acryl-datahub-cloud 0.3.11rc0__py3-none-any.whl → 0.3.16.1rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of acryl-datahub-cloud might be problematic. Click here for more details.
- acryl_datahub_cloud/_codegen_config.json +1 -1
- acryl_datahub_cloud/acryl_cs_issues/models.py +5 -3
- acryl_datahub_cloud/action_request/action_request_owner_source.py +36 -6
- acryl_datahub_cloud/datahub_forms_notifications/__init__.py +0 -0
- acryl_datahub_cloud/datahub_forms_notifications/forms_notifications_source.py +569 -0
- acryl_datahub_cloud/datahub_forms_notifications/get_feature_flag.gql +7 -0
- acryl_datahub_cloud/datahub_forms_notifications/get_search_results_total.gql +14 -0
- acryl_datahub_cloud/datahub_forms_notifications/query.py +17 -0
- acryl_datahub_cloud/datahub_forms_notifications/scroll_forms_for_notification.gql +29 -0
- acryl_datahub_cloud/datahub_forms_notifications/send_form_notification_request.gql +5 -0
- acryl_datahub_cloud/datahub_reporting/datahub_dataset.py +37 -13
- acryl_datahub_cloud/datahub_reporting/datahub_form_reporting.py +55 -24
- acryl_datahub_cloud/datahub_reporting/extract_graph.py +4 -3
- acryl_datahub_cloud/datahub_reporting/extract_sql.py +242 -51
- acryl_datahub_cloud/datahub_reporting/forms.py +1 -1
- acryl_datahub_cloud/datahub_reporting/forms_config.py +3 -2
- acryl_datahub_cloud/datahub_restore/source.py +3 -2
- acryl_datahub_cloud/datahub_usage_reporting/excluded.py +94 -0
- acryl_datahub_cloud/datahub_usage_reporting/query_builder.py +48 -8
- acryl_datahub_cloud/datahub_usage_reporting/usage_feature_reporter.py +518 -77
- acryl_datahub_cloud/elasticsearch/graph_service.py +76 -14
- acryl_datahub_cloud/graphql_utils.py +64 -0
- acryl_datahub_cloud/lineage_features/source.py +555 -49
- acryl_datahub_cloud/metadata/_urns/urn_defs.py +2296 -1900
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/actionworkflow/__init__.py +53 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/anomaly/__init__.py +2 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/application/__init__.py +19 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/assertion/__init__.py +4 -2
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/common/__init__.py +6 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/conversation/__init__.py +29 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/event/notification/settings/__init__.py +2 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/execution/__init__.py +2 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/file/__init__.py +19 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/form/__init__.py +8 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/identity/__init__.py +8 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/knowledge/__init__.py +33 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/logical/__init__.py +15 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/metadata/key/__init__.py +12 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/metadata/search/features/__init__.py +2 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/module/__init__.py +31 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/notification/__init__.py +19 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/platform/event/v1/__init__.py +4 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/role/__init__.py +2 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/settings/asset/__init__.py +19 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/settings/global/__init__.py +28 -0
- acryl_datahub_cloud/metadata/com/linkedin/pegasus2avro/template/__init__.py +31 -0
- acryl_datahub_cloud/metadata/schema.avsc +25091 -20557
- acryl_datahub_cloud/metadata/schema_classes.py +29269 -23863
- acryl_datahub_cloud/metadata/schemas/ActionRequestInfo.avsc +235 -2
- acryl_datahub_cloud/metadata/schemas/ActionWorkflowInfo.avsc +683 -0
- acryl_datahub_cloud/metadata/schemas/ActionWorkflowKey.avsc +21 -0
- acryl_datahub_cloud/metadata/schemas/Actors.avsc +38 -1
- acryl_datahub_cloud/metadata/schemas/ApplicationKey.avsc +31 -0
