acryl-datahub-cloud 0.3.7.8rc3__py3-none-any.whl → 0.3.7.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of acryl-datahub-cloud might be problematic. Click here for more details.

@@ -21313,7 +21313,7 @@ class DataProcessInstanceKeyClass(_Aspect):
21313
21313
 
21314
21314
 
21315
21315
  ASPECT_NAME = 'dataProcessInstanceKey'
21316
- ASPECT_INFO = {'keyForEntity': 'dataProcessInstance', 'entityCategory': '_unset_', 'entityAspects': ['dataProcessInstanceInput', 'dataProcessInstanceOutput', 'dataProcessInstanceProperties', 'dataProcessInstanceRelationships', 'dataProcessInstanceRunEvent', 'status', 'testResults', 'lineageFeatures'], 'entityDoc': 'DataProcessInstance represents an instance of a datajob/jobflow run'}
21316
+ ASPECT_INFO = {'keyForEntity': 'dataProcessInstance', 'entityCategory': '_unset_', 'entityAspects': ['dataProcessInstanceInput', 'dataProcessInstanceOutput', 'dataProcessInstanceProperties', 'dataProcessInstanceRelationships', 'dataProcessInstanceRunEvent', 'status', 'testResults', 'dataPlatformInstance', 'subTypes', 'container', 'mlTrainingRunProperties', 'lineageFeatures'], 'entityDoc': 'DataProcessInstance represents an instance of a datajob/jobflow run'}
21317
21317
  RECORD_SCHEMA = get_schema_type("com.linkedin.pegasus2avro.metadata.key.DataProcessInstanceKey")
21318
21318
 
21319
21319
  def __init__(self,
@@ -25298,8 +25298,13 @@ class MLModelGroupPropertiesClass(_Aspect):
25298
25298
 
25299
25299
  def __init__(self,
25300
25300
  customProperties: Optional[Dict[str, str]]=None,
25301
+ trainingJobs: Union[None, List[str]]=None,
25302
+ downstreamJobs: Union[None, List[str]]=None,
25303
+ name: Union[None, str]=None,
25301
25304
  description: Union[None, str]=None,
25302
25305
  createdAt: Union[None, int]=None,
25306
+ created: Union[None, "TimeStampClass"]=None,
25307
+ lastModified: Union[None, "TimeStampClass"]=None,
25303
25308
  version: Union[None, "VersionTagClass"]=None,
25304
25309
  ):
25305
25310
  super().__init__()
@@ -25309,14 +25314,24 @@ class MLModelGroupPropertiesClass(_Aspect):
25309
25314
  self.customProperties = dict()
25310
25315
  else:
25311
25316
  self.customProperties = customProperties
25317
+ self.trainingJobs = trainingJobs
25318
+ self.downstreamJobs = downstreamJobs
25319
+ self.name = name
25312
25320
  self.description = description
25313
25321
  self.createdAt = createdAt
25322
+ self.created = created
25323
+ self.lastModified = lastModified
25314
25324
  self.version = version
25315
25325
 
25316
25326
  def _restore_defaults(self) -> None:
25317
25327
  self.customProperties = dict()
25328
+ self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25329
+ self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25330
+ self.name = self.RECORD_SCHEMA.fields_dict["name"].default
25318
25331
  self.description = self.RECORD_SCHEMA.fields_dict["description"].default
25319
25332
  self.createdAt = self.RECORD_SCHEMA.fields_dict["createdAt"].default
25333
+ self.created = self.RECORD_SCHEMA.fields_dict["created"].default
25334
+ self.lastModified = self.RECORD_SCHEMA.fields_dict["lastModified"].default
25320
25335
  self.version = self.RECORD_SCHEMA.fields_dict["version"].default
25321
25336
 
25322
25337
 
@@ -25330,6 +25345,36 @@ class MLModelGroupPropertiesClass(_Aspect):
25330
25345
  self._inner_dict['customProperties'] = value
25331
25346
 
