acryl-datahub-cloud 0.3.7.9.1__py3-none-any.whl → 0.3.7.10rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub-cloud might be problematic. Click here for more details.

@@ -13056,7 +13056,7 @@ class DataProcessInstanceInputClass(_Aspect):
13056
13056
 
13057
13057
  @property
13058
13058
  def inputs(self) -> List[str]:
13059
- """Input assets consumed"""
13059
+ """Input datasets to be consumed"""
13060
13060
  return self._inner_dict.get('inputs') # type: ignore
13061
13061
 
13062
13062
  @inputs.setter
@@ -21313,7 +21313,7 @@ class DataProcessInstanceKeyClass(_Aspect):
21313
21313
 
21314
21314
 
21315
21315
  ASPECT_NAME = 'dataProcessInstanceKey'
21316
- ASPECT_INFO = {'keyForEntity': 'dataProcessInstance', 'entityCategory': '_unset_', 'entityAspects': ['dataProcessInstanceInput', 'dataProcessInstanceOutput', 'dataProcessInstanceProperties', 'dataProcessInstanceRelationships', 'dataProcessInstanceRunEvent', 'status', 'testResults', 'dataPlatformInstance', 'subTypes', 'container', 'mlTrainingRunProperties', 'lineageFeatures'], 'entityDoc': 'DataProcessInstance represents an instance of a datajob/jobflow run'}
21316
+ ASPECT_INFO = {'keyForEntity': 'dataProcessInstance', 'entityCategory': '_unset_', 'entityAspects': ['dataProcessInstanceInput', 'dataProcessInstanceOutput', 'dataProcessInstanceProperties', 'dataProcessInstanceRelationships', 'dataProcessInstanceRunEvent', 'status', 'testResults', 'lineageFeatures'], 'entityDoc': 'DataProcessInstance represents an instance of a datajob/jobflow run'}
21317
21317
  RECORD_SCHEMA = get_schema_type("com.linkedin.pegasus2avro.metadata.key.DataProcessInstanceKey")
21318
21318
 
21319
21319
  def __init__(self,
@@ -25298,13 +25298,8 @@ class MLModelGroupPropertiesClass(_Aspect):
25298
25298
 
25299
25299
  def __init__(self,
25300
25300
  customProperties: Optional[Dict[str, str]]=None,
25301
- trainingJobs: Union[None, List[str]]=None,
25302
- downstreamJobs: Union[None, List[str]]=None,
25303
- name: Union[None, str]=None,
25304
25301
  description: Union[None, str]=None,
25305
25302
  createdAt: Union[None, int]=None,
25306
- created: Union[None, "TimeStampClass"]=None,
25307
- lastModified: Union[None, "TimeStampClass"]=None,
25308
25303
  version: Union[None, "VersionTagClass"]=None,
25309
25304
  ):
25310
25305
  super().__init__()
@@ -25314,24 +25309,14 @@ class MLModelGroupPropertiesClass(_Aspect):
25314
25309
  self.customProperties = dict()
25315
25310
  else:
25316
25311
  self.customProperties = customProperties
25317
- self.trainingJobs = trainingJobs
25318
- self.downstreamJobs = downstreamJobs
25319
- self.name = name
25320
25312
  self.description = description
25321
25313
  self.createdAt = createdAt
25322
- self.created = created
25323
- self.lastModified = lastModified
25324
25314
  self.version = version
25325
25315
 
25326
25316
  def _restore_defaults(self) -> None:
25327
25317
  self.customProperties = dict()
25328
- self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25329
- self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25330
- self.name = self.RECORD_SCHEMA.fields_dict["name"].default
25331
25318
  self.description = self.RECORD_SCHEMA.fields_dict["description"].default
25332
25319
  self.createdAt = self.RECORD_SCHEMA.fields_dict["createdAt"].default
25333
- self.created = self.RECORD_SCHEMA.fields_dict["created"].default
25334
- self.lastModified = self.RECORD_SCHEMA.fields_dict["lastModified"].default
25335
25320
  self.version = self.RECORD_SCHEMA.fields_dict["version"].default
25336
25321
 