- acryl_datahub_cloud/metadata/schemas/ApplicationProperties.avsc +75 -0
- acryl_datahub_cloud/metadata/schemas/Applications.avsc +38 -0
- acryl_datahub_cloud/metadata/schemas/AssertionAnalyticsRunEvent.avsc +353 -215
- acryl_datahub_cloud/metadata/schemas/AssertionInfo.avsc +147 -20
- acryl_datahub_cloud/metadata/schemas/AssertionKey.avsc +1 -1
- acryl_datahub_cloud/metadata/schemas/AssertionRunEvent.avsc +166 -21
- acryl_datahub_cloud/metadata/schemas/{AssertionSummary.avsc → AssertionRunSummary.avsc} +15 -2
- acryl_datahub_cloud/metadata/schemas/AssertionsSummary.avsc +54 -0
- acryl_datahub_cloud/metadata/schemas/AssetSettings.avsc +63 -0
- acryl_datahub_cloud/metadata/schemas/BusinessAttributeInfo.avsc +7 -3
- acryl_datahub_cloud/metadata/schemas/ChartInfo.avsc +20 -6
- acryl_datahub_cloud/metadata/schemas/ChartKey.avsc +1 -0
- acryl_datahub_cloud/metadata/schemas/ConstraintInfo.avsc +12 -1
- acryl_datahub_cloud/metadata/schemas/ContainerKey.avsc +1 -0
- acryl_datahub_cloud/metadata/schemas/ContainerProperties.avsc +16 -5
- acryl_datahub_cloud/metadata/schemas/CorpGroupEditableInfo.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/CorpGroupInfo.avsc +7 -3
- acryl_datahub_cloud/metadata/schemas/CorpGroupKey.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/CorpGroupSettings.avsc +127 -2
- acryl_datahub_cloud/metadata/schemas/CorpUserEditableInfo.avsc +1 -1
- acryl_datahub_cloud/metadata/schemas/CorpUserInfo.avsc +18 -2
- acryl_datahub_cloud/metadata/schemas/CorpUserInvitationStatus.avsc +106 -0
- acryl_datahub_cloud/metadata/schemas/CorpUserKey.avsc +4 -1
- acryl_datahub_cloud/metadata/schemas/CorpUserSettings.avsc +304 -2
- acryl_datahub_cloud/metadata/schemas/CorpUserUsageFeatures.avsc +86 -0
- acryl_datahub_cloud/metadata/schemas/DashboardInfo.avsc +11 -5
- acryl_datahub_cloud/metadata/schemas/DashboardKey.avsc +1 -0
- acryl_datahub_cloud/metadata/schemas/DataFlowInfo.avsc +15 -5
- acryl_datahub_cloud/metadata/schemas/DataFlowKey.avsc +1 -0
- acryl_datahub_cloud/metadata/schemas/DataHubAiConversationInfo.avsc +256 -0
- acryl_datahub_cloud/metadata/schemas/DataHubAiConversationKey.avsc +22 -0
- acryl_datahub_cloud/metadata/schemas/DataHubFileInfo.avsc +234 -0
- acryl_datahub_cloud/metadata/schemas/DataHubFileKey.avsc +22 -0
- acryl_datahub_cloud/metadata/schemas/DataHubIngestionSourceKey.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/DataHubPageModuleKey.avsc +21 -0
- acryl_datahub_cloud/metadata/schemas/DataHubPageModuleProperties.avsc +308 -0
- acryl_datahub_cloud/metadata/schemas/DataHubPageTemplateKey.avsc +21 -0
- acryl_datahub_cloud/metadata/schemas/DataHubPageTemplateProperties.avsc +251 -0
- acryl_datahub_cloud/metadata/schemas/DataHubPolicyInfo.avsc +12 -1
- acryl_datahub_cloud/metadata/schemas/DataJobInfo.avsc +13 -4
- acryl_datahub_cloud/metadata/schemas/DataJobInputOutput.avsc +8 -0
- acryl_datahub_cloud/metadata/schemas/DataJobKey.avsc +1 -0
- acryl_datahub_cloud/metadata/schemas/DataPlatformInfo.avsc +3 -1
- acryl_datahub_cloud/metadata/schemas/DataPlatformInstanceProperties.avsc +5 -2
- acryl_datahub_cloud/metadata/schemas/DataProcessKey.avsc +4 -0
- acryl_datahub_cloud/metadata/schemas/DataProductKey.avsc +2 -0
- acryl_datahub_cloud/metadata/schemas/DataProductProperties.avsc +6 -3
- acryl_datahub_cloud/metadata/schemas/DataTypeInfo.avsc +5 -0
- acryl_datahub_cloud/metadata/schemas/DatasetKey.avsc +10 -2
- acryl_datahub_cloud/metadata/schemas/DatasetProperties.avsc +12 -5
- acryl_datahub_cloud/metadata/schemas/DatasetUsageStatistics.avsc +8 -0
- acryl_datahub_cloud/metadata/schemas/DocumentInfo.avsc +407 -0
- acryl_datahub_cloud/metadata/schemas/DocumentKey.avsc +35 -0
- acryl_datahub_cloud/metadata/schemas/DocumentSettings.avsc +79 -0
- acryl_datahub_cloud/metadata/schemas/DomainKey.avsc +2 -0
- acryl_datahub_cloud/metadata/schemas/DomainProperties.avsc +7 -3
