444
|
+
datahub/ingestion/source/snowflake/snowflake_tag.py,sha256=uWhNsaV9gK9i65w3Ii3UeMJQ5aWy7rjh2ItxyIk-V4U,6539
|
|
445
445
|
datahub/ingestion/source/snowflake/snowflake_usage_v2.py,sha256=OI7MdARZcN1WjzRMF-hNIRSZyeVshlDVMD9Ga13W-SE,24846
|
|
446
446
|
datahub/ingestion/source/snowflake/snowflake_utils.py,sha256=MoI8-DR9tuMuHMBQcpDo4GFjvcoQZWLNkdFZsTkgK-M,12786
|
|
447
|
-
datahub/ingestion/source/snowflake/snowflake_v2.py,sha256=
|
|
447
|
+
datahub/ingestion/source/snowflake/snowflake_v2.py,sha256=dgvEx0TazQN17hruoe0kqqfJzAZF7mzUKk6LR0pGfjM,31949
|
|
448
448
|
datahub/ingestion/source/sql/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
449
449
|
datahub/ingestion/source/sql/athena.py,sha256=G3cIY8H_76lIUAzQWW2kLnZOEsfbakmojxbiHb3dYZ8,24059
|
|
450
450
|
datahub/ingestion/source/sql/clickhouse.py,sha256=jzvaXP5Wr0SMhj2rtuvVE821xnfpKiXhO3cm0xblgHs,27299
|
|
@@ -463,8 +463,8 @@ datahub/ingestion/source/sql/sql_config.py,sha256=M-l_uXau0ODolLZHBzAXhy-Rq5yYxv
|
|
|
463
463
|
datahub/ingestion/source/sql/sql_generic.py,sha256=9AERvkK8kdJUeDOzCYJDb93xdv6Z4DGho0NfeHj5Uyg,2740
|
|
464
464
|
datahub/ingestion/source/sql/sql_generic_profiler.py,sha256=oLjqgsxVKGerj5dZnCCRMremrxjp-kr5_P45gFOM4Pg,11602
|
|
465
465
|
datahub/ingestion/source/sql/sql_report.py,sha256=gw-OPHSExp_b6DRjvwqE1U6BpkwekxGrsvNMGYSGDio,2671
|
|
466
|
-
datahub/ingestion/source/sql/sql_types.py,sha256=
|
|
467
|
-
datahub/ingestion/source/sql/sql_utils.py,sha256=
|
|
466
|
+
datahub/ingestion/source/sql/sql_types.py,sha256=vuivhVDO27Hu_05Q1aYzsCuyCYXmdprW3gLt-fP_Yyk,15045
|
|
467
|
+
datahub/ingestion/source/sql/sql_utils.py,sha256=q-Bsk6WxlsRtrw9RXBxvqI3zuaMTC_F25T2VrCziR9I,8418
|
|
468
468
|
datahub/ingestion/source/sql/sqlalchemy_data_reader.py,sha256=FvHZ4JEK3aR2DYOBZiT_ZsAy12RjTu4t_KIR_92B11k,2644
|
|
469
469
|
datahub/ingestion/source/sql/sqlalchemy_uri_mapper.py,sha256=KOpbmDIE2h1hyYEsbVHJi2B7FlsyUMTXZx4diyzltQg,1826
|
|
470
470
|
datahub/ingestion/source/sql/teradata.py,sha256=M2txTIttQPXDrQfBwFfhPGqwWCZb2ei2yjxxtSodP1w,32499
|
|
@@ -491,7 +491,7 @@ datahub/ingestion/source/state_provider/datahub_ingestion_checkpointing_provider
|
|
|
491
491
|
datahub/ingestion/source/state_provider/file_ingestion_checkpointing_provider.py,sha256=xsH7Ao_05VTjqpkzLkhdf5B1ULMzFoD8vkJJIJU9w-U,4077
|
|
492
492
|
datahub/ingestion/source/state_provider/state_provider_registry.py,sha256=SVq4mIyGNmLXE9OZx1taOiNPqDoQp03-Ot9rYnB5F3k,401
|
|
493
493
|
datahub/ingestion/source/tableau/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
494
|
-
datahub/ingestion/source/tableau/tableau.py,sha256=
|
|
494
|
+
datahub/ingestion/source/tableau/tableau.py,sha256=MVqu7X7TOhVOyfRlYFSx9_ZqlcXuhKGzy7q2VibMx7w,145707
|
|
495
495
|
datahub/ingestion/source/tableau/tableau_common.py,sha256=a3Nu0Upy6_pnrd7XpSMcYHdnYca1JBW7H0jMqkYr0ME,26871
|
|
496
496
|
datahub/ingestion/source/tableau/tableau_constant.py,sha256=ZcAeHsQUXVVL26ORly0ByZk_GJAFbxaKuJAlX_sYMac,2686
|
|
497
497
|
datahub/ingestion/source/tableau/tableau_server_wrapper.py,sha256=nSyx9RzC6TCQDm-cTVJ657qT8iDwzk_8JMKpohhmOc4,1046
|
|
@@ -566,12 +566,12 @@ datahub/lite/lite_registry.py,sha256=bpH0kasP-LtwwUFNA2QsOIehfekAYfJtN-AkQLmSWnw
|
|
|
566
566
|
datahub/lite/lite_server.py,sha256=p9Oa2nNs65mqcssSIVOr7VOzWqfVstz6ZQEdT4f82S0,1949
|
|
567
567
|
datahub/lite/lite_util.py,sha256=pgBpT3vTO1YCQ2njZRNyicSkHYeEmQCt41BaXU8WvMo,4503
|
|
568
568
|
