acryl-datahub-cloud 0.3.8rc11__py3-none-any.whl → 0.3.8rc12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub-cloud might be problematic. Click here for more details.

@@ -21727,7 +21727,7 @@ class DataProcessInstanceKeyClass(_Aspect):
21727
21727
 
21728
21728
 
21729
21729
  ASPECT_NAME = 'dataProcessInstanceKey'
21730
- ASPECT_INFO = {'keyForEntity': 'dataProcessInstance', 'entityCategory': '_unset_', 'entityAspects': ['dataProcessInstanceInput', 'dataProcessInstanceOutput', 'dataProcessInstanceProperties', 'dataProcessInstanceRelationships', 'dataProcessInstanceRunEvent', 'status', 'testResults', 'lineageFeatures'], 'entityDoc': 'DataProcessInstance represents an instance of a datajob/jobflow run'}
21730
+ ASPECT_INFO = {'keyForEntity': 'dataProcessInstance', 'entityCategory': '_unset_', 'entityAspects': ['dataProcessInstanceInput', 'dataProcessInstanceOutput', 'dataProcessInstanceProperties', 'dataProcessInstanceRelationships', 'dataProcessInstanceRunEvent', 'status', 'testResults', 'dataPlatformInstance', 'subTypes', 'container', 'mlTrainingRunProperties', 'lineageFeatures'], 'entityDoc': 'DataProcessInstance represents an instance of a datajob/jobflow run'}
21731
21731
  RECORD_SCHEMA = get_schema_type("com.linkedin.pegasus2avro.metadata.key.DataProcessInstanceKey")
21732
21732
 
21733
21733
  def __init__(self,
@@ -25786,8 +25786,13 @@ class MLModelGroupPropertiesClass(_Aspect):
25786
25786
 
25787
25787
  def __init__(self,
25788
25788
  customProperties: Optional[Dict[str, str]]=None,
25789
+ trainingJobs: Union[None, List[str]]=None,
25790
+ downstreamJobs: Union[None, List[str]]=None,
25791
+ name: Union[None, str]=None,
25789
25792
  description: Union[None, str]=None,
25790
25793
  createdAt: Union[None, int]=None,
25794
+ created: Union[None, "TimeStampClass"]=None,
25795
+ lastModified: Union[None, "TimeStampClass"]=None,
25791
25796
  version: Union[None, "VersionTagClass"]=None,
25792
25797
  ):
25793
25798
  super().__init__()
@@ -25797,14 +25802,24 @@ class MLModelGroupPropertiesClass(_Aspect):
25797
25802
  self.customProperties = dict()
25798
25803
  else:
25799
25804
  self.customProperties = customProperties
25805
+ self.trainingJobs = trainingJobs
25806
+ self.downstreamJobs = downstreamJobs
25807
+ self.name = name
25800
25808
  self.description = description
25801
25809
  self.createdAt = createdAt
25810
+ self.created = created
25811
+ self.lastModified = lastModified
25802
25812
  self.version = version
25803
25813
 
25804
25814
  def _restore_defaults(self) -> None:
25805
25815
  self.customProperties = dict()
25816
+ self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25817
+ self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25818
+ self.name = self.RECORD_SCHEMA.fields_dict["name"].default
25806
25819
  self.description = self.RECORD_SCHEMA.fields_dict["description"].default
25807
25820
  self.createdAt = self.RECORD_SCHEMA.fields_dict["createdAt"].default
25821
+ self.created = self.RECORD_SCHEMA.fields_dict["created"].default
25822
+ self.lastModified = self.RECORD_SCHEMA.fields_dict["lastModified"].default
25808
25823
  self.version = self.RECORD_SCHEMA.fields_dict["version"].default
25809
25824
 
25810
25825
 
@@ -25818,6 +25833,36 @@ class MLModelGroupPropertiesClass(_Aspect):
25818
25833
  self._inner_dict['customProperties'] = value
25819
25834
 