- acryl_datahub_cloud/metadata/schemas/EditableContainerProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableDashboardProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableDataFlowProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableDataJobProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableDatasetProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableERModelRelationshipProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableMLFeatureProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableMLFeatureTableProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableMLModelGroupProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableMLModelProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableNotebookProperties.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/EditableSchemaMetadata.avsc +4 -2
- acryl_datahub_cloud/metadata/schemas/EntityTypeInfo.avsc +5 -0
- acryl_datahub_cloud/metadata/schemas/ExecutionRequestArtifactsLocation.avsc +16 -0
- acryl_datahub_cloud/metadata/schemas/ExecutionRequestKey.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/FormAssignmentStatus.avsc +36 -0
- acryl_datahub_cloud/metadata/schemas/FormInfo.avsc +6 -0
- acryl_datahub_cloud/metadata/schemas/FormKey.avsc +3 -1
- acryl_datahub_cloud/metadata/schemas/FormNotifications.avsc +69 -0
- acryl_datahub_cloud/metadata/schemas/FormSettings.avsc +30 -0
- acryl_datahub_cloud/metadata/schemas/GlobalSettingsInfo.avsc +416 -0
- acryl_datahub_cloud/metadata/schemas/GlobalTags.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/GlossaryNodeInfo.avsc +3 -1
- acryl_datahub_cloud/metadata/schemas/GlossaryNodeKey.avsc +1 -0
- acryl_datahub_cloud/metadata/schemas/GlossaryTermInfo.avsc +3 -1
- acryl_datahub_cloud/metadata/schemas/GlossaryTermKey.avsc +2 -0
- acryl_datahub_cloud/metadata/schemas/IcebergWarehouseInfo.avsc +4 -0
- acryl_datahub_cloud/metadata/schemas/IncidentActivityEvent.avsc +3 -3
- acryl_datahub_cloud/metadata/schemas/IncidentInfo.avsc +3 -3
- acryl_datahub_cloud/metadata/schemas/InferredMetadata.avsc +71 -1
- acryl_datahub_cloud/metadata/schemas/InputFields.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/InviteToken.avsc +26 -0
- acryl_datahub_cloud/metadata/schemas/LineageFeatures.avsc +67 -42
- acryl_datahub_cloud/metadata/schemas/LogicalParent.avsc +145 -0
- acryl_datahub_cloud/metadata/schemas/MLFeatureKey.avsc +4 -1
- acryl_datahub_cloud/metadata/schemas/MLFeatureTableKey.avsc +4 -1
- acryl_datahub_cloud/metadata/schemas/MLModelDeploymentKey.avsc +7 -1
- acryl_datahub_cloud/metadata/schemas/MLModelGroupKey.avsc +9 -1
- acryl_datahub_cloud/metadata/schemas/MLModelKey.avsc +9 -1
- acryl_datahub_cloud/metadata/schemas/MLModelProperties.avsc +4 -2
- acryl_datahub_cloud/metadata/schemas/MLPrimaryKeyKey.avsc +4 -1
- acryl_datahub_cloud/metadata/schemas/MetadataChangeEvent.avsc +418 -97
- acryl_datahub_cloud/metadata/schemas/MetadataChangeLog.avsc +62 -44
- acryl_datahub_cloud/metadata/schemas/MetadataChangeProposal.avsc +61 -0
- acryl_datahub_cloud/metadata/schemas/MonitorAnomalyEvent.avsc +54 -9
- acryl_datahub_cloud/metadata/schemas/MonitorInfo.avsc +163 -23
- acryl_datahub_cloud/metadata/schemas/MonitorKey.avsc +9 -1
- acryl_datahub_cloud/metadata/schemas/MonitorSuiteInfo.avsc +128 -3
- acryl_datahub_cloud/metadata/schemas/NotebookInfo.avsc +5 -2
- acryl_datahub_cloud/metadata/schemas/NotebookKey.avsc +1 -0
- acryl_datahub_cloud/metadata/schemas/NotificationRequest.avsc +91 -4
- acryl_datahub_cloud/metadata/schemas/Operation.avsc +17 -0
- acryl_datahub_cloud/metadata/schemas/Ownership.avsc +71 -1
- acryl_datahub_cloud/metadata/schemas/QuerySubjects.avsc +2 -13
- acryl_datahub_cloud/metadata/schemas/RelationshipChangeEvent.avsc +215 -0
- acryl_datahub_cloud/metadata/schemas/RoleProperties.avsc +3 -1
- acryl_datahub_cloud/metadata/schemas/SchemaFieldInfo.avsc +3 -1
- acryl_datahub_cloud/metadata/schemas/SchemaFieldKey.avsc +3 -0
- acryl_datahub_cloud/metadata/schemas/SchemaMetadata.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/SemanticContent.avsc +123 -0
- acryl_datahub_cloud/metadata/schemas/StructuredProperties.avsc +69 -0
- acryl_datahub_cloud/metadata/schemas/StructuredPropertyDefinition.avsc +15 -4
- acryl_datahub_cloud/metadata/schemas/StructuredPropertySettings.avsc +9 -0