datahub/metadata/__init__.py,sha256=AjhXPjI6cnpdcrBRrE5gOWo15vv2TTl2ctU4UAnUN7A,238
|
|
569
|
-
datahub/metadata/_schema_classes.py,sha256=
|
|
570
|
-
datahub/metadata/schema.avsc,sha256=
|
|
569
|
+
datahub/metadata/_schema_classes.py,sha256=yqNgYrOGdIQ5XsTPo1XEFCjWDsThT3Qjl4IRUTSCYh0,975069
|
|
570
|
+
datahub/metadata/schema.avsc,sha256=US1MViEE4IunE2Q9zFmDsj1YZm8FwqUI5tNqp68UBUk,735960
|
|
571
571
|
datahub/metadata/schema_classes.py,sha256=X5Jl5EaSxyHdXOQv14pJ5WkQALun4MRpJ4q12wVFE18,1299
|
|
572
572
|
datahub/metadata/urns.py,sha256=nfrCTExR-k2P9w272WVtWSN3xW1VUJngPwP3xnvULjU,1217
|
|
573
573
|
datahub/metadata/_urns/__init__.py,sha256=cOF3GHMDgPhmbLKbN02NPpuLGHSu0qNgQyBRv08eqF0,243
|
|
574
|
-
datahub/metadata/_urns/urn_defs.py,sha256=
|
|
574
|
+
datahub/metadata/_urns/urn_defs.py,sha256=7wLzbGE-UnPZiJlCm8RcU3hROhHJ3QtwxJLGFLLjJlw,109984
|
|
575
575
|
datahub/metadata/com/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
|
|
576
576
|
datahub/metadata/com/linkedin/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
|
|
577
577
|
datahub/metadata/com/linkedin/events/__init__.py,sha256=s_dR0plZF-rOxxIbE8ojekJqwiHzl2WYR-Z3kW6kKS0,298
|
|
@@ -581,7 +581,7 @@ datahub/metadata/com/linkedin/pegasus2avro/access/token/__init__.py,sha256=P9M7N
|
|
|
581
581
|
datahub/metadata/com/linkedin/pegasus2avro/assertion/__init__.py,sha256=PgK5O-6pVRaEcvmwXAsSkwRLe8NjGiLH8AVBXeArqK8,5751
|
|
582
582
|
datahub/metadata/com/linkedin/pegasus2avro/businessattribute/__init__.py,sha256=N8kO-eUi0_Rt7weizIExxlnJ2_kZRtPrZLWCC1xtDMA,653
|
|
583
583
|
datahub/metadata/com/linkedin/pegasus2avro/chart/__init__.py,sha256=RNyyHLBNp_fxgFcBOLWO2UsXR1ofD_JczcBdPEQSusg,848
|
|
584
|
-
datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py,sha256=
|
|
584
|
+
datahub/metadata/com/linkedin/pegasus2avro/common/__init__.py,sha256=x3AG1BxTAQijzsm_eKaP0P9VFraUT32d0glfvbQBrVI,5618
|
|
585
585
|
datahub/metadata/com/linkedin/pegasus2avro/common/fieldtransformer/__init__.py,sha256=FN63vLiB3FCmIRqBjTA-0Xt7M6i7h5NhaVzbA1ysv18,396
|
|
586
586
|
datahub/metadata/com/linkedin/pegasus2avro/connection/__init__.py,sha256=qRtw-dB14pzVzgQ0pDK8kyBplNdpRxVKNj4D70e_FqI,564
|
|
587
587
|
datahub/metadata/com/linkedin/pegasus2avro/container/__init__.py,sha256=3yWt36KqDKFhRc9pzvt0AMnbMTlhKurGvT3BUvc25QU,510
|
|
@@ -609,7 +609,7 @@ datahub/metadata/com/linkedin/pegasus2avro/identity/__init__.py,sha256=1U583fdMT
|
|
|
609
609
|
datahub/metadata/com/linkedin/pegasus2avro/incident/__init__.py,sha256=HEnbvzkz1KpPcomySyJFkuHfSUjH2d2mHQXhXU5uY7Q,735
|
|
610
610
|
datahub/metadata/com/linkedin/pegasus2avro/ingestion/__init__.py,sha256=1bfG2naq4iS_pwU4J-BVer_gfL0hDbJbnH0gh1MPNgA,871
|
|
611
611
|
datahub/metadata/com/linkedin/pegasus2avro/metadata/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
|
|
612
|
-
datahub/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py,sha256=
|
|
612
|
+
datahub/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py,sha256=kooj_lICFtq7GjWmYFtQOGuXYy9u4QomKrhTTVKFnDg,4812
|
|
613
613
|
datahub/metadata/com/linkedin/pegasus2avro/metadata/query/__init__.py,sha256=gsAIuTxzfJdI7a9ybZlgMIHMAYksM1SxGxXjtySgKSc,202
|
|
614
614
|
datahub/metadata/com/linkedin/pegasus2avro/metadata/query/filter/__init__.py,sha256=DBP_QtxkFmC5q_kuk4dGjb4uOKbB4xKgqTWXGxmNbBQ,532
|
|
615
615
|
datahub/metadata/com/linkedin/pegasus2avro/metadata/snapshot/__init__.py,sha256=OPboF8SV11wGnjvWQB-rxtB0otMdCsE7Tcy7xkOUgz8,2358