25337
25322
 
@@ -25345,36 +25330,6 @@ class MLModelGroupPropertiesClass(_Aspect):
25345
25330
  self._inner_dict['customProperties'] = value
25346
25331
 
25347
25332
 
25348
- @property
25349
- def trainingJobs(self) -> Union[None, List[str]]:
25350
- """List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."""
25351
- return self._inner_dict.get('trainingJobs') # type: ignore
25352
-
25353
- @trainingJobs.setter
25354
- def trainingJobs(self, value: Union[None, List[str]]) -> None:
25355
- self._inner_dict['trainingJobs'] = value
25356
-
25357
-
25358
- @property
25359
- def downstreamJobs(self) -> Union[None, List[str]]:
25360
- """List of jobs or process instances (if any) that use the model or group."""
25361
- return self._inner_dict.get('downstreamJobs') # type: ignore
25362
-
25363
- @downstreamJobs.setter
25364
- def downstreamJobs(self, value: Union[None, List[str]]) -> None:
25365
- self._inner_dict['downstreamJobs'] = value
25366
-
25367
-
25368
- @property
25369
- def name(self) -> Union[None, str]:
25370
- """Display name of the MLModelGroup"""
25371
- return self._inner_dict.get('name') # type: ignore
25372
-
25373
- @name.setter
25374
- def name(self, value: Union[None, str]) -> None:
25375
- self._inner_dict['name'] = value
25376
-
25377
-
25378
25333
  @property
25379
25334
  def description(self) -> Union[None, str]:
25380
25335
  """Documentation of the MLModelGroup"""
@@ -25395,26 +25350,6 @@ class MLModelGroupPropertiesClass(_Aspect):
25395
25350
  self._inner_dict['createdAt'] = value
25396
25351
 
25397
25352
 
25398
- @property
25399
- def created(self) -> Union[None, "TimeStampClass"]:
25400
- """Time and Actor who created the MLModelGroup"""
25401
- return self._inner_dict.get('created') # type: ignore
25402
-
25403
- @created.setter
25404
- def created(self, value: Union[None, "TimeStampClass"]) -> None:
25405
- self._inner_dict['created'] = value
25406
-
25407
-
25408
- @property
25409
- def lastModified(self) -> Union[None, "TimeStampClass"]:
25410
- """Date when the MLModelGroup was last modified"""
25411
- return self._inner_dict.get('lastModified') # type: ignore
25412
-
25413
- @lastModified.setter
25414
- def lastModified(self, value: Union[None, "TimeStampClass"]) -> None:
25415
- self._inner_dict['lastModified'] = value
25416
-
25417
-
25418
25353
  @property
25419
25354
  def version(self) -> Union[None, "VersionTagClass"]:
25420
25355
  """Version of the MLModelGroup"""
@@ -25436,13 +25371,8 @@ class MLModelPropertiesClass(_Aspect):
25436
25371
  def __init__(self,
25437
25372
  customProperties: Optional[Dict[str, str]]=None,
25438
25373
  externalUrl: Union[None, str]=None,
25439
- trainingJobs: Union[None, List[str]]=None,
25440
- downstreamJobs: Union[None, List[str]]=None,
25441
- name: Union[None, str]=None,
25442
25374
  description: Union[None, str]=None,
25443
25375
  date: Union[None, int]=None,
25444
- created: Union[None, "TimeStampClass"]=None,
25445
- lastModified: Union[None, "TimeStampClass"]=None,
25446
25376
  version: Union[None, "VersionTagClass"]=None,
25447
25377
  type: Union[None, str]=None,
25448
25378
  hyperParameters: Union[None, Dict[str, Union[str, int, float, float, bool]]]=None,
@@ -25452,6 +25382,8 @@ class MLModelPropertiesClass(_Aspect):
25452
25382
  mlFeatures: Union[None, List[str]]=None,
25453
25383
  tags: Optional[List[str]]=None,
25454
25384
  deployments: Union[None, List[str]]=None,
25385
+ trainingJobs: Union[None, List[str]]=None,
25386
+ downstreamJobs: Union[None, List[str]]=None,
25455
25387
  groups: Union[None, List[str]]=None,
25456
25388
  ):
25457
25389
  super().__init__()
@@ -25462,13 +25394,8 @@ class MLModelPropertiesClass(_Aspect):
25462
25394
  else:
25463
25395
  self.customProperties = customProperties
25464
25396
  self.externalUrl = externalUrl
25465
- self.trainingJobs = trainingJobs
25466
- self.downstreamJobs = downstreamJobs
25467
- self.name = name
25468
25397
  self.description = description
25469
25398
  self.date = date
25470
- self.created = created
25471
- self.lastModified = lastModified
25472
25399
  self.version = version
25473
25400
  self.type = type
25474
25401
  self.hyperParameters = hyperParameters
@@ -25482,18 +25409,15 @@ class MLModelPropertiesClass(_Aspect):
25482
25409
  else:
25483
25410
  self.tags = tags
25484
25411
  self.deployments = deployments
25412
+ self.trainingJobs = trainingJobs
25413
+ self.downstreamJobs = downstreamJobs
25485
25414
  self.groups = groups
25486
25415
 