25332
25347
 
25348
+ @property
25349
+ def trainingJobs(self) -> Union[None, List[str]]:
25350
+ """List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."""
25351
+ return self._inner_dict.get('trainingJobs') # type: ignore
25352
+
25353
+ @trainingJobs.setter
25354
+ def trainingJobs(self, value: Union[None, List[str]]) -> None:
25355
+ self._inner_dict['trainingJobs'] = value
25356
+
25357
+
25358
+ @property
25359
+ def downstreamJobs(self) -> Union[None, List[str]]:
25360
+ """List of jobs or process instances (if any) that use the model or group."""
25361
+ return self._inner_dict.get('downstreamJobs') # type: ignore
25362
+
25363
+ @downstreamJobs.setter
25364
+ def downstreamJobs(self, value: Union[None, List[str]]) -> None:
25365
+ self._inner_dict['downstreamJobs'] = value
25366
+
25367
+
25368
+ @property
25369
+ def name(self) -> Union[None, str]:
25370
+ """Display name of the MLModelGroup"""
25371
+ return self._inner_dict.get('name') # type: ignore
25372
+
25373
+ @name.setter
25374
+ def name(self, value: Union[None, str]) -> None:
25375
+ self._inner_dict['name'] = value
25376
+
25377
+
25333
25378
  @property
25334
25379
  def description(self) -> Union[None, str]:
25335
25380
  """Documentation of the MLModelGroup"""
@@ -25350,6 +25395,26 @@ class MLModelGroupPropertiesClass(_Aspect):
25350
25395
  self._inner_dict['createdAt'] = value
25351
25396
 
25352
25397
 
25398
+ @property
25399
+ def created(self) -> Union[None, "TimeStampClass"]:
25400
+ """Time and Actor who created the MLModelGroup"""
25401
+ return self._inner_dict.get('created') # type: ignore
25402
+
25403
+ @created.setter
25404
+ def created(self, value: Union[None, "TimeStampClass"]) -> None:
25405
+ self._inner_dict['created'] = value
25406
+
25407
+
25408
+ @property
25409
+ def lastModified(self) -> Union[None, "TimeStampClass"]:
25410
+ """Date when the MLModelGroup was last modified"""
25411
+ return self._inner_dict.get('lastModified') # type: ignore
25412
+
25413
+ @lastModified.setter
25414
+ def lastModified(self, value: Union[None, "TimeStampClass"]) -> None:
25415
+ self._inner_dict['lastModified'] = value
25416
+
25417
+
25353
25418
  @property
25354
25419
  def version(self) -> Union[None, "VersionTagClass"]:
25355
25420
  """Version of the MLModelGroup"""
@@ -25371,8 +25436,13 @@ class MLModelPropertiesClass(_Aspect):
25371
25436
  def __init__(self,
25372
25437
  customProperties: Optional[Dict[str, str]]=None,
25373
25438
  externalUrl: Union[None, str]=None,
25439
+ trainingJobs: Union[None, List[str]]=None,
25440
+ downstreamJobs: Union[None, List[str]]=None,
25441
+ name: Union[None, str]=None,
25374
25442
  description: Union[None, str]=None,
25375
25443
  date: Union[None, int]=None,
25444
+ created: Union[None, "TimeStampClass"]=None,
25445
+ lastModified: Union[None, "TimeStampClass"]=None,
25376
25446
  version: Union[None, "VersionTagClass"]=None,
25377
25447
  type: Union[None, str]=None,
25378
25448
  hyperParameters: Union[None, Dict[str, Union[str, int, float, float, bool]]]=None,
@@ -25382,8 +25452,6 @@ class MLModelPropertiesClass(_Aspect):
25382
25452
  mlFeatures: Union[None, List[str]]=None,
25383
25453
  tags: Optional[List[str]]=None,
25384
25454
  deployments: Union[None, List[str]]=None,
25385
- trainingJobs: Union[None, List[str]]=None,
25386
- downstreamJobs: Union[None, List[str]]=None,
25387
25455
  groups: Union[None, List[str]]=None,
25388
25456
  ):
25389
25457
  super().__init__()
@@ -25394,8 +25462,13 @@ class MLModelPropertiesClass(_Aspect):
25394
25462
  else:
25395
25463
  self.customProperties = customProperties
25396
25464
  self.externalUrl = externalUrl
25465
+ self.trainingJobs = trainingJobs
25466
+ self.downstreamJobs = downstreamJobs
25467
+ self.name = name
25397
25468
  self.description = description
25398
25469
  self.date = date
25470
+ self.created = created
25471
+ self.lastModified = lastModified
25399
25472
  self.version = version
25400
25473
  self.type = type
25401
25474
  self.hyperParameters = hyperParameters
@@ -25409,15 +25482,18 @@ class MLModelPropertiesClass(_Aspect):
25409
25482
  else:
25410
25483
  self.tags = tags
25411
25484
  self.deployments = deployments
25412
- self.trainingJobs = trainingJobs
25413
- self.downstreamJobs = downstreamJobs
25414
25485
  self.groups = groups
25415
25486
 