|
|
@@ -641,6 +641,7 @@ datahub/metadata/com/linkedin/pegasus2avro/test/__init__.py,sha256=Z4DlDtf-NELFp
|
|
|
641
641
|
datahub/metadata/com/linkedin/pegasus2avro/timeseries/__init__.py,sha256=6Pbit2drar8n99RFNQiXfYj7PhIzrO1SIpsGELZR4oA,637
|
|
642
642
|
datahub/metadata/com/linkedin/pegasus2avro/upgrade/__init__.py,sha256=o3U2TuzRSU1uPL-4AOMCPDqEwngqRb6g4-CBFY7eSvQ,525
|
|
643
643
|
datahub/metadata/com/linkedin/pegasus2avro/usage/__init__.py,sha256=vhCBrCM6hTXcl_U_OIexO9vdK8OKrGImAmi9BxTDNeY,602
|
|
644
|
+
datahub/metadata/com/linkedin/pegasus2avro/versionset/__init__.py,sha256=TJ9PXc6rctPWNTY1yYW5lwIh91jD5EDoKex2WYxOLXM,406
|
|
644
645
|
datahub/metadata/com/linkedin/pegasus2avro/view/__init__.py,sha256=-Le-jOqUJKv3ppwMhJHFFV3WwKTKjj1ETTkl9r7fY0o,498
|
|
645
646
|
datahub/metadata/schemas/Access.avsc,sha256=gdEfWJLkvjIz-jzlceK4Dl5pBDdCHG423Ba_EYGQgUk,1562
|
|
646
647
|
datahub/metadata/schemas/Actors.avsc,sha256=M76L2_Dlp7VyhVtu9__jhnh8rBNvNobtNJUfvl7bcPE,1188
|
|
@@ -727,7 +728,7 @@ datahub/metadata/schemas/DataTypeKey.avsc,sha256=Gs5uc_azwg10e36ZbwDTFQMevr0IfiF
|
|
|
727
728
|
datahub/metadata/schemas/DatahubIngestionCheckpoint.avsc,sha256=m2Zyrx3ZWDc5gHuwbmBSRJ3JN4NFkpUhDEKM2Yeuqrw,5681
|
|
728
729
|
datahub/metadata/schemas/DatahubIngestionRunSummary.avsc,sha256=_Ek7NqfJVTLqlM0NR9BRA57N9_ejwDdQvz7B1tVxSEE,9367
|
|
729
730
|
datahub/metadata/schemas/DatasetDeprecation.avsc,sha256=ucXxaDcAUib9_y0k5qOINMn5VK2X3trHK2dcpNcsR2Q,1256
|
|
730
|
-
datahub/metadata/schemas/DatasetKey.avsc,sha256=
|
|
731
|
+
datahub/metadata/schemas/DatasetKey.avsc,sha256=ACxwY5rfK695wdd7Z2rlCs15TSPW7GeG79dB30z9H9g,3163
|
|
731
732
|
datahub/metadata/schemas/DatasetProfile.avsc,sha256=3ZCU9JD6l2razACp0AY6LLMgnkMTj6D_5Xk9np6WWRM,9965
|
|
732
733
|
datahub/metadata/schemas/DatasetProperties.avsc,sha256=DFJn75feqaoQk84zin_o_lqsFFhqkwya5LGC5LLJXbU,4209
|
|
733
734
|
datahub/metadata/schemas/DatasetUpstreamLineage.avsc,sha256=PjAWPbsqwH7FjX2kFDy0dE6ENYOwRynH9vJerWisr2A,5365
|
|
@@ -788,22 +789,22 @@ datahub/metadata/schemas/IntendedUse.avsc,sha256=IKZSWdvc0uAyyT-FtdQOGbMC-P7RS9c
|
|
|
788
789
|
datahub/metadata/schemas/InviteToken.avsc,sha256=8k_9MxHu9GVf7gvS0SlnQu7tJfpbXsRFdz6lQrFKPNc,737
|
|
789
790
|
datahub/metadata/schemas/InviteTokenKey.avsc,sha256=MuQUlQaeVjaBkjSshB9gsx5Fm0civYgWD8UhCiRLdOQ,434
|
|
790
791
|
datahub/metadata/schemas/MLFeatureKey.avsc,sha256=sm4S8_G_YGwllESFk4LFwGS11MWrr84gkV9R68gQhzw,1110
|
|
791
|
-
datahub/metadata/schemas/MLFeatureProperties.avsc,sha256=
|
|
792
|
+
datahub/metadata/schemas/MLFeatureProperties.avsc,sha256=HpF7VcnH2FvDsqy2g5AMJPqU7upkTVADW1ps-9bjINo,6893
|
|
792
793
|
datahub/metadata/schemas/MLFeatureTableKey.avsc,sha256=VUG2pxBfyMJNf8J_yCyQVBGh9gpxsUN_8jXVPYadAus,1384
|
|
793
794
|
datahub/metadata/schemas/MLFeatureTableProperties.avsc,sha256=BtrqcsxoQXObPZXSGRNYtIBJCoeHkMK_Zr_imBWF2Zk,2008
|
|
794
795
|
datahub/metadata/schemas/MLHyperParam.avsc,sha256=dE6i5r6LTYMNrQe9yy-jKoP09GOJUf__1bO69ldpydc,833
|
|
795
796
|
datahub/metadata/schemas/MLMetric.avsc,sha256=y8WPVVwjhu3YGtqpFFJYNYK8w778RRL_d2sHG1Dc7uM,804
|
|
796
797
|
datahub/metadata/schemas/MLModelDeploymentKey.avsc,sha256=gmXaUYxII8BVLnXOFdlPmyhD1rUhrw455R_hL77foSU,2406
|
|
797
|
-
datahub/metadata/schemas/MLModelDeploymentProperties.avsc,sha256=
|
|
798
|
+
datahub/metadata/schemas/MLModelDeploymentProperties.avsc,sha256=I3v-uNOeYxO4hooPHOjafWWHuVyeGvG90oma0tzpNFg,5409