- acryl_datahub_cloud/metadata/schemas/SubscriptionInfo.avsc +136 -5
- acryl_datahub_cloud/metadata/schemas/SubscriptionKey.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/SystemMetadata.avsc +61 -0
- acryl_datahub_cloud/metadata/schemas/TagProperties.avsc +3 -1
- acryl_datahub_cloud/metadata/schemas/TestInfo.avsc +2 -1
- acryl_datahub_cloud/metadata/schemas/UpstreamLineage.avsc +9 -0
- acryl_datahub_cloud/metadata/schemas/UsageFeatures.avsc +10 -0
- acryl_datahub_cloud/notifications/__init__.py +0 -0
- acryl_datahub_cloud/notifications/notification_recipient_builder.py +399 -0
- acryl_datahub_cloud/sdk/__init__.py +69 -0
- acryl_datahub_cloud/sdk/assertion/__init__.py +58 -0
- acryl_datahub_cloud/sdk/assertion/assertion_base.py +779 -0
- acryl_datahub_cloud/sdk/assertion/column_metric_assertion.py +191 -0
- acryl_datahub_cloud/sdk/assertion/column_value_assertion.py +431 -0
- acryl_datahub_cloud/sdk/assertion/freshness_assertion.py +201 -0
- acryl_datahub_cloud/sdk/assertion/schema_assertion.py +268 -0
- acryl_datahub_cloud/sdk/assertion/smart_column_metric_assertion.py +212 -0
- acryl_datahub_cloud/sdk/assertion/smart_freshness_assertion.py +165 -0
- acryl_datahub_cloud/sdk/assertion/smart_sql_assertion.py +156 -0
- acryl_datahub_cloud/sdk/assertion/smart_volume_assertion.py +162 -0
- acryl_datahub_cloud/sdk/assertion/sql_assertion.py +273 -0
- acryl_datahub_cloud/sdk/assertion/types.py +20 -0
- acryl_datahub_cloud/sdk/assertion/volume_assertion.py +156 -0
- acryl_datahub_cloud/sdk/assertion_client/__init__.py +0 -0
- acryl_datahub_cloud/sdk/assertion_client/column_metric.py +545 -0
- acryl_datahub_cloud/sdk/assertion_client/column_value.py +617 -0
- acryl_datahub_cloud/sdk/assertion_client/freshness.py +371 -0
- acryl_datahub_cloud/sdk/assertion_client/helpers.py +166 -0
- acryl_datahub_cloud/sdk/assertion_client/schema.py +358 -0
- acryl_datahub_cloud/sdk/assertion_client/smart_column_metric.py +540 -0
- acryl_datahub_cloud/sdk/assertion_client/smart_freshness.py +373 -0
- acryl_datahub_cloud/sdk/assertion_client/smart_sql.py +411 -0
- acryl_datahub_cloud/sdk/assertion_client/smart_volume.py +380 -0
- acryl_datahub_cloud/sdk/assertion_client/sql.py +410 -0
- acryl_datahub_cloud/sdk/assertion_client/volume.py +446 -0
- acryl_datahub_cloud/sdk/assertion_input/__init__.py +0 -0
- acryl_datahub_cloud/sdk/assertion_input/assertion_input.py +1470 -0
- acryl_datahub_cloud/sdk/assertion_input/column_assertion_constants.py +114 -0
- acryl_datahub_cloud/sdk/assertion_input/column_assertion_utils.py +284 -0
- acryl_datahub_cloud/sdk/assertion_input/column_metric_assertion_input.py +759 -0
- acryl_datahub_cloud/sdk/assertion_input/column_metric_constants.py +109 -0
- acryl_datahub_cloud/sdk/assertion_input/column_value_assertion_input.py +810 -0
- acryl_datahub_cloud/sdk/assertion_input/freshness_assertion_input.py +305 -0
- acryl_datahub_cloud/sdk/assertion_input/schema_assertion_input.py +413 -0
- acryl_datahub_cloud/sdk/assertion_input/smart_column_metric_assertion_input.py +793 -0
- acryl_datahub_cloud/sdk/assertion_input/smart_freshness_assertion_input.py +218 -0
- acryl_datahub_cloud/sdk/assertion_input/smart_sql_assertion_input.py +181 -0
- acryl_datahub_cloud/sdk/assertion_input/smart_volume_assertion_input.py +189 -0
- acryl_datahub_cloud/sdk/assertion_input/sql_assertion_input.py +320 -0
- acryl_datahub_cloud/sdk/assertion_input/volume_assertion_input.py +635 -0
- acryl_datahub_cloud/sdk/assertions_client.py +1074 -0
- acryl_datahub_cloud/sdk/entities/__init__.py +0 -0
- acryl_datahub_cloud/sdk/entities/assertion.py +439 -0
- acryl_datahub_cloud/sdk/entities/monitor.py +291 -0
- acryl_datahub_cloud/sdk/entities/subscription.py +100 -0
- acryl_datahub_cloud/sdk/errors.py +34 -0
- acryl_datahub_cloud/sdk/resolver_client.py +42 -0
- acryl_datahub_cloud/sdk/subscription_client.py +737 -0
- {acryl_datahub_cloud-0.3.11rc0.dist-info → acryl_datahub_cloud-0.3.16.1rc0.dist-info}/METADATA +55 -49
- {acryl_datahub_cloud-0.3.11rc0.dist-info → acryl_datahub_cloud-0.3.16.1rc0.dist-info}/RECORD +235 -142