25820
25835
 
25836
+ @property
25837
+ def trainingJobs(self) -> Union[None, List[str]]:
25838
+ """List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."""
25839
+ return self._inner_dict.get('trainingJobs') # type: ignore
25840
+
25841
+ @trainingJobs.setter
25842
+ def trainingJobs(self, value: Union[None, List[str]]) -> None:
25843
+ self._inner_dict['trainingJobs'] = value
25844
+
25845
+
25846
+ @property
25847
+ def downstreamJobs(self) -> Union[None, List[str]]:
25848
+ """List of jobs or process instances (if any) that use the model or group."""
25849
+ return self._inner_dict.get('downstreamJobs') # type: ignore
25850
+
25851
+ @downstreamJobs.setter
25852
+ def downstreamJobs(self, value: Union[None, List[str]]) -> None:
25853
+ self._inner_dict['downstreamJobs'] = value
25854
+
25855
+
25856
+ @property
25857
+ def name(self) -> Union[None, str]:
25858
+ """Display name of the MLModelGroup"""
25859
+ return self._inner_dict.get('name') # type: ignore
25860
+
25861
+ @name.setter
25862
+ def name(self, value: Union[None, str]) -> None:
25863
+ self._inner_dict['name'] = value
25864
+
25865
+
25821
25866
  @property
25822
25867
  def description(self) -> Union[None, str]:
25823
25868
  """Documentation of the MLModelGroup"""
@@ -25838,6 +25883,26 @@ class MLModelGroupPropertiesClass(_Aspect):
25838
25883
  self._inner_dict['createdAt'] = value
25839
25884
 
25840
25885
 
25886
+ @property
25887
+ def created(self) -> Union[None, "TimeStampClass"]:
25888
+ """Time and Actor who created the MLModelGroup"""
25889
+ return self._inner_dict.get('created') # type: ignore
25890
+
25891
+ @created.setter
25892
+ def created(self, value: Union[None, "TimeStampClass"]) -> None:
25893
+ self._inner_dict['created'] = value
25894
+
25895
+
25896
+ @property
25897
+ def lastModified(self) -> Union[None, "TimeStampClass"]:
25898
+ """Date when the MLModelGroup was last modified"""
25899
+ return self._inner_dict.get('lastModified') # type: ignore
25900
+
25901
+ @lastModified.setter
25902
+ def lastModified(self, value: Union[None, "TimeStampClass"]) -> None:
25903
+ self._inner_dict['lastModified'] = value
25904
+
25905
+
25841
25906
  @property
25842
25907
  def version(self) -> Union[None, "VersionTagClass"]:
25843
25908
  """Version of the MLModelGroup"""
@@ -25859,8 +25924,13 @@ class MLModelPropertiesClass(_Aspect):
25859
25924
  def __init__(self,
25860
25925
  customProperties: Optional[Dict[str, str]]=None,
25861
25926
  externalUrl: Union[None, str]=None,
25927
+ trainingJobs: Union[None, List[str]]=None,
25928
+ downstreamJobs: Union[None, List[str]]=None,
25929
+ name: Union[None, str]=None,
25862
25930
  description: Union[None, str]=None,
25863
25931
  date: Union[None, int]=None,
25932
+ created: Union[None, "TimeStampClass"]=None,
25933
+ lastModified: Union[None, "TimeStampClass"]=None,
25864
25934
  version: Union[None, "VersionTagClass"]=None,
25865
25935
  type: Union[None, str]=None,
25866
25936
  hyperParameters: Union[None, Dict[str, Union[str, int, float, float, bool]]]=None,
@@ -25870,8 +25940,6 @@ class MLModelPropertiesClass(_Aspect):
25870
25940
  mlFeatures: Union[None, List[str]]=None,
25871
25941
  tags: Optional[List[str]]=None,
25872
25942
  deployments: Union[None, List[str]]=None,
25873
- trainingJobs: Union[None, List[str]]=None,
25874
- downstreamJobs: Union[None, List[str]]=None,
25875
25943
  groups: Union[None, List[str]]=None,
25876
25944
  ):
25877
25945
  super().__init__()
@@ -25882,8 +25950,13 @@ class MLModelPropertiesClass(_Aspect):
25882
25950
  else:
25883
25951
  self.customProperties = customProperties
25884
25952
  self.externalUrl = externalUrl
25953
+ self.trainingJobs = trainingJobs
25954
+ self.downstreamJobs = downstreamJobs
25955
+ self.name = name
25885
25956
  self.description = description
25886
25957
  self.date = date
25958
+ self.created = created
25959
+ self.lastModified = lastModified
25887
25960
  self.version = version
25888
25961
  self.type = type
25889
25962
  self.hyperParameters = hyperParameters
@@ -25897,15 +25970,18 @@ class MLModelPropertiesClass(_Aspect):
25897
25970
  else:
25898
25971
  self.tags = tags
25899
25972
  self.deployments = deployments
25900
- self.trainingJobs = trainingJobs
25901
- self.downstreamJobs = downstreamJobs
25902
25973
  self.groups = groups
25903
25974
 