|
|
798
799
|
datahub/metadata/schemas/MLModelFactorPrompts.avsc,sha256=8kX-P4F4mVLFT980z3MwIautt1_6uA-c_Z87nYNDK-k,2712
|
|
799
800
|
datahub/metadata/schemas/MLModelGroupKey.avsc,sha256=eb4qdIdQLvvQ7u1e_FHIHTkWrvIwYQji0yKoGrxCiWI,2460
|
|
800
|
-
datahub/metadata/schemas/MLModelGroupProperties.avsc,sha256=
|
|
801
|
-
datahub/metadata/schemas/MLModelKey.avsc,sha256=
|
|
802
|
-
datahub/metadata/schemas/MLModelProperties.avsc,sha256=
|
|
801
|
+
datahub/metadata/schemas/MLModelGroupProperties.avsc,sha256=zMl6ab6zfcYJmt31f-AUrrfeqfLoaSZQpfB3_S9JFFQ,6534
|
|
802
|
+
datahub/metadata/schemas/MLModelKey.avsc,sha256=NeUHF1dNWpBc4422fp3YDqHCaDIlggQWuTD1PSfCMCM,2829
|
|
803
|
+
datahub/metadata/schemas/MLModelProperties.avsc,sha256=hDCBHxGe-cmCBeU1k0ANuQlKjtZsDcTfl2X_jWmtFqo,12355
|
|
803
804
|
datahub/metadata/schemas/MLPrimaryKeyKey.avsc,sha256=mX4CQcoN3FC_VQDBCkhlmJk4pfQKDrSeuqqCTTXTmq8,1092
|
|
804
|
-
datahub/metadata/schemas/MLPrimaryKeyProperties.avsc,sha256=
|
|
805
|
+
datahub/metadata/schemas/MLPrimaryKeyProperties.avsc,sha256=URIuOpS93RVk8MZVcbZ-dmTwu_cN3KSOKxSR8fm-eTo,6744
|
|
805
806
|
datahub/metadata/schemas/MLTrainingRunProperties.avsc,sha256=WGgj0MuQrGD4UgvyHCJHzTnHja2LlJTOr1gLu8SySj0,4269
|
|
806
|
-
datahub/metadata/schemas/MetadataChangeEvent.avsc,sha256=
|
|
807
|
+
datahub/metadata/schemas/MetadataChangeEvent.avsc,sha256=mk-ggA71SFW1H_BdzaLXMgH01wVzImCNPviGiH_v94Y,372781
|
|
807
808
|
datahub/metadata/schemas/MetadataChangeLog.avsc,sha256=mpdodpx25E6M1Gq_7slEcPAm-1Es5xPsoqV60HgO7zg,12167
|
|
808
809
|
datahub/metadata/schemas/MetadataChangeProposal.avsc,sha256=EMfQrYsuHf1p6UvBjoLtfdTHGe-vGNJaCFEHz8hdKU0,9698
|
|
809
810
|
datahub/metadata/schemas/Metrics.avsc,sha256=O7DJGjOwmHbb1x_Zj7AuM_HaHKjBvkfJKfUsX8icXD4,690
|
|
@@ -853,6 +854,9 @@ datahub/metadata/schemas/TrainingData.avsc,sha256=7p7sFBA_UyV5IbNU5qLgS3vVu70yev
|
|
|
853
854
|
datahub/metadata/schemas/UpstreamLineage.avsc,sha256=iaeFRbL2aVSYFwj-HQHyfIVaHRrK3kLbkkLXgIfJTsk,10639
|
|
854
855
|
datahub/metadata/schemas/UsageAggregation.avsc,sha256=QaF6lyWGUq8IlRel2h4qIXOXCMxBhrwjoaUELsd-I6g,4538
|
|
855
856
|
datahub/metadata/schemas/VersionInfo.avsc,sha256=9gMcZ8tjuhgcZiq2gOAp_EOV9q9jvuOgfph6m6v_X7c,1189
|
|
857
|
+
datahub/metadata/schemas/VersionProperties.avsc,sha256=knGNZxD_tOdnzFXqtrUy_JyXue3uJS9JqsxYy7CLKG4,7328
|
|
858
|
+
datahub/metadata/schemas/VersionSetKey.avsc,sha256=psjGNNcFua3Zs9Xlh4HnUHNmBEU74uYdJR5g20NhRJU,659
|
|
859
|
+
datahub/metadata/schemas/VersionSetProperties.avsc,sha256=yrhhVNioD11nFlDO7IfUbxAQjhA9Tr-4wnAYH5I9W74,1172
|
|
856
860
|
datahub/metadata/schemas/ViewProperties.avsc,sha256=3HhcbH5493dJUnEUtFMYMVfbYQ52aDedm5L4j77Nym4,1032
|
|
857
861
|
datahub/metadata/schemas/__init__.py,sha256=uvLNC3VyCkWA_v8e9FdA1leFf46NFKDD0AajCfihepI,581
|
|
858
862
|
datahub/secret/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -986,8 +990,8 @@ datahub_provider/operators/datahub_assertion_operator.py,sha256=uvTQ-jk2F0sbqqxp
|
|
|
986
990
|
datahub_provider/operators/datahub_assertion_sensor.py,sha256=lCBj_3x1cf5GMNpHdfkpHuyHfVxsm6ff5x2Z5iizcAo,140
|
|
987
991
|
datahub_provider/operators/datahub_operation_operator.py,sha256=aevDp2FzX7FxGlXrR0khoHNbxbhKR2qPEX5e8O2Jyzw,174
|
|
988
992
|
datahub_provider/operators/datahub_operation_sensor.py,sha256=8fcdVBCEPgqy1etTXgLoiHoJrRt_nzFZQMdSzHqSG7M,168
|
|
989
|
-
acryl_datahub-0.15.0.