25416
25487
  def _restore_defaults(self) -> None:
25417
25488
  self.customProperties = dict()
25418
25489
  self.externalUrl = self.RECORD_SCHEMA.fields_dict["externalUrl"].default
25490
+ self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25491
+ self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25492
+ self.name = self.RECORD_SCHEMA.fields_dict["name"].default
25419
25493
  self.description = self.RECORD_SCHEMA.fields_dict["description"].default
25420
25494
  self.date = self.RECORD_SCHEMA.fields_dict["date"].default
25495
+ self.created = self.RECORD_SCHEMA.fields_dict["created"].default
25496
+ self.lastModified = self.RECORD_SCHEMA.fields_dict["lastModified"].default
25421
25497
  self.version = self.RECORD_SCHEMA.fields_dict["version"].default
25422
25498
  self.type = self.RECORD_SCHEMA.fields_dict["type"].default
25423
25499
  self.hyperParameters = self.RECORD_SCHEMA.fields_dict["hyperParameters"].default
@@ -25427,8 +25503,6 @@ class MLModelPropertiesClass(_Aspect):
25427
25503
  self.mlFeatures = self.RECORD_SCHEMA.fields_dict["mlFeatures"].default
25428
25504
  self.tags = list()
25429
25505
  self.deployments = self.RECORD_SCHEMA.fields_dict["deployments"].default
25430
- self.trainingJobs = self.RECORD_SCHEMA.fields_dict["trainingJobs"].default
25431
- self.downstreamJobs = self.RECORD_SCHEMA.fields_dict["downstreamJobs"].default
25432
25506
  self.groups = self.RECORD_SCHEMA.fields_dict["groups"].default
25433
25507
 
25434
25508
 
@@ -25452,6 +25526,36 @@ class MLModelPropertiesClass(_Aspect):
25452
25526
  self._inner_dict['externalUrl'] = value
25453
25527
 
25454
25528
 
25529
+ @property
25530
+ def trainingJobs(self) -> Union[None, List[str]]:
25531
+ """List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."""
25532
+ return self._inner_dict.get('trainingJobs') # type: ignore
25533
+
25534
+ @trainingJobs.setter
25535
+ def trainingJobs(self, value: Union[None, List[str]]) -> None:
25536
+ self._inner_dict['trainingJobs'] = value
25537
+
25538
+
25539
+ @property
25540
+ def downstreamJobs(self) -> Union[None, List[str]]:
25541
+ """List of jobs or process instances (if any) that use the model or group."""
25542
+ return self._inner_dict.get('downstreamJobs') # type: ignore
25543
+
25544
+ @downstreamJobs.setter
25545
+ def downstreamJobs(self, value: Union[None, List[str]]) -> None:
25546
+ self._inner_dict['downstreamJobs'] = value
25547
+
25548
+
25549
+ @property
25550
+ def name(self) -> Union[None, str]:
25551
+ """Display name of the MLModel"""
25552
+ return self._inner_dict.get('name') # type: ignore
25553
+
25554
+ @name.setter
25555
+ def name(self, value: Union[None, str]) -> None:
25556
+ self._inner_dict['name'] = value
25557
+
25558
+
25455
25559
  @property
25456
25560
  def description(self) -> Union[None, str]:
25457
25561
  """Documentation of the MLModel"""
@@ -25472,6 +25576,26 @@ class MLModelPropertiesClass(_Aspect):
25472
25576
  self._inner_dict['date'] = value
25473
25577
 
25474
25578
 
25579
+ @property
25580
+ def created(self) -> Union[None, "TimeStampClass"]:
25581
+ """Audit stamp containing who created this and when"""
25582
+ return self._inner_dict.get('created') # type: ignore
25583
+
25584
+ @created.setter
25585
+ def created(self, value: Union[None, "TimeStampClass"]) -> None:
25586
+ self._inner_dict['created'] = value
25587
+
25588
+
25589
+ @property
25590
+ def lastModified(self) -> Union[None, "TimeStampClass"]:
25591
+ """Date when the MLModel was last modified"""
25592
+ return self._inner_dict.get('lastModified') # type: ignore
25593
+
25594
+ @lastModified.setter
25595
+ def lastModified(self, value: Union[None, "TimeStampClass"]) -> None:
25596
+ self._inner_dict['lastModified'] = value
25597
+
25598
+
25475
25599
  @property
25476
25600
  def version(self) -> Union[None, "VersionTagClass"]:
25477
25601
  """Version of the MLModel"""
@@ -25564,26 +25688,6 @@ class MLModelPropertiesClass(_Aspect):
25564
25688
  self._inner_dict['deployments'] = value
25565
25689
 