25904
25975
  def _restore_defaults(self) -> None:
25905
25976
  self.customProperties = dict()
25906
25977
  self.externalUrl = self.RECORD_SCHEMA.fields_dict["externalUrl"].default
25978
+ self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25979
+ self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25980
+ self.name = self.RECORD_SCHEMA.fields_dict["name"].default
25907
25981
  self.description = self.RECORD_SCHEMA.fields_dict["description"].default
25908
25982
  self.date = self.RECORD_SCHEMA.fields_dict["date"].default
25983
+ self.created = self.RECORD_SCHEMA.fields_dict["created"].default
25984
+ self.lastModified = self.RECORD_SCHEMA.fields_dict["lastModified"].default
25909
25985
  self.version = self.RECORD_SCHEMA.fields_dict["version"].default
25910
25986
  self.type = self.RECORD_SCHEMA.fields_dict["type"].default
25911
25987
  self.hyperParameters = self.RECORD_SCHEMA.fields_dict["hyperParameters"].default
@@ -25915,8 +25991,6 @@ class MLModelPropertiesClass(_Aspect):
25915
25991
  self.mlFeatures = self.RECORD_SCHEMA.fields_dict["mlFeatures"].default
25916
25992
  self.tags = list()
25917
25993
  self.deployments = self.RECORD_SCHEMA.fields_dict["deployments"].default
25918
- self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25919
- self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25920
25994
  self.groups = self.RECORD_SCHEMA.fields_dict["groups"].default
25921
25995
 
25922
25996
 
@@ -25940,6 +26014,36 @@ class MLModelPropertiesClass(_Aspect):
25940
26014
  self._inner_dict['externalUrl'] = value
25941
26015
 
25942
26016
 
26017
+ @property
26018
+ def trainingJobs(self) -> Union[None, List[str]]:
26019
+ """List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."""
26020
+ return self._inner_dict.get('trainingJobs') # type: ignore
26021
+
26022
+ @trainingJobs.setter
26023
+ def trainingJobs(self, value: Union[None, List[str]]) -> None:
26024
+ self._inner_dict['trainingJobs'] = value
26025
+
26026
+
26027
+ @property
26028
+ def downstreamJobs(self) -> Union[None, List[str]]:
26029
+ """List of jobs or process instances (if any) that use the model or group."""
26030
+ return self._inner_dict.get('downstreamJobs') # type: ignore
26031
+
26032
+ @downstreamJobs.setter
26033
+ def downstreamJobs(self, value: Union[None, List[str]]) -> None:
26034
+ self._inner_dict['downstreamJobs'] = value
26035
+
26036
+
26037
+ @property
26038
+ def name(self) -> Union[None, str]:
26039
+ """Display name of the MLModel"""
26040
+ return self._inner_dict.get('name') # type: ignore
26041
+
26042
+ @name.setter
26043
+ def name(self, value: Union[None, str]) -> None:
26044
+ self._inner_dict['name'] = value
26045
+
26046
+
25943
26047
  @property
25944
26048
  def description(self) -> Union[None, str]:
25945
26049
  """Documentation of the MLModel"""
@@ -25960,6 +26064,26 @@ class MLModelPropertiesClass(_Aspect):
25960
26064
  self._inner_dict['date'] = value
25961
26065
 
25962
26066
 
26067
+ @property
26068
+ def created(self) -> Union[None, "TimeStampClass"]:
26069
+ """Audit stamp containing who created this and when"""
26070
+ return self._inner_dict.get('created') # type: ignore
26071
+
26072
+ @created.setter
26073
+ def created(self, value: Union[None, "TimeStampClass"]) -> None:
26074
+ self._inner_dict['created'] = value
26075
+
26076
+
26077
+ @property
26078
+ def lastModified(self) -> Union[None, "TimeStampClass"]:
26079
+ """Date when the MLModel was last modified"""
26080
+ return self._inner_dict.get('lastModified') # type: ignore
26081
+
26082
+ @lastModified.setter
26083
+ def lastModified(self, value: Union[None, "TimeStampClass"]) -> None:
26084
+ self._inner_dict['lastModified'] = value
26085
+
26086
+
25963
26087
  @property
25964
26088
  def version(self) -> Union[None, "VersionTagClass"]:
25965
26089
  """Version of the MLModel"""
@@ -26052,26 +26176,6 @@ class MLModelPropertiesClass(_Aspect):
26052
26176
  self._inner_dict['deployments'] = value
26053
26177
 