|
|
990
|
-
acryl_datahub-0.15.0.
|
|
991
|
-
acryl_datahub-0.15.0.
|
|
992
|
-
acryl_datahub-0.15.0.
|
|
993
|
-
acryl_datahub-0.15.0.
|
|
993
|
+
acryl_datahub-0.15.0.2rc5.dist-info/METADATA,sha256=MBQ2EWJtuUyLlzfHsMfnf6niYbVl3nBvZJhV3qJ5e10,173662
|
|
994
|
+
acryl_datahub-0.15.0.2rc5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
995
|
+
acryl_datahub-0.15.0.2rc5.dist-info/entry_points.txt,sha256=xnPSPLK3bJGADxe4TDS4wL4u0FT_PGlahDa-ENYdYCQ,9512
|
|
996
|
+
acryl_datahub-0.15.0.2rc5.dist-info/top_level.txt,sha256=iLjSrLK5ox1YVYcglRUkcvfZPvKlobBWx7CTUXx8_GI,25
|
|
997
|
+
acryl_datahub-0.15.0.2rc5.dist-info/RECORD,,
|
datahub/__init__.py
CHANGED
datahub/cli/delete_cli.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
import logging
|
|
2
|
+
import random
|
|
2
3
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
3
4
|
from dataclasses import dataclass
|
|
4
5
|
from datetime import datetime
|
|
5
|
-
from random import choices
|
|
6
6
|
from typing import Dict, List, Optional
|
|
7
7
|
|
|
8
8
|
import click
|
|
@@ -457,11 +457,11 @@ def by_filter(
|
|
|
457
457
|
click.echo("Found urns of multiple entity types")
|
|
458
458
|
for entity_type, entity_urns in urns_by_type.items():
|
|
459
459
|
click.echo(
|
|
460
|
-
f"- {len(entity_urns)} {entity_type} urn(s). Sample: {
|
|
460
|
+
f"- {len(entity_urns)} {entity_type} urn(s). Sample: {random.sample(entity_urns, k=min(5, len(entity_urns)))}"
|
|
461
461
|
)
|
|
462
462
|
else:
|
|
463
463
|
click.echo(
|
|
464
|
-
f"Found {len(urns)} {entity_type} urn(s). Sample: {
|
|
464
|
+
f"Found {len(urns)} {entity_type} urn(s). Sample: {random.sample(urns, k=min(5, len(urns)))}"
|
|
465
465
|
)
|
|
466
466
|
|
|
467
467
|
if not force and not dry_run:
|
datahub/cli/migrate.py
CHANGED
|
@@ -179,7 +179,7 @@ def dataplatform2instance_func(
|
|
|
179
179
|
|
|
180
180
|
if not force and not dry_run:
|
|
181
181
|
# get a confirmation from the operator before proceeding if this is not a dry run
|
|
182
|
-
sampled_urns_to_migrate = random.
|
|
182
|
+
sampled_urns_to_migrate = random.sample(
|
|
183
183
|
urns_to_migrate, k=min(10, len(urns_to_migrate))
|
|
184
184
|
)
|
|
185
185
|
sampled_new_urns: List[str] = [
|
|
@@ -193,7 +193,7 @@ def dataplatform2instance_func(
|
|
|
193
193
|
if key
|
|
194
194
|
]
|
|
195
195
|
click.echo(
|
|
196
|
-
f"Will migrate {len(urns_to_migrate)} urns such as {random.