25566
25690
 
25567
- @property
25568
- def trainingJobs(self) -> Union[None, List[str]]:
25569
- """List of jobs (if any) used to train the model"""
25570
- return self._inner_dict.get('trainingJobs') # type: ignore
25571
-
25572
- @trainingJobs.setter
25573
- def trainingJobs(self, value: Union[None, List[str]]) -> None:
25574
- self._inner_dict['trainingJobs'] = value
25575
-
25576
-
25577
- @property
25578
- def downstreamJobs(self) -> Union[None, List[str]]:
25579
- """List of jobs (if any) that use the model"""
25580
- return self._inner_dict.get('downstreamJobs') # type: ignore
25581
-
25582
- @downstreamJobs.setter
25583
- def downstreamJobs(self, value: Union[None, List[str]]) -> None:
25584
- self._inner_dict['downstreamJobs'] = value
25585
-
25586
-
25587
25691
  @property
25588
25692
  def groups(self) -> Union[None, List[str]]:
25589
25693
  """Groups the model belongs to"""
@@ -25679,6 +25783,104 @@ class MLPrimaryKeyPropertiesClass(_Aspect):
25679
25783
  self._inner_dict['sources'] = value
25680
25784
 
25681
25785
 
25786
+ class MLTrainingRunPropertiesClass(_Aspect):
25787
+ """The inputs and outputs of this training run"""
25788
+
25789
+
25790
+ ASPECT_NAME = 'mlTrainingRunProperties'
25791
+ ASPECT_INFO = {}
25792
+ RECORD_SCHEMA = get_schema_type("com.linkedin.pegasus2avro.ml.metadata.MLTrainingRunProperties")
25793
+
25794
+ def __init__(self,
25795
+ customProperties: Optional[Dict[str, str]]=None,
25796
+ externalUrl: Union[None, str]=None,
25797
+ id: Union[None, str]=None,
25798
+ outputUrls: Union[None, List[str]]=None,
25799
+ hyperParams: Union[None, List["MLHyperParamClass"]]=None,
25800
+ trainingMetrics: Union[None, List["MLMetricClass"]]=None,
25801
+ ):
25802
+ super().__init__()
25803
+
25804
+ if customProperties is None:
25805
+ # default: {}
25806
+ self.customProperties = dict()
25807
+ else:
25808
+ self.customProperties = customProperties
25809
+ self.externalUrl = externalUrl
25810
+ self.id = id
25811
+ self.outputUrls = outputUrls
25812
+ self.hyperParams = hyperParams
25813
+ self.trainingMetrics = trainingMetrics
25814
+
25815
+ def _restore_defaults(self) -> None:
25816
+ self.customProperties = dict()
25817
+ self.externalUrl = self.RECORD_SCHEMA.fields_dict["externalUrl"].default
25818
+ self.id = self.RECORD_SCHEMA.fields_dict["id"].default
25819
+ self.outputUrls = self.RECORD_SCHEMA.fields_dict["outputUrls"].default
25820
+ self.hyperParams = self.RECORD_SCHEMA.fields_dict["hyperParams"].default
25821
+ self.trainingMetrics = self.RECORD_SCHEMA.fields_dict["trainingMetrics"].default
25822
+
25823
+
25824
+ @property
25825
+ def customProperties(self) -> Dict[str, str]:
25826
+ """Custom property bag."""
25827
+ return self._inner_dict.get('customProperties') # type: ignore
25828
+
25829
+ @customProperties.setter
25830
+ def customProperties(self, value: Dict[str, str]) -> None:
25831
+ self._inner_dict['customProperties'] = value
25832
+
25833
+
25834
+ @property
25835
+ def externalUrl(self) -> Union[None, str]:
25836
+ """URL where the reference exist"""
25837
+ return self._inner_dict.get('externalUrl') # type: ignore
25838
+
25839
+ @externalUrl.setter
25840
+ def externalUrl(self, value: Union[None, str]) -> None:
25841
+ self._inner_dict['externalUrl'] = value
25842
+
25843
+
25844
+ @property
25845
+ def id(self) -> Union[None, str]:
25846
+ """Run Id of the ML Training Run"""
25847
+ return self._inner_dict.get('id') # type: ignore
25848
+
25849
+ @id.setter
25850
+ def id(self, value: Union[None, str]) -> None:
25851
+ self._inner_dict['id'] = value
25852
+
25853
+
25854
+ @property
25855
+ def outputUrls(self) -> Union[None, List[str]]:
25856
+ """List of URLs for the Outputs of the ML Training Run"""
25857
+ return self._inner_dict.get('outputUrls') # type: ignore
25858
+
25859
+ @outputUrls.setter
25860
+ def outputUrls(self, value: Union[None, List[str]]) -> None:
25861
+ self._inner_dict['outputUrls'] = value
25862
+
25863
+
25864
+ @property
25865
+ def hyperParams(self) -> Union[None, List["MLHyperParamClass"]]:
25866
+ """Hyperparameters of the ML Training Run"""
25867
+ return self._inner_dict.get('hyperParams') # type: ignore
25868
+
25869
+ @hyperParams.setter
25870
+ def hyperParams(self, value: Union[None, List["MLHyperParamClass"]]) -> None:
25871
+ self._inner_dict['hyperParams'] = value
25872
+
25873
+
25874
+ @property
25875
+ def trainingMetrics(self) -> Union[None, List["MLMetricClass"]]:
25876
+ """Metrics of the ML Training Run"""
25877
+ return self._inner_dict.get('trainingMetrics') # type: ignore
25878
+
25879
+ @trainingMetrics.setter
25880
+ def trainingMetrics(self, value: Union[None, List["MLMetricClass"]]) -> None:
25881
+ self._inner_dict['trainingMetrics'] = value
25882
+
25883
+
25682
25884
  class MetricsClass(_Aspect):
25683
25885
  """Metrics to be featured for the MLModel."""
25684
25886
 