26054
26178
 
26055
- @property
26056
- def trainingJobs(self) -> Union[None, List[str]]:
26057
- """List of jobs (if any) used to train the model"""
26058
- return self._inner_dict.get('trainingJobs') # type: ignore
26059
-
26060
- @trainingJobs.setter
26061
- def trainingJobs(self, value: Union[None, List[str]]) -> None:
26062
- self._inner_dict['trainingJobs'] = value
26063
-
26064
-
26065
- @property
26066
- def downstreamJobs(self) -> Union[None, List[str]]:
26067
- """List of jobs (if any) that use the model"""
26068
- return self._inner_dict.get('downstreamJobs') # type: ignore
26069
-
26070
- @downstreamJobs.setter
26071
- def downstreamJobs(self, value: Union[None, List[str]]) -> None:
26072
- self._inner_dict['downstreamJobs'] = value
26073
-
26074
-
26075
26179
  @property
26076
26180
  def groups(self) -> Union[None, List[str]]:
26077
26181
  """Groups the model belongs to"""
@@ -26167,6 +26271,104 @@ class MLPrimaryKeyPropertiesClass(_Aspect):
26167
26271
  self._inner_dict['sources'] = value
26168
26272
 
26169
26273
 
26274
+ class MLTrainingRunPropertiesClass(_Aspect):
26275
+ """The inputs and outputs of this training run"""
26276
+
26277
+
26278
+ ASPECT_NAME = 'mlTrainingRunProperties'
26279
+ ASPECT_INFO = {}
26280
+ RECORD_SCHEMA = get_schema_type("com.linkedin.pegasus2avro.ml.metadata.MLTrainingRunProperties")
26281
+
26282
+ def __init__(self,
26283
+ customProperties: Optional[Dict[str, str]]=None,
26284
+ externalUrl: Union[None, str]=None,
26285
+ id: Union[None, str]=None,
26286
+ outputUrls: Union[None, List[str]]=None,
26287
+ hyperParams: Union[None, List["MLHyperParamClass"]]=None,
26288
+ trainingMetrics: Union[None, List["MLMetricClass"]]=None,
26289
+ ):
26290
+ super().__init__()
26291
+
26292
+ if customProperties is None:
26293
+ # default: {}
26294
+ self.customProperties = dict()
26295
+ else:
26296
+ self.customProperties = customProperties
26297
+ self.externalUrl = externalUrl
26298
+ self.id = id
26299
+ self.outputUrls = outputUrls
26300
+ self.hyperParams = hyperParams
26301
+ self.trainingMetrics = trainingMetrics
26302
+
26303
+ def _restore_defaults(self) -> None:
26304
+ self.customProperties = dict()
26305
+ self.externalUrl = self.RECORD_SCHEMA.fields_dict["externalUrl"].default
26306
+ self.id = self.RECORD_SCHEMA.fields_dict["id"].default
26307
+ self.outputUrls = self.RECORD_SCHEMA.fields_dict["outputUrls"].default
26308
+ self.hyperParams = self.RECORD_SCHEMA.fields_dict["hyperParams"].default
26309
+ self.trainingMetrics = self.RECORD_SCHEMA.fields_dict["trainingMetrics"].default
26310
+
26311
+
26312
+ @property
26313
+ def customProperties(self) -> Dict[str, str]:
26314
+ """Custom property bag."""
26315
+ return self._inner_dict.get('customProperties') # type: ignore
26316
+
26317
+ @customProperties.setter
26318
+ def customProperties(self, value: Dict[str, str]) -> None:
26319
+ self._inner_dict['customProperties'] = value
26320
+
26321
+
26322
+ @property
26323
+ def externalUrl(self) -> Union[None, str]:
26324
+ """URL where the reference exist"""
26325
+ return self._inner_dict.get('externalUrl') # type: ignore
26326
+
26327
+ @externalUrl.setter
26328
+ def externalUrl(self, value: Union[None, str]) -> None:
26329
+ self._inner_dict['externalUrl'] = value
26330
+
26331
+
26332
+ @property
26333
+ def id(self) -> Union[None, str]:
26334
+ """Run Id of the ML Training Run"""
26335
+ return self._inner_dict.get('id') # type: ignore
26336
+
26337
+ @id.setter
26338
+ def id(self, value: Union[None, str]) -> None:
26339
+ self._inner_dict['id'] = value
26340
+
26341
+
26342
+ @property
26343
+ def outputUrls(self) -> Union[None, List[str]]:
26344
+ """List of URLs for the Outputs of the ML Training Run"""
26345
+ return self._inner_dict.get('outputUrls') # type: ignore
26346
+
26347
+ @outputUrls.setter
26348
+ def outputUrls(self, value: Union[None, List[str]]) -> None:
26349
+ self._inner_dict['outputUrls'] = value
26350
+
26351
+
26352
+ @property
26353
+ def hyperParams(self) -> Union[None, List["MLHyperParamClass"]]:
26354
+ """Hyperparameters of the ML Training Run"""
26355
+ return self._inner_dict.get('hyperParams') # type: ignore
26356
+
26357
+ @hyperParams.setter
26358
+ def hyperParams(self, value: Union[None, List["MLHyperParamClass"]]) -> None:
26359
+ self._inner_dict['hyperParams'] = value
26360
+
26361
+
26362
+ @property
26363
+ def trainingMetrics(self) -> Union[None, List["MLMetricClass"]]:
26364
+ """Metrics of the ML Training Run"""
26365
+ return self._inner_dict.get('trainingMetrics') # type: ignore
26366
+
26367
+ @trainingMetrics.setter
26368
+ def trainingMetrics(self, value: Union[None, List["MLMetricClass"]]) -> None:
26369
+ self._inner_dict['trainingMetrics'] = value
26370
+
26371
+
26170
26372
  class MetricsClass(_Aspect):
26171
26373
  """Metrics to be featured for the MLModel."""
26172
26374
 