|
|
196
|
+
f"Will migrate {len(urns_to_migrate)} urns such as {random.sample(urns_to_migrate, k=min(10, len(urns_to_migrate)))}"
|
|
197
197
|
)
|
|
198
198
|
click.echo(f"New urns will look like {sampled_new_urns}")
|
|
199
199
|
click.confirm("Ok to proceed?", abort=True)
|
datahub/emitter/mcp_builder.py
CHANGED
|
@@ -31,9 +31,12 @@ from datahub.metadata.schema_classes import (
|
|
|
31
31
|
OwnershipClass,
|
|
32
32
|
OwnershipTypeClass,
|
|
33
33
|
StatusClass,
|
|
34
|
+
StructuredPropertiesClass,
|
|
35
|
+
StructuredPropertyValueAssignmentClass,
|
|
34
36
|
SubTypesClass,
|
|
35
37
|
TagAssociationClass,
|
|
36
38
|
)
|
|
39
|
+
from datahub.metadata.urns import StructuredPropertyUrn
|
|
37
40
|
|
|
38
41
|
# In https://github.com/datahub-project/datahub/pull/11214, we added a
|
|
39
42
|
# new env field to container properties. However, populating this field
|
|
@@ -187,12 +190,31 @@ def add_tags_to_entity_wu(
|
|
|
187
190
|
).as_workunit()
|
|
188
191
|
|
|
189
192
|
|
|
193
|
+
def add_structured_properties_to_entity_wu(
|
|
194
|
+
entity_urn: str, structured_properties: Dict[StructuredPropertyUrn, str]
|
|
195
|
+
) -> Iterable[MetadataWorkUnit]:
|
|
196
|
+
aspect = StructuredPropertiesClass(
|
|
197
|
+
properties=[
|
|
198
|
+
StructuredPropertyValueAssignmentClass(
|
|
199
|
+
propertyUrn=urn.urn(),
|
|
200
|
+
values=[value],
|
|
201
|
+
)
|
|
202
|
+
for urn, value in structured_properties.items()
|
|
203
|
+
]
|
|
204
|
+
)
|
|
205
|
+
yield MetadataChangeProposalWrapper(
|
|
206
|
+
entityUrn=entity_urn,
|
|
207
|
+
aspect=aspect,
|
|
208
|
+
).as_workunit()
|
|
209
|
+
|
|
210
|
+
|
|
190
211
|
def gen_containers(
|
|
191
212
|
container_key: KeyType,
|
|
192
213
|
name: str,
|
|
193
214
|
sub_types: List[str],
|
|
194
215
|
parent_container_key: Optional[ContainerKey] = None,
|
|
195
216
|
extra_properties: Optional[Dict[str, str]] = None,
|
|
217
|
+
structured_properties: Optional[Dict[StructuredPropertyUrn, str]] = None,
|
|
196
218
|
domain_urn: Optional[str] = None,
|
|
197
219
|
description: Optional[str] = None,
|
|
198
220
|
owner_urn: Optional[str] = None,
|
|
@@ -282,6 +304,11 @@ def gen_containers(
|
|
|
282
304
|
tags=sorted(tags),
|
|
283
305
|
)
|
|
284
306
|
|
|
307
|
+
if structured_properties:
|
|
308
|
+
yield from add_structured_properties_to_entity_wu(
|
|
309
|
+
entity_urn=container_urn, structured_properties=structured_properties
|
|
310
|
+
)
|
|
311
|
+
|
|
285
312
|
|
|
286
313
|
def add_dataset_to_container(
|
|
287
314
|
container_key: KeyType, dataset_urn: str
|
datahub/emitter/rest_emitter.py
CHANGED
|
@@ -374,7 +374,7 @@ class DataHubRestEmitter(Closeable, Emitter):
|
|
|
374
374
|
# the size when chunking, and again for the actual request.
|
|
375
375
|
payload_dict: dict = {"proposals": mcp_obj_chunk}
|
|
376
376
|
if async_flag is not None:
|
|
377
|
-
payload_dict["async"] =
|
|
377
|
+
payload_dict["async"] = "true" if async_flag else "false"
|
|
378
378
|
|
|
379
379
|
payload = json.dumps(payload_dict)
|
|
380
380
|
self._emit_generic(url, payload)
|
datahub/ingestion/api/source.py
CHANGED
|
@@ -23,7 +23,7 @@ from typing import (
|
|
|
23
23
|
)
|
|
24
24
|
|
|
25
25
|
from pydantic import BaseModel
|
|
26
|
-
from typing_extensions import LiteralString
|
|
26
|
+
from typing_extensions import LiteralString, Self
|
|
27
27
|
|
|
28
28
|
from datahub.configuration.common import ConfigModel
|
|
29
29
|
from datahub.configuration.source_common import PlatformInstanceConfigMixin
|
|
@@ -400,7 +400,7 @@ class Source(Closeable, metaclass=ABCMeta):
|
|
|
400
400
|
ctx: PipelineContext
|
|
401
401
|
|
|
402
402
|
@classmethod
|
|
403
|
-
def create(cls, config_dict: dict, ctx: PipelineContext) ->
|
|
403
|
+
def create(cls, config_dict: dict, ctx: PipelineContext) -> Self:
|
|
404
404
|
# Technically, this method should be abstract. However, the @config_class
|
|
405
405
|
# decorator automatically generates a create method at runtime if one is
|
|
406
406
|
# not defined. Python still treats the class as abstract because it thinks
|
|
@@ -122,11 +122,6 @@ class DeltaLakeSource(Source):
|
|
|
122
122
|
config_report,
|
|
123
123
|
)
|
|
124
124
|
|
|
125
|
-
@classmethod
|
|
126
|
-
def create(cls, config_dict: dict, ctx: PipelineContext) -> "Source":
|
|
127
|
-
config = DeltaLakeSourceConfig.parse_obj(config_dict)
|
|
128
|
-
return cls(config, ctx)
|
|
129
|
-
|
|
130
125
|
def _parse_datatype(self, raw_field_json_str: str) -> List[SchemaFieldClass]:
|
|
131
126
|
raw_field_json = json.loads(raw_field_json_str)
|
|
132
127
|
|
|
@@ -29,7 +29,7 @@ class DemoDataSource(Source):
|
|
|
29
29
|
|
|
30
30
|
def __init__(self, ctx: PipelineContext, config: DemoDataConfig):
|
|
31
31
|
file_config = FileSourceConfig(path=str(download_sample_data()))
|
|
32
|
-
self.file_source = GenericFileSource(ctx, file_config)