- {acryl_datahub_cloud-0.3.11rc0.dist-info → acryl_datahub_cloud-0.3.16.1rc0.dist-info}/WHEEL +1 -1
- {acryl_datahub_cloud-0.3.11rc0.dist-info → acryl_datahub_cloud-0.3.16.1rc0.dist-info}/entry_points.txt +1 -0
- acryl_datahub_cloud/_sdk_extras/__init__.py +0 -4
- acryl_datahub_cloud/_sdk_extras/assertion.py +0 -15
- acryl_datahub_cloud/_sdk_extras/assertions_client.py +0 -23
- {acryl_datahub_cloud-0.3.11rc0.dist-info → acryl_datahub_cloud-0.3.16.1rc0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,793 @@
|
|
|
1
|
+
from datetime import datetime
|
|
2
|
+
from typing import TYPE_CHECKING, Optional, Union
|
|
3
|
+
|
|
4
|
+
if TYPE_CHECKING:
|
|
5
|
+
pass
|
|
6
|
+
|
|
7
|
+
from acryl_datahub_cloud.sdk.assertion_input.assertion_input import (
|
|
8
|
+
DEFAULT_DAILY_SCHEDULE,
|
|
9
|
+
HIGH_WATERMARK_ALLOWED_FIELD_TYPES,
|
|
10
|
+
NO_PARAMETER_OPERATORS,
|
|
11
|
+
RANGE_OPERATORS,
|
|
12
|
+
SINGLE_VALUE_OPERATORS,
|
|
13
|
+
AssertionIncidentBehaviorInputTypes,
|
|
14
|
+
AssertionInfoInputType,
|
|
15
|
+
DetectionMechanismInputTypes,
|
|
16
|
+
ExclusionWindowInputTypes,
|
|
17
|
+
FieldSpecType,
|
|
18
|
+
InferenceSensitivity,
|
|
19
|
+
_AllRowsQuery,
|
|
20
|
+
_AllRowsQueryDataHubDatasetProfile,
|
|
21
|
+
_AssertionInput,
|
|
22
|
+
_ChangedRowsQuery,
|
|
23
|
+
_DatasetProfile,
|
|
24
|
+
_HasSmartAssertionInputs,
|
|
25
|
+
_try_parse_and_validate_schema_classes_enum,
|
|
26
|
+
)
|
|
27
|
+
from acryl_datahub_cloud.sdk.assertion_input.column_assertion_constants import (
|
|
28
|
+
ALLOWED_COLUMN_TYPES_FOR_COLUMN_ASSERTION,
|
|
29
|
+
FIELD_VALUES_OPERATOR_CONFIG,
|
|
30
|
+
OperatorType,
|
|
31
|
+
RangeInputType,
|
|
32
|
+
RangeTypeInputType,
|
|
33
|
+
ValueInputType,
|
|
34
|
+
ValueType,
|
|
35
|
+
ValueTypeInputType,
|
|
36
|
+
)
|
|
37
|
+
from acryl_datahub_cloud.sdk.assertion_input.column_assertion_utils import (
|
|
38
|
+
_is_no_parameter_operator,
|
|
39
|
+
_is_range_required_for_operator,
|
|
40
|
+
_is_value_required_for_operator,
|
|
41
|
+
_try_parse_and_validate_range,
|
|
42
|
+
_try_parse_and_validate_range_type,
|
|
43
|
+
_try_parse_and_validate_value,
|
|
44
|
+
_try_parse_and_validate_value_type,
|
|
45
|
+
)
|
|
46
|
+
from acryl_datahub_cloud.sdk.assertion_input.column_metric_constants import (
|
|
47
|
+
FIELD_METRIC_TYPE_CONFIG,
|
|
48
|
+
MetricInputType,
|
|
49
|
+
)
|
|
50
|
+
from acryl_datahub_cloud.sdk.entities.assertion import TagsInputType
|
|
51
|
+
from acryl_datahub_cloud.sdk.errors import (
|
|
52
|
+
SDKNotYetSupportedError,
|
|
53
|
+
SDKUsageError,
|
|
54
|
+
)
|
|
55
|
+
from datahub.metadata import schema_classes as models
|
|
56
|
+
from datahub.metadata.urns import AssertionUrn, CorpUserUrn, DatasetUrn
|
|
57
|
+
from datahub.sdk.entity_client import EntityClient
|
|
58
|
+
|
|
59
|
+
# Keep the smart-specific name for backward compatibility
|
|
60
|
+
ALLOWED_COLUMN_TYPES_FOR_SMART_COLUMN_METRIC_ASSERTION = (
|
|
61
|
+
ALLOWED_COLUMN_TYPES_FOR_COLUMN_ASSERTION
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
# New unified criteria parameters type
|
|
65
|
+
SmartColumnMetricAssertionParameters = Union[
|
|
66
|
+
None, # For operators that don't require parameters (NULL, NOT_NULL)
|
|
67
|
+
ValueInputType, # Single value
|
|
68
|
+
RangeInputType, # Range as tuple
|
|
69
|
+
]
|
|
70
|
+
|
|
71
|
+
DEFAULT_DETECTION_MECHANISM_SMART_COLUMN_METRIC_ASSERTION: _AllRowsQuery = (
|
|
72
|
+
_AllRowsQuery()
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
class _SmartColumnMetricAssertionInput(_AssertionInput, _HasSmartAssertionInputs):
|
|
77
|
+
"""
|
|
78
|
+
Input used to create a smart column metric assertion.
|
|
79
|
+
|
|
80
|
+
This assertion is used to validate the value of a common field / column metric (e.g. aggregation) such as null count + percentage,
|
|
81
|
+
min, max, median, and more. It uses AI to infer the assertion parameters. The operator is fixed to BETWEEN and criteria_parameters
|
|
82
|
+
are set to (0, 0) since the actual values will be inferred by AI.