@@ -35385,6 +35587,7 @@ __SCHEMA_TYPES = {
35385
35587
  'com.linkedin.pegasus2avro.ml.metadata.MLModelGroupProperties': MLModelGroupPropertiesClass,
35386
35588
  'com.linkedin.pegasus2avro.ml.metadata.MLModelProperties': MLModelPropertiesClass,
35387
35589
  'com.linkedin.pegasus2avro.ml.metadata.MLPrimaryKeyProperties': MLPrimaryKeyPropertiesClass,
35590
+ 'com.linkedin.pegasus2avro.ml.metadata.MLTrainingRunProperties': MLTrainingRunPropertiesClass,
35388
35591
  'com.linkedin.pegasus2avro.ml.metadata.Metrics': MetricsClass,
35389
35592
  'com.linkedin.pegasus2avro.ml.metadata.QuantitativeAnalyses': QuantitativeAnalysesClass,
35390
35593
  'com.linkedin.pegasus2avro.ml.metadata.SourceCode': SourceCodeClass,
@@ -36053,6 +36256,7 @@ __SCHEMA_TYPES = {
36053
36256
  'MLModelGroupProperties': MLModelGroupPropertiesClass,
36054
36257
  'MLModelProperties': MLModelPropertiesClass,
36055
36258
  'MLPrimaryKeyProperties': MLPrimaryKeyPropertiesClass,
36259
+ 'MLTrainingRunProperties': MLTrainingRunPropertiesClass,
36056
36260
  'Metrics': MetricsClass,
36057
36261
  'QuantitativeAnalyses': QuantitativeAnalysesClass,
36058
36262
  'SourceCode': SourceCodeClass,
@@ -36295,6 +36499,7 @@ ASPECT_CLASSES: List[Type[_Aspect]] = [
36295
36499
  MLModelGroupPropertiesClass,
36296
36500
  EthicalConsiderationsClass,
36297
36501
  CaveatsAndRecommendationsClass,
36502
+ MLTrainingRunPropertiesClass,
36298
36503
  MLPrimaryKeyPropertiesClass,
36299
36504
  MLHyperParamClass,
36300
36505
  MLModelFactorPromptsClass,
@@ -36561,6 +36766,7 @@ class AspectBag(TypedDict, total=False):
36561
36766
  mlModelGroupProperties: MLModelGroupPropertiesClass
36562
36767
  mlModelEthicalConsiderations: EthicalConsiderationsClass
36563
36768
  mlModelCaveatsAndRecommendations: CaveatsAndRecommendationsClass
36769
+ mlTrainingRunProperties: MLTrainingRunPropertiesClass
36564
36770
  mlPrimaryKeyProperties: MLPrimaryKeyPropertiesClass
36565
36771
  mlHyperParam: MLHyperParamClass
36566
36772
  mlModelFactorPrompts: MLModelFactorPromptsClass
@@ -12,6 +12,10 @@
12
12
  "dataProcessInstanceRunEvent",
13
13
  "status",
14
14
  "testResults",
15
+ "dataPlatformInstance",
16
+ "subTypes",
17
+ "container",
18
+ "mlTrainingRunProperties",
15
19
  "lineageFeatures"
16
20
  ],
17
21
  "entityDoc": "DataProcessInstance represents an instance of a datajob/jobflow run"
@@ -10,7 +10,8 @@
10
10
  "Relationship": {
11
11
  "/*": {
12
12
  "entityTypes": [
13
- "dataset"
13
+ "dataset",
14
+ "mlModel"
14
15
  ],
15
16
  "name": "Produces"
16
17
  }
@@ -21,6 +21,66 @@
21
21