|
|
32
|
+
self.file_source: GenericFileSource = GenericFileSource(ctx, file_config)
|
|
33
33
|
|
|
34
34
|
def get_workunits(self) -> Iterable[MetadataWorkUnit]:
|
|
35
35
|
yield from self.file_source.get_workunits()
|
|
@@ -16,7 +16,7 @@ from datahub.ingestion.api.decorators import (
|
|
|
16
16
|
platform_name,
|
|
17
17
|
support_status,
|
|
18
18
|
)
|
|
19
|
-
from datahub.ingestion.api.source import MetadataWorkUnitProcessor,
|
|
19
|
+
from datahub.ingestion.api.source import MetadataWorkUnitProcessor, SourceReport
|
|
20
20
|
from datahub.ingestion.api.workunit import MetadataWorkUnit
|
|
21
21
|
from datahub.ingestion.source.fivetran.config import (
|
|
22
22
|
KNOWN_DATA_PLATFORM_MAPPING,
|
|
@@ -291,11 +291,6 @@ class FivetranSource(StatefulIngestionSourceBase):
|
|
|
291
291
|
dpi = self._generate_dpi_from_job(job, datajob)
|
|
292
292
|
yield from self._get_dpi_workunits(job, dpi)
|
|
293
293
|
|
|
294
|
-
@classmethod
|
|
295
|
-
def create(cls, config_dict: dict, ctx: PipelineContext) -> Source:
|
|
296
|
-
config = FivetranSourceConfig.parse_obj(config_dict)
|
|
297
|
-
return cls(config, ctx)
|
|
298
|
-
|
|
299
294
|
def get_workunit_processors(self) -> List[Optional[MetadataWorkUnitProcessor]]:
|
|
300
295
|
return [
|
|
301
296
|
*super().get_workunit_processors(),
|
|
@@ -203,7 +203,9 @@ class IcebergSource(StatefulIngestionSourceBase):
|
|
|
203
203
|
with PerfTimer() as timer:
|
|
204
204
|
table = thread_local.local_catalog.load_table(dataset_path)
|
|
205
205
|
time_taken = timer.elapsed_seconds()
|
|
206
|
-
self.report.report_table_load_time(
|
|
206
|
+
self.report.report_table_load_time(
|
|
207
|
+
time_taken, dataset_name, table.metadata_location
|
|
208
|
+
)
|
|
207
209
|
LOGGER.debug(f"Loaded table: {table.name()}, time taken: {time_taken}")
|
|
208
210
|
yield from self._create_iceberg_workunit(dataset_name, table)
|
|
209
211
|
except NoSuchPropertyException as e:
|
|
@@ -247,7 +249,10 @@ class IcebergSource(StatefulIngestionSourceBase):
|
|
|
247
249
|
f"Iceberg Rest Catalog server error (500 status) encountered when processing table {dataset_path}, skipping it."
|
|
248
250
|
)
|
|
249
251
|
except Exception as e:
|
|
250
|
-
self.report.report_failure(
|
|
252
|
+
self.report.report_failure(
|
|
253
|
+
"general",
|
|
254
|
+
f"Failed to create workunit for dataset {dataset_name}: {e}",
|
|
255
|
+
)
|
|
251
256
|
LOGGER.exception(
|
|
252
257
|
f"Exception while processing table {dataset_path}, skipping it.",
|
|
253
258
|
)
|
|
@@ -312,7 +317,9 @@ class IcebergSource(StatefulIngestionSourceBase):
|
|
|
312
317
|
dataset_snapshot.aspects.append(schema_metadata)
|
|
313
318
|
|
|
314
319
|
mce = MetadataChangeEvent(proposedSnapshot=dataset_snapshot)
|
|
315
|
-
self.report.report_table_processing_time(
|
|
320
|
+
self.report.report_table_processing_time(
|
|
321
|
+
timer.elapsed_seconds(), dataset_name, table.metadata_location
|
|
322
|
+
)
|
|
316
323
|
yield MetadataWorkUnit(id=dataset_name, mce=mce)
|
|
317
324
|
|
|
318
325
|
dpi_aspect = self._get_dataplatform_instance_aspect(dataset_urn=dataset_urn)
|
|
@@ -5,6 +5,7 @@ from typing import Any, Dict, List, Optional
|
|
|
5
5
|
from humanfriendly import format_timespan
|
|
6
6
|
from pydantic import Field, validator
|
|
7
7
|
from pyiceberg.catalog import Catalog, load_catalog
|
|
8
|
+
from sortedcontainers import SortedList
|
|
8
9
|
|
|
9
10
|
from datahub.configuration.common import AllowDenyPattern, ConfigModel
|
|
10
11
|
from datahub.configuration.source_common import DatasetSourceConfigMixin
|
|
@@ -146,19 +147,40 @@ class IcebergSourceConfig(StatefulIngestionConfigBase, DatasetSourceConfigMixin)
|
|
|
146
147
|
return load_catalog(name=catalog_name, **catalog_config)
|
|
147
148
|
|
|
148
149
|
|
|
150
|
+
class TopTableTimings:
|
|
151
|
+
_VALUE_FIELD: str = "timing"
|
|
152
|
+
top_entites: SortedList
|
|
153
|
+
_size: int
|
|
154
|
+
|
|
155
|
+
def __init__(self, size: int = 10):
|
|
156
|
+
self._size = size
|
|
157
|
+
self.top_entites = SortedList(key=lambda x: -x.get(self._VALUE_FIELD, 0))
|
|
158
|
+
|
|
159
|
+
def add(self, entity: Dict[str, Any]) -> None:
|
|
160
|
+
if self._VALUE_FIELD not in entity:
|
|
161
|
+
return
|
|
162
|
+
self.top_entites.add(entity)
|
|
163
|
+
if len(self.top_entites) > self._size:
|
|
164
|
+
self.top_entites.pop()
|
|
165
|
+
|
|
166
|
+
def __str__(self) -> str:
|
|
167
|
+
if len(self.top_entites) == 0:
|
|
168
|
+
return "no timings reported"
|
|
169
|
+
return str(list(self.top_entites))
|
|
170
|
+
|
|
171
|
+
|
|
149
172
|
class TimingClass:
|
|
150
|
-
times:
|
|
173
|
+
times: SortedList
|
|
151
174
|
|
|
152
175
|
def __init__(self):
|
|
153
|
-
self.times =
|
|
176
|
+
self.times = SortedList()
|
|
154
177
|
|
|
155
|
-
def add_timing(self, t):
|
|
156
|
-
self.times.