|
|
83
|
+
|
|
84
|
+
Example using the entity models, not comprehensive for all options:
|
|
85
|
+
|
|
86
|
+
```python
|
|
87
|
+
models.AssertionInfoClass(
|
|
88
|
+
type=models.AssertionTypeClass.FIELD,
|
|
89
|
+
fieldAssertion=FieldAssertionInfoClass(
|
|
90
|
+
type=models.FieldAssertionTypeClass.FIELD_METRIC,
|
|
91
|
+
entity=str(self.dataset_urn),
|
|
92
|
+
filter=DatasetFilterClass(
|
|
93
|
+
type=models.DatasetFilterTypeClass.SQL,
|
|
94
|
+
sql="SELECT * FROM dataset WHERE column_name = 'value'", # Example filter
|
|
95
|
+
),
|
|
96
|
+
fieldMetricAssertion=FieldMetricAssertionClass(
|
|
97
|
+
field=SchemaFieldSpecClass(
|
|
98
|
+
path="column_name", # The column name to validate
|
|
99
|
+
type="string", # The type of the column
|
|
100
|
+
nativeType="string", # The native type of the column
|
|
101
|
+
),
|
|
102
|
+
metric=models.FieldMetricTypeClass.NULL_COUNT_PERCENTAGE, # The metric to validate
|
|
103
|
+
operator=models.AssertionStdOperatorClass.BETWEEN, # Fixed operator for smart assertions
|
|
104
|
+
parameters=models.AssertionStdParametersClass(
|
|
105
|
+
minValue=models.AssertionStdParameterClass(
|
|
106
|
+
value="0", # Fixed min value for smart assertions
|
|
107
|
+
type=models.AssertionStdParameterTypeClass.NUMBER,
|
|
108
|
+
),
|
|
109
|
+
maxValue=models.AssertionStdParameterClass(
|
|
110
|
+
value="0", # Fixed max value for smart assertions
|
|
111
|
+
type=models.AssertionStdParameterTypeClass.NUMBER,
|
|
112
|
+
),
|
|
113
|
+
),
|
|
114
|
+
),
|
|
115
|
+
),
|
|
116
|
+
source=models.AssertionSourceClass(
|
|
117
|
+
type=models.AssertionSourceTypeClass.INFERRED, # Smart assertions are of type inferred, not native
|
|
118
|
+
created=AuditStampClass(
|
|
119
|
+
time=1717929600,
|
|
120
|
+
actor="urn:li:corpuser:jdoe", # The actor who created the assertion
|
|
121
|
+
),
|
|
122
|
+
),
|
|
123
|
+
lastUpdated=AuditStampClass(
|
|
124
|
+
time=1717929600,
|
|
125
|
+
actor="urn:li:corpuser:jdoe", # The actor who last updated the assertion
|
|
126
|
+
),
|
|
127
|
+
description="This assertion validates the null count percentage of the column 'column_name' is greater than 10.", # Optional description of the assertion
|
|
128
|
+
)
|
|
129
|
+
```
|
|
130
|
+
|
|
131
|
+
```python
|
|
132
|
+
models.MonitorInfoClass(
|
|
133
|
+
type=models.MonitorTypeClass.ASSERTION,
|
|
134
|
+
status=models.MonitorStatusClass(
|
|
135
|
+
mode=models.MonitorModeClass.ACTIVE, # Active or Inactive
|
|
136
|
+
),
|
|
137
|
+
assertionMonitor=AssertionMonitorClass(
|
|
138
|
+
assertions=AssertionEvaluationSpecClass(
|
|
139
|
+
assertion="urn:li:assertion:123", # The assertion to monitor
|
|
140
|
+
schedule=models.CronScheduleClass(
|
|
141
|
+
cron="0 0 * * *", # The cron schedule
|
|
142
|
+
timezone="America/New_York", # The timezone
|
|
143
|
+
),
|
|
144
|
+
parameters=models.AssertionEvaluationParametersClass(
|
|
145
|
+
type=models.AssertionEvaluationParametersTypeClass.DATASET_FIELD,
|
|
146
|
+
datasetFieldParameters=models.DatasetFieldAssertionParametersClass(
|
|
147
|
+
sourceType=models.DatasetFieldAssertionSourceTypeClass.CHANGED_ROWS_QUERY, # This can be ALL_ROWS_QUERY, CHANGED_ROWS_QUERY or DATAHUB_DATASET_PROFILE
|
|
148
|
+
changedRowsField=models.FreshnessFieldSpecClass(
|
|
149
|
+
path="column_name",
|
|
150
|
+
type="string",
|
|
151
|
+
nativeType="string",
|
|
152
|
+
kind=models.FreshnessFieldKindClass.HIGH_WATERMARK, # This can be LAST_MODIFIED or HIGH_WATERMARK
|
|
153
|
+
),
|
|
154
|
+
),
|
|
155
|
+
),
|
|
156
|
+
),
|
|
157
|
+
settings=models.AssertionMonitorSettingsClass(
|
|
158
|
+
adjustmentSettings=models.AssertionAdjustmentSettingsClass(
|
|
159
|
+
algorithm=models.AdjustmentAlgorithmClass.CUSTOM, # TODO: Do we need to set this in the SDK?