25487
25416
  def _restore_defaults(self) -> None:
25488
25417
  self.customProperties = dict()
25489
25418
  self.externalUrl = self.RECORD_SCHEMA.fields_dict["externalUrl"].default
25490
- self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25491
- self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25492
- self.name = self.RECORD_SCHEMA.fields_dict["name"].default
25493
25419
  self.description = self.RECORD_SCHEMA.fields_dict["description"].default
25494
25420
  self.date = self.RECORD_SCHEMA.fields_dict["date"].default
25495
- self.created = self.RECORD_SCHEMA.fields_dict["created"].default
25496
- self.lastModified = self.RECORD_SCHEMA.fields_dict["lastModified"].default
25497
25421
  self.version = self.RECORD_SCHEMA.fields_dict["version"].default
25498
25422
  self.type = self.RECORD_SCHEMA.fields_dict["type"].default
25499
25423
  self.hyperParameters = self.RECORD_SCHEMA.fields_dict["hyperParameters"].default
@@ -25503,6 +25427,8 @@ class MLModelPropertiesClass(_Aspect):
25503
25427
  self.mlFeatures = self.RECORD_SCHEMA.fields_dict["mlFeatures"].default
25504
25428
  self.tags = list()
25505
25429
  self.deployments = self.RECORD_SCHEMA.fields_dict["deployments"].default
25430
+ self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25431
+ self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25506
25432
  self.groups = self.RECORD_SCHEMA.fields_dict["groups"].default
25507
25433
 
25508
25434
 
@@ -25526,36 +25452,6 @@ class MLModelPropertiesClass(_Aspect):
25526
25452
  self._inner_dict['externalUrl'] = value
25527
25453
 