|
|
178
|
+
def add_timing(self, t: float) -> None:
|
|
179
|
+
self.times.add(t)
|
|
157
180
|
|
|
158
|
-
def __str__(self):
|
|
181
|
+
def __str__(self) -> str:
|
|
159
182
|
if len(self.times) == 0:
|
|
160
183
|
return "no timings reported"
|
|
161
|
-
self.times.sort()
|
|
162
184
|
total = sum(self.times)
|
|
163
185
|
avg = total / len(self.times)
|
|
164
186
|
return str(
|
|
@@ -180,6 +202,9 @@ class IcebergSourceReport(StaleEntityRemovalSourceReport):
|
|
|
180
202
|
load_table_timings: TimingClass = field(default_factory=TimingClass)
|
|
181
203
|
processing_table_timings: TimingClass = field(default_factory=TimingClass)
|
|
182
204
|
profiling_table_timings: TimingClass = field(default_factory=TimingClass)
|
|
205
|
+
tables_load_timings: TopTableTimings = field(default_factory=TopTableTimings)
|
|
206
|
+
tables_profile_timings: TopTableTimings = field(default_factory=TopTableTimings)
|
|
207
|
+
tables_process_timings: TopTableTimings = field(default_factory=TopTableTimings)
|
|
183
208
|
listed_namespaces: int = 0
|
|
184
209
|
total_listed_tables: int = 0
|
|
185
210
|
tables_listed_per_namespace: TopKDict[str, int] = field(
|
|
@@ -201,11 +226,26 @@ class IcebergSourceReport(StaleEntityRemovalSourceReport):
|
|
|
201
226
|
def report_dropped(self, ent_name: str) -> None:
|
|
202
227
|
self.filtered.append(ent_name)
|
|
203
228
|
|
|
204
|
-
def report_table_load_time(
|
|
229
|
+
def report_table_load_time(
|
|
230
|
+
self, t: float, table_name: str, table_metadata_location: str
|
|
231
|
+
) -> None:
|
|
205
232
|
self.load_table_timings.add_timing(t)
|
|
233
|
+
self.tables_load_timings.add(
|
|
234
|
+
{"table": table_name, "timing": t, "metadata_file": table_metadata_location}
|
|
235
|
+
)
|
|
206
236
|
|
|
207
|
-
def report_table_processing_time(
|
|
237
|
+
def report_table_processing_time(
|
|
238
|
+
self, t: float, table_name: str, table_metadata_location: str
|
|
239
|
+
) -> None:
|
|
208
240
|
self.processing_table_timings.add_timing(t)
|
|
241
|
+
self.tables_process_timings.add(
|
|
242
|
+
{"table": table_name, "timing": t, "metadata_file": table_metadata_location}
|
|
243
|
+
)
|
|
209
244
|
|
|
210
|
-
def report_table_profiling_time(
|
|
245
|
+
def report_table_profiling_time(
|
|
246
|
+
self, t: float, table_name: str, table_metadata_location: str
|
|
247
|
+
) -> None:
|
|
211
248
|
self.profiling_table_timings.add_timing(t)
|
|
249
|
+
self.tables_profile_timings.add(
|
|
250
|
+
{"table": table_name, "timing": t, "metadata_file": table_metadata_location}
|
|
251
|
+
)
|
|
@@ -204,7 +204,9 @@ class IcebergProfiler:
|
|
|
204
204
|
)
|
|
205
205
|
dataset_profile.fieldProfiles.append(column_profile)
|
|
206
206
|
time_taken = timer.elapsed_seconds()
|
|
207
|
-
self.report.report_table_profiling_time(
|
|
207
|
+
self.report.report_table_profiling_time(
|
|
208
|
+
time_taken, dataset_name, table.metadata_location
|
|
209
|
+
)
|
|
208
210
|
LOGGER.debug(
|
|
209
211
|
f"Finished profiling of dataset: {dataset_name} in {time_taken}"
|
|
210
212
|
)
|