|
|
160
|
+
algorithmName="stddev", # TODO: Do we need to set this in the SDK? What are acceptable values?
|
|
161
|
+
context={
|
|
162
|
+
"stdDev": "1.0", # TODO: Do we need to set this in the SDK? What are acceptable values?
|
|
163
|
+
},
|
|
164
|
+
exclusionWindows=[models.AssertionExclusionWindowClass(
|
|
165
|
+
type=models.AssertionExclusionWindowTypeClass.FIXED_RANGE,
|
|
166
|
+
start=1717929600,
|
|
167
|
+
end=1717929600,
|
|
168
|
+
)],
|
|
169
|
+
trainingDataLookbackWindowDays=10, # The number of days to look back for training data
|
|
170
|
+
sensitivity=models.AssertionMonitorSensitivityClass(
|
|
171
|
+
level=1, # The sensitivity level
|
|
172
|
+
),
|
|
173
|
+
),
|
|
174
|
+
),
|
|
175
|
+
),
|
|
176
|
+
)
|
|
177
|
+
```
|
|
178
|
+
"""
|
|
179
|
+
|
|
180
|
+
def __init__(
|
|
181
|
+
self,
|
|
182
|
+
*,
|
|
183
|
+
# Required parameters
|
|
184
|
+
dataset_urn: Union[str, DatasetUrn],
|
|
185
|
+
entity_client: EntityClient,
|
|
186
|
+
column_name: str,
|
|
187
|
+
metric_type: MetricInputType,
|
|
188
|
+
urn: Optional[Union[str, AssertionUrn]] = None,
|
|
189
|
+
display_name: Optional[str] = None,
|
|
190
|
+
enabled: bool = True,
|
|
191
|
+
schedule: Optional[Union[str, models.CronScheduleClass]] = None,
|
|
192
|
+
detection_mechanism: DetectionMechanismInputTypes = None,
|
|
193
|
+
sensitivity: Optional[Union[str, InferenceSensitivity]] = None,
|
|
194
|
+
exclusion_windows: Optional[ExclusionWindowInputTypes] = None,
|
|
195
|
+
training_data_lookback_days: Optional[int] = None,
|
|
196
|
+
incident_behavior: Optional[AssertionIncidentBehaviorInputTypes] = None,
|
|
197
|
+
tags: Optional[TagsInputType] = None,
|
|
198
|
+
created_by: Union[str, CorpUserUrn],
|
|
199
|
+
created_at: datetime,
|
|
200
|
+
updated_by: Union[str, CorpUserUrn],
|
|
201
|
+
updated_at: datetime,
|
|
202
|
+
):
|
|
203
|
+
"""
|
|
204
|
+
Initialize a smart column metric assertion input.
|
|
205
|
+
|
|
206
|
+
Args:
|
|
207
|
+
dataset_urn: The dataset urn.
|
|
208
|
+
entity_client: The entity client.
|
|
209
|
+
column_name: The name of the column to validate.
|
|
210
|
+
metric_type: The metric type to validate.
|
|
211
|
+
urn: The urn of the assertion.
|
|
212
|
+
display_name: The display name of the assertion.
|
|
213
|
+
enabled: Whether the assertion is enabled.
|
|
214
|
+
schedule: The schedule of the assertion.
|
|
215
|
+
detection_mechanism: The detection mechanism of the assertion.
|
|
216
|
+
sensitivity: The sensitivity of the assertion.
|
|
217
|
+
exclusion_windows: The exclusion windows of the assertion.
|
|
218
|
+
training_data_lookback_days: The training data lookback days of the assertion.
|
|
219
|
+
incident_behavior: The incident behavior of the assertion. Accepts strings, enum values, lists, or None.
|
|
220
|
+
tags: The tags of the assertion.
|
|
221
|
+
created_by: The creator of the assertion.
|
|
222
|
+
created_at: The creation time of the assertion.
|
|
223
|
+
updated_by: The updater of the assertion.
|
|
224
|
+
updated_at: The update time of the assertion.