@@ -34812,6 +35014,7 @@ __SCHEMA_TYPES = {
34812
35014
  'com.linkedin.pegasus2avro.ml.metadata.MLModelGroupProperties': MLModelGroupPropertiesClass,
34813
35015
  'com.linkedin.pegasus2avro.ml.metadata.MLModelProperties': MLModelPropertiesClass,
34814
35016
  'com.linkedin.pegasus2avro.ml.metadata.MLPrimaryKeyProperties': MLPrimaryKeyPropertiesClass,
35017
+ 'com.linkedin.pegasus2avro.ml.metadata.MLTrainingRunProperties': MLTrainingRunPropertiesClass,
34815
35018
  'com.linkedin.pegasus2avro.ml.metadata.Metrics': MetricsClass,
34816
35019
  'com.linkedin.pegasus2avro.ml.metadata.QuantitativeAnalyses': QuantitativeAnalysesClass,
34817
35020
  'com.linkedin.pegasus2avro.ml.metadata.SourceCode': SourceCodeClass,
@@ -35472,6 +35675,7 @@ __SCHEMA_TYPES = {
35472
35675
  'MLModelGroupProperties': MLModelGroupPropertiesClass,
35473
35676
  'MLModelProperties': MLModelPropertiesClass,
35474
35677
  'MLPrimaryKeyProperties': MLPrimaryKeyPropertiesClass,
35678
+ 'MLTrainingRunProperties': MLTrainingRunPropertiesClass,
35475
35679
  'Metrics': MetricsClass,
35476
35680
  'QuantitativeAnalyses': QuantitativeAnalysesClass,
35477
35681
  'SourceCode': SourceCodeClass,
@@ -35763,6 +35967,7 @@ ASPECT_CLASSES: List[Type[_Aspect]] = [
35763
35967
  MetricsClass,
35764
35968
  EditableMLPrimaryKeyPropertiesClass,
35765
35969
  SourceCodeClass,
35970
+ MLTrainingRunPropertiesClass,
35766
35971
  EthicalConsiderationsClass,
35767
35972
  MLPrimaryKeyPropertiesClass,
35768
35973
  MLModelFactorPromptsClass,
@@ -36023,6 +36228,7 @@ class AspectBag(TypedDict, total=False):
36023
36228
  mlModelMetrics: MetricsClass
36024
36229
  editableMlPrimaryKeyProperties: EditableMLPrimaryKeyPropertiesClass
36025
36230
  sourceCode: SourceCodeClass
36231
+ mlTrainingRunProperties: MLTrainingRunPropertiesClass
36026
36232
  mlModelEthicalConsiderations: EthicalConsiderationsClass
36027
36233
  mlPrimaryKeyProperties: MLPrimaryKeyPropertiesClass
36028
36234
  mlModelFactorPrompts: MLModelFactorPromptsClass
@@ -12,6 +12,10 @@
12
12
  "dataProcessInstanceRunEvent",
13
13
  "status",
14
14
  "testResults",
15
+ "dataPlatformInstance",
16
+ "subTypes",
17
+ "container",
18
+ "mlTrainingRunProperties",
15
19
  "lineageFeatures"
16
20
  ],
17
21
  "entityDoc": "DataProcessInstance represents an instance of a datajob/jobflow run"
@@ -10,7 +10,8 @@
10
10
  "Relationship": {
11
11
  "/*": {
12
12
  "entityTypes": [
13
- "dataset"
13
+ "dataset",
14
+ "mlModel"
14
15
  ],
15
16
  "name": "Produces"
16
17
  }
@@ -21,6 +21,66 @@
21
21
  "default": {},
22
22
  "doc": "Custom property bag."
23
23
  },
24
+ {
25
+ "Relationship": {
26
+ "/*": {