  "default": {},
22
22
  "doc": "Custom property bag."
23
23
  },
24
+ {
25
+ "Relationship": {
26
+ "/*": {
27
+ "entityTypes": [
28
+ "dataJob",
29
+ "dataProcessInstance"
30
+ ],
31
+ "isLineage": true,
32
+ "name": "TrainedBy"
33
+ }
34
+ },
35
+ "type": [
36
+ "null",
37
+ {
38
+ "type": "array",
39
+ "items": "string"
40
+ }
41
+ ],
42
+ "name": "trainingJobs",
43
+ "default": null,
44
+ "doc": "List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."
45
+ },
46
+ {
47
+ "Relationship": {
48
+ "/*": {
49
+ "entityTypes": [
50
+ "dataJob",
51
+ "dataProcessInstance"
52
+ ],
53
+ "isLineage": true,
54
+ "isUpstream": false,
55
+ "name": "UsedBy"
56
+ }
57
+ },
58
+ "type": [
59
+ "null",
60
+ {
61
+ "type": "array",
62
+ "items": "string"
63
+ }
64
+ ],
65
+ "name": "downstreamJobs",
66
+ "default": null,
67
+ "doc": "List of jobs or process instances (if any) that use the model or group."
68
+ },
69
+ {
70
+ "Searchable": {
71
+ "boostScore": 10.0,
72
+ "enableAutocomplete": true,
73
+ "fieldType": "WORD_GRAM",
74
+ "queryByDefault": true
75
+ },
76
+ "type": [
77
+ "null",
78
+ "string"
79
+ ],
80
+ "name": "name",
81
+ "default": null,
82
+ "doc": "Display name of the MLModelGroup"
83
+ },
24
84
  {
25
85
  "Searchable": {
26
86
  "fieldType": "TEXT",
@@ -35,6 +95,7 @@
35
95
  "doc": "Documentation of the MLModelGroup"
36
96
  },
37
97
  {
98
+ "deprecated": true,
38
99
  "type": [
39
100
  "null",
40
101
  "long"
@@ -43,6 +104,49 @@
43
104
  "default": null,
44
105
  "doc": "Date when the MLModelGroup was developed"
45
106
  },
107
+ {
108
+ "type": [
109
+ "null",
110
+ {
111
+ "type": "record",
112
+ "name": "TimeStamp",
113
+ "namespace": "com.linkedin.pegasus2avro.common",
114
+ "fields": [
115
+ {
116
+ "type": "long",
117
+ "name": "time",
118
+ "doc": "When did the event occur"
119
+ },
120
+ {
121
+ "java": {
122
+ "class": "com.linkedin.pegasus2avro.common.urn.Urn"
123
+ },
124
+ "type": [
125
+ "null",
126
+ "string"
127
+ ],
128
+ "name": "actor",
129
+ "default": null,
130
+ "doc": "Optional: The actor urn involved in the event.",
131
+ "Urn": "Urn"
132
+ }
133
+ ],
134
+ "doc": "A standard event timestamp"
135
+ }
136
+ ],
137
+ "name": "created",
138
+ "default": null,
139
+ "doc": "Time and Actor who created the MLModelGroup"
140
+ },
141
+ {
142
+ "type": [
143
+ "null",
144
+ "com.linkedin.pegasus2avro.common.TimeStamp"
145
+ ],
146
+ "name": "lastModified",
147
+ "default": null,
148
+ "doc": "Date when the MLModelGroup was last modified"
149
+ },
46
150
  {
47
151
  "type": [
48
152
  "null",