25528
25454
 
25529
- @property
25530
- def trainingJobs(self) -> Union[None, List[str]]:
25531
- """List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."""
25532
- return self._inner_dict.get('trainingJobs') # type: ignore
25533
-
25534
- @trainingJobs.setter
25535
- def trainingJobs(self, value: Union[None, List[str]]) -> None:
25536
- self._inner_dict['trainingJobs'] = value
25537
-
25538
-
25539
- @property
25540
- def downstreamJobs(self) -> Union[None, List[str]]:
25541
- """List of jobs or process instances (if any) that use the model or group."""
25542
- return self._inner_dict.get('downstreamJobs') # type: ignore
25543
-
25544
- @downstreamJobs.setter
25545
- def downstreamJobs(self, value: Union[None, List[str]]) -> None:
25546
- self._inner_dict['downstreamJobs'] = value
25547
-
25548
-
25549
- @property
25550
- def name(self) -> Union[None, str]:
25551
- """Display name of the MLModel"""
25552
- return self._inner_dict.get('name') # type: ignore
25553
-
25554
- @name.setter
25555
- def name(self, value: Union[None, str]) -> None:
25556
- self._inner_dict['name'] = value
25557
-
25558
-
25559
25455
  @property
25560
25456
  def description(self) -> Union[None, str]:
25561
25457
  """Documentation of the MLModel"""
@@ -25576,26 +25472,6 @@ class MLModelPropertiesClass(_Aspect):
25576
25472
  self._inner_dict['date'] = value
25577
25473
 
25578
25474
 
25579
- @property
25580
- def created(self) -> Union[None, "TimeStampClass"]:
25581
- """Audit stamp containing who created this and when"""
25582
- return self._inner_dict.get('created') # type: ignore
25583
-
25584
- @created.setter
25585
- def created(self, value: Union[None, "TimeStampClass"]) -> None:
25586
- self._inner_dict['created'] = value
25587
-
25588
-
25589
- @property
25590
- def lastModified(self) -> Union[None, "TimeStampClass"]:
25591
- """Date when the MLModel was last modified"""
25592
- return self._inner_dict.get('lastModified') # type: ignore
25593
-
25594
- @lastModified.setter
25595
- def lastModified(self, value: Union[None, "TimeStampClass"]) -> None:
25596
- self._inner_dict['lastModified'] = value
25597
-
25598
-
25599
25475
  @property
25600
25476
  def version(self) -> Union[None, "VersionTagClass"]:
25601
25477
  """Version of the MLModel"""
@@ -25688,6 +25564,26 @@ class MLModelPropertiesClass(_Aspect):
25688
25564
  self._inner_dict['deployments'] = value
25689
25565
 
25690
25566
 
25567
+ @property
25568
+ def trainingJobs(self) -> Union[None, List[str]]:
25569
+ """List of jobs (if any) used to train the model"""
25570
+ return self._inner_dict.get('trainingJobs') # type: ignore
25571
+
25572
+ @trainingJobs.setter
25573
+ def trainingJobs(self, value: Union[None, List[str]]) -> None:
25574
+ self._inner_dict['trainingJobs'] = value
25575
+
25576
+
25577
+ @property
25578
+ def downstreamJobs(self) -> Union[None, List[str]]:
25579
+ """List of jobs (if any) that use the model"""
25580
+ return self._inner_dict.get('downstreamJobs') # type: ignore
25581
+
25582
+ @downstreamJobs.setter
25583
+ def downstreamJobs(self, value: Union[None, List[str]]) -> None:
25584
+ self._inner_dict['downstreamJobs'] = value
25585
+
25586
+
25691
25587
  @property
25692
25588
  def groups(self) -> Union[None, List[str]]:
25693
25589
  """Groups the model belongs to"""
@@ -25783,104 +25679,6 @@ class MLPrimaryKeyPropertiesClass(_Aspect):
25783
25679
  self._inner_dict['sources'] = value
25784
25680
 