27
+ "entityTypes": [
28
+ "dataJob",
29
+ "dataProcessInstance"
30
+ ],
31
+ "isLineage": true,
32
+ "name": "TrainedBy"
33
+ }
34
+ },
35
+ "type": [
36
+ "null",
37
+ {
38
+ "type": "array",
39
+ "items": "string"
40
+ }
41
+ ],
42
+ "name": "trainingJobs",
43
+ "default": null,
44
+ "doc": "List of jobs or process instances (if any) used to train the model or group. Visible in Lineage. Note that ML Models can also be specified as the output of a specific Data Process Instances (runs) via the DataProcessInstanceOutputs aspect."
45
+ },
46
+ {
47
+ "Relationship": {
48
+ "/*": {
49
+ "entityTypes": [
50
+ "dataJob",
51
+ "dataProcessInstance"
52
+ ],
53
+ "isLineage": true,
54
+ "isUpstream": false,
55
+ "name": "UsedBy"
56
+ }
57
+ },
58
+ "type": [
59
+ "null",
60
+ {
61
+ "type": "array",
62
+ "items": "string"
63
+ }
64
+ ],
65
+ "name": "downstreamJobs",
66
+ "default": null,
67
+ "doc": "List of jobs or process instances (if any) that use the model or group."
68
+ },
69
+ {
70
+ "Searchable": {
71
+ "boostScore": 10.0,
72
+ "enableAutocomplete": true,
73
+ "fieldType": "WORD_GRAM",
74
+ "queryByDefault": true
75
+ },
76
+ "type": [
77
+ "null",
78
+ "string"
79
+ ],
80
+ "name": "name",
81
+ "default": null,
82
+ "doc": "Display name of the MLModelGroup"
83
+ },
24
84
  {
25
85
  "Searchable": {
26
86
  "fieldType": "TEXT",
@@ -35,6 +95,7 @@
35
95
  "doc": "Documentation of the MLModelGroup"
36
96
  },
37
97
  {
98
+ "deprecated": true,
38
99
  "type": [
39
100
  "null",
40
101
  "long"
@@ -43,6 +104,49 @@
43
104
  "default": null,
44
105
  "doc": "Date when the MLModelGroup was developed"
45
106
  },
107
+ {
108
+ "type": [
109
+ "null",
110
+ {
111
+ "type": "record",
112
+ "name": "TimeStamp",
113
+ "namespace": "com.linkedin.pegasus2avro.common",
114
+ "fields": [
115
+ {
116
+ "type": "long",
117
+ "name": "time",
118
+ "doc": "When did the event occur"
119
+ },
120
+ {
121
+ "java": {
122
+ "class": "com.linkedin.pegasus2avro.common.urn.Urn"
123
+ },
124
+ "type": [
125
+ "null",
126
+ "string"
127
+ ],
128
+ "name": "actor",
129
+ "default": null,
130
+ "doc": "Optional: The actor urn involved in the event.",
131
+ "Urn": "Urn"
132
+ }
133
+ ],
134
+ "doc": "A standard event timestamp"
135
+ }
136
+ ],
137
+ "name": "created",
138
+ "default": null,
139
+ "doc": "Time and Actor who created the MLModelGroup"
140
+ },
141
+ {
142
+ "type": [
143
+ "null",
144
+ "com.linkedin.pegasus2avro.common.TimeStamp"
145
+ ],
146
+ "name": "lastModified",
147
+ "default": null,
148
+ "doc": "Date when the MLModelGroup was last modified"
149
+ },
46
150
  {
47
151
  "type": [
48
152
  "null",