25785
25681
 
25786
- class MLTrainingRunPropertiesClass(_Aspect):
25787
- """The inputs and outputs of this training run"""
25788
-
25789
-
25790
- ASPECT_NAME = 'mlTrainingRunProperties'
25791
- ASPECT_INFO = {}
25792
- RECORD_SCHEMA = get_schema_type("com.linkedin.pegasus2avro.ml.metadata.MLTrainingRunProperties")
25793
-
25794
- def __init__(self,
25795
- customProperties: Optional[Dict[str, str]]=None,
25796
- externalUrl: Union[None, str]=None,
25797
- id: Union[None, str]=None,
25798
- outputUrls: Union[None, List[str]]=None,
25799
- hyperParams: Union[None, List["MLHyperParamClass"]]=None,
25800
- trainingMetrics: Union[None, List["MLMetricClass"]]=None,
25801
- ):
25802
- super().__init__()
25803
-
25804
- if customProperties is None:
25805
- # default: {}
25806
- self.customProperties = dict()
25807
- else:
25808
- self.customProperties = customProperties
25809
- self.externalUrl = externalUrl
25810
- self.id = id
25811
- self.outputUrls = outputUrls
25812
- self.hyperParams = hyperParams
25813
- self.trainingMetrics = trainingMetrics
25814
-
25815
- def _restore_defaults(self) -> None:
25816
- self.customProperties = dict()
25817
- self.externalUrl = self.RECORD_SCHEMA.fields_dict["externalUrl"].default
25818
- self.id = self.RECORD_SCHEMA.fields_dict["id"].default
25819
- self.outputUrls = self.RECORD_SCHEMA.fields_dict["outputUrls"].default
25820
- self.hyperParams = self.RECORD_SCHEMA.fields_dict["hyperParams"].default
25821
- self.trainingMetrics = self.RECORD_SCHEMA.fields_dict["trainingMetrics"].default
25822
-
25823
-
25824
- @property
25825
- def customProperties(self) -> Dict[str, str]:
25826
- """Custom property bag."""
25827
- return self._inner_dict.get('customProperties') # type: ignore
25828
-
25829
- @customProperties.setter
25830
- def customProperties(self, value: Dict[str, str]) -> None:
25831
- self._inner_dict['customProperties'] = value
25832
-
25833
-
25834
- @property
25835
- def externalUrl(self) -> Union[None, str]:
25836
- """URL where the reference exist"""
25837
- return self._inner_dict.get('externalUrl') # type: ignore
25838
-
25839
- @externalUrl.setter
25840
- def externalUrl(self, value: Union[None, str]) -> None:
25841
- self._inner_dict['externalUrl'] = value
25842
-
25843
-
25844
- @property
25845
- def id(self) -> Union[None, str]:
25846
- """Run Id of the ML Training Run"""
25847
- return self._inner_dict.get('id') # type: ignore
25848
-
25849
- @id.setter
25850
- def id(self, value: Union[None, str]) -> None:
25851
- self._inner_dict['id'] = value
25852
-
25853
-
25854
- @property
25855
- def outputUrls(self) -> Union[None, List[str]]:
25856
- """List of URLs for the Outputs of the ML Training Run"""
25857
- return self._inner_dict.get('outputUrls') # type: ignore
25858
-
25859
- @outputUrls.setter
25860
- def outputUrls(self, value: Union[None, List[str]]) -> None:
25861
- self._inner_dict['outputUrls'] = value
25862
-
25863
-
25864
- @property
25865
- def hyperParams(self) -> Union[None, List["MLHyperParamClass"]]:
25866
- """Hyperparameters of the ML Training Run"""
25867
- return self._inner_dict.get('hyperParams') # type: ignore
25868
-
25869
- @hyperParams.setter
25870
- def hyperParams(self, value: Union[None, List["MLHyperParamClass"]]) -> None:
25871
- self._inner_dict['hyperParams'] = value
25872
-
25873
-
25874
- @property
25875
- def trainingMetrics(self) -> Union[None, List["MLMetricClass"]]:
25876
- """Metrics of the ML Training Run"""
25877
- return self._inner_dict.get('trainingMetrics') # type: ignore
25878
-
25879
- @trainingMetrics.setter
25880
- def trainingMetrics(self, value: Union[None, List["MLMetricClass"]]) -> None:
25881
- self._inner_dict['trainingMetrics'] = value
25882
-
25883
-
25884
25682
  class MetricsClass(_Aspect):
25885
25683
  """Metrics to be featured for the MLModel."""
25886
25684
 
@@ -35014,7 +34812,6 @@ __SCHEMA_TYPES = {
35014
34812
  'com.linkedin.pegasus2avro.ml.metadata.MLModelGroupProperties': MLModelGroupPropertiesClass,
35015
34813
  'com.linkedin.pegasus2avro.ml.metadata.MLModelProperties': MLModelPropertiesClass,
35016
34814
  'com.linkedin.pegasus2avro.ml.metadata.MLPrimaryKeyProperties': MLPrimaryKeyPropertiesClass,
35017
- 'com.linkedin.pegasus2avro.ml.metadata.MLTrainingRunProperties': MLTrainingRunPropertiesClass,
35018
34815
  'com.linkedin.pegasus2avro.ml.metadata.Metrics': MetricsClass,
35019
34816
  'com.linkedin.pegasus2avro.ml.metadata.QuantitativeAnalyses': QuantitativeAnalysesClass,
35020
34817
  'com.linkedin.pegasus2avro.ml.metadata.SourceCode': SourceCodeClass,
@@ -35675,7 +35472,6 @@ __SCHEMA_TYPES = {
35675
35472
  'MLModelGroupProperties': MLModelGroupPropertiesClass,
35676
35473
  'MLModelProperties': MLModelPropertiesClass,
35677
35474
  'MLPrimaryKeyProperties': MLPrimaryKeyPropertiesClass,
35678
- 'MLTrainingRunProperties': MLTrainingRunPropertiesClass,
35679
35475
  'Metrics': MetricsClass,
35680
35476
  'QuantitativeAnalyses': QuantitativeAnalysesClass,
35681
35477
  'SourceCode': SourceCodeClass,
@@ -35984,7 +35780,6 @@ ASPECT_CLASSES: List[Type[_Aspect]] = [
35984
35780
  MLFeaturePropertiesClass,
35985
35781
  MLPrimaryKeyPropertiesClass,
35986
35782
  MLModelPropertiesClass,
35987
- MLTrainingRunPropertiesClass,
35988
35783
  EditableMLModelGroupPropertiesClass,
35989
35784
  MLModelDeploymentPropertiesClass,
35990
35785
  EditableMLFeaturePropertiesClass,
@@ -36245,7 +36040,6 @@ class AspectBag(TypedDict, total=False):
36245
36040
  mlFeatureProperties: MLFeaturePropertiesClass
36246
36041
  mlPrimaryKeyProperties: MLPrimaryKeyPropertiesClass
36247
36042
  mlModelProperties: MLModelPropertiesClass
36248
- mlTrainingRunProperties: MLTrainingRunPropertiesClass
36249
36043
  editableMlModelGroupProperties: EditableMLModelGroupPropertiesClass
36250
36044
  mlModelDeploymentProperties: MLModelDeploymentPropertiesClass
36251
36045
  editableMlFeatureProperties: EditableMLFeaturePropertiesClass
@@ -10,10 +10,8 @@
10
10
  "Relationship": {
11
11
  "/*": {
12
12
  "entityTypes": [
13
- "dataset",
14
- "mlModel"
13
+ "dataset"
15
14
  ],
16
- "isLineage": true,
17
15
  "name": "Consumes"
18
16
  }
19
17
  },
@@ -31,7 +29,7 @@
31
29
  "items": "string"
32
30
  },
33
31
  "name": "inputs",
34
- "doc": "Input assets consumed",
32
+ "doc": "Input datasets to be consumed",
35
33
  "Urn": "Urn",
36
34
  "urn_is_array": true
37
35
  }
@@ -12,10 +12,6 @@
12
12
  "dataProcessInstanceRunEvent",
13
13
  "status",
14
14
  "testResults",
15
- "dataPlatformInstance",
16
- "subTypes",
17
- "container",
18
- "mlTrainingRunProperties",
19
15
  "lineageFeatures"
20
16
  ],
21
17
  "entityDoc": "DataProcessInstance represents an instance of a datajob/jobflow run"
@@ -10,11 +10,8 @@
10
10
  "Relationship": {
11
11
  "/*": {
12
12
  "entityTypes": [
13
- "dataset",
14
- "mlModel"
13
+ "dataset"
15
14
  ],
16
- "isLineage": true,
17
- "isUpstream": false,
18
15
  "name": "Produces"
19
16
  }
20
17
  },
@@ -21,66 +21,6 @@
21
21
  "default": {},
22
22
  "doc": "Custom property bag."
23
23
  },
24
- {
25
- "Relationship": {
26
- "/*": {
27
- "entityTypes": [
28
- "dataJob",
29
- "dataProcessInstance"
30
- ],
31
- "isLineage": true,
32
- "name": "TrainedBy"
33
- }
34
- },
35
- "type": [
36
- "null",
37
- {
38
- "type": "array",
39
- "items": "string"
40
- }
41
- ],
42
- "name": "trainingJobs",
43
- "default": null,
44
- "doc": "List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."
45
- },
46
- {
47
- "Relationship": {
48
- "/*": {
49
- "entityTypes": [
50
- "dataJob",
51
- "dataProcessInstance"
52
- ],
53
- "isLineage": true,
54
- "isUpstream": false,
55
- "name": "UsedBy"
56
- }
57
- },
58
- "type": [
59
- "null",
60
- {
61
- "type": "array",
62
- "items": "string"
63
- }
64
- ],
65
- "name": "downstreamJobs",
66
- "default": null,
67
- "doc": "List of jobs or process instances (if any) that use the model or group."
68
- },
69
- {
70
- "Searchable": {
71
- "boostScore": 10.0,
72
- "enableAutocomplete": true,
73
- "fieldType": "WORD_GRAM",
74
- "queryByDefault": true
75
- },
76
- "type": [
77
- "null",
78
- "string"
79
- ],
80
- "name": "name",
81
- "default": null,
82
- "doc": "Display name of the MLModelGroup"
83
- },
84
24
  {
85
25
  "Searchable": {
86
26
  "fieldType": "TEXT",
@@ -95,7 +35,6 @@
95
35
  "doc": "Documentation of the MLModelGroup"
96
36
  },
97
37
  {
98
- "deprecated": true,
99
38
  "type": [
100
39
  "null",
101
40
  "long"
@@ -104,49 +43,6 @@
104
43
  "default": null,
105
44
  "doc": "Date when the MLModelGroup was developed"
106
45
  },
107
- {
108
- "type": [
109
- "null",
110
- {
111
- "type": "record",
112
- "name": "TimeStamp",
113
- "namespace": "com.linkedin.pegasus2avro.common",
114
- "fields": [
115
- {
116
- "type": "long",
117
- "name": "time",
118
- "doc": "When did the event occur"
119
- },
120
- {
121
- "java": {
122
- "class": "com.linkedin.pegasus2avro.common.urn.Urn"
123
- },
124
- "type": [
125
- "null",
126
- "string"
127
- ],
128
- "name": "actor",
129
- "default": null,
130
- "doc": "Optional: The actor urn involved in the event.",
131
- "Urn": "Urn"
132
- }
133
- ],
134
- "doc": "A standard event timestamp"
135
- }
136
- ],
137
- "name": "created",
138
- "default": null,
139
- "doc": "Time and Actor who created the MLModelGroup"
140
- },
141
- {
142
- "type": [
143
- "null",
144
- "com.linkedin.pegasus2avro.common.TimeStamp"
145
- ],
146
- "name": "lastModified",
147
- "default": null,
148
- "doc": "Date when the MLModelGroup was last modified"
149
- },
150
46
  {
151
47
  "type": [
152
48
  "null",