|
|
225
|
+
"""
|
|
226
|
+
# Parent will handle validation of common parameters:
|
|
227
|
+
_AssertionInput.__init__(
|
|
228
|
+
self,
|
|
229
|
+
dataset_urn=dataset_urn,
|
|
230
|
+
entity_client=entity_client,
|
|
231
|
+
urn=urn,
|
|
232
|
+
display_name=display_name,
|
|
233
|
+
enabled=enabled,
|
|
234
|
+
schedule=schedule,
|
|
235
|
+
detection_mechanism=detection_mechanism,
|
|
236
|
+
incident_behavior=incident_behavior,
|
|
237
|
+
tags=tags,
|
|
238
|
+
source_type=models.AssertionSourceTypeClass.INFERRED, # Smart assertions are of type inferred, not native
|
|
239
|
+
created_by=created_by,
|
|
240
|
+
created_at=created_at,
|
|
241
|
+
updated_by=updated_by,
|
|
242
|
+
updated_at=updated_at,
|
|
243
|
+
default_detection_mechanism=DEFAULT_DETECTION_MECHANISM_SMART_COLUMN_METRIC_ASSERTION,
|
|
244
|
+
)
|
|
245
|
+
_HasSmartAssertionInputs.__init__(
|
|
246
|
+
self,
|
|
247
|
+
sensitivity=sensitivity,
|
|
248
|
+
exclusion_windows=exclusion_windows,
|
|
249
|
+
training_data_lookback_days=training_data_lookback_days,
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
# Validate Smart Column Metric Assertion specific parameters
|
|
253
|
+
self.metric_type = _try_parse_and_validate_schema_classes_enum(
|
|
254
|
+
metric_type, models.FieldMetricTypeClass
|
|
255
|
+
)
|
|
256
|
+
self.column_name = self._try_parse_and_validate_column_name_is_valid_type(
|
|
257
|
+
column_name
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
# Smart assertions use fixed operator and criteria_parameters since they are inferred by AI
|
|
261
|
+
self.operator = _try_parse_and_validate_schema_classes_enum(
|
|
262
|
+
OperatorType.BETWEEN, models.AssertionStdOperatorClass
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
# Initialize instance variables with fixed values for smart assertions
|
|
266
|
+
self.criteria_parameters: Optional[SmartColumnMetricAssertionParameters] = (
|
|
267
|
+
0,
|
|
268
|
+
0,
|
|
269
|
+
)
|
|
270
|
+
self.criteria_type: Optional[Union[ValueTypeInputType, RangeTypeInputType]] = (
|
|
271
|
+
ValueType.NUMBER,
|
|
272
|
+
ValueType.NUMBER,
|
|
273
|
+
)
|
|
274
|
+
|
|
275
|
+
# Validate compatibility:
|
|
276
|
+
# Skip operator validation for smart assertions since operator is a placeholder (AI inferred)
|
|
277
|
+
# Only validate metric type compatibility
|
|
278
|
+
self._validate_field_type_and_metric_type_compatibility(
|
|
279
|
+
self.column_name, self.metric_type
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
def _infer_criteria_type_from_parameters(
|
|
283
|
+
self,
|
|
284
|
+
criteria_parameters: Optional[SmartColumnMetricAssertionParameters],
|
|
285
|
+
) -> Optional[Union[ValueTypeInputType, RangeTypeInputType]]:
|
|
286
|
+
"""
|
|
287
|
+
Infer the criteria type from the parameters based on Python types.
|
|
288
|
+
|
|
289
|
+
Args:
|
|
290
|
+
criteria_parameters: The criteria parameters to infer type from.
|
|
291
|
+
|
|
292
|
+
Returns:
|
|
293
|
+
The inferred type(s) for the criteria parameters.
|
|
294
|
+
"""
|
|
295
|
+
if criteria_parameters is None:
|
|
296
|
+
return None
|
|
297
|
+
|
|
298
|
+
if isinstance(criteria_parameters, tuple):
|
|
299
|
+
# Range parameters - infer type for each value
|
|
300
|
+
if len(criteria_parameters) != 2:
|
|
301
|
+
raise SDKUsageError(
|
|
302
|
+
"Range parameters must be a tuple of exactly 2 values"
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
type1 = self._infer_single_value_type(criteria_parameters[0])
|
|
306
|
+
type2 = self._infer_single_value_type(criteria_parameters[1])
|
|
307
|
+
return (type1, type2)
|
|
308
|
+
else:
|
|
309
|
+
# Single value parameter
|
|
310
|
+
return self._infer_single_value_type(criteria_parameters)
|
|
311
|
+
|
|
312
|
+
def _infer_single_value_type(self, value: ValueInputType) -> ValueTypeInputType:
|
|
313
|
+
"""
|
|
314
|
+
Infer the type of a single value based on its Python type.
|
|
315
|
+
|
|
316
|
+
Args:
|
|
317
|
+
value: The value to infer type from.
|
|
318
|
+
|
|
319
|
+
Returns:
|
|
320
|
+
The inferred ValueType.
|
|
321
|
+
"""
|
|
322
|
+
if isinstance(value, (int, float)):
|
|
323
|
+
return ValueType.NUMBER
|
|
324
|
+
elif isinstance(value, str):
|
|
325
|
+
return ValueType.STRING
|
|
326
|
+
else:
|
|
327
|
+
# Default fallback
|
|
328
|
+
return ValueType.UNKNOWN
|
|
329
|
+
|
|
330
|
+
def _process_criteria_parameters_with_gms_type(
|
|
331
|
+
self,
|
|
332
|
+
criteria_parameters: Optional[SmartColumnMetricAssertionParameters],
|
|
333
|
+
gms_type_info: Optional[Union[models.AssertionStdParameterTypeClass, tuple]],
|
|
334
|
+
) -> None:
|
|
335
|
+
"""Process criteria_parameters using explicit type information from GMS."""
|
|
336
|
+
if criteria_parameters is None:
|
|
337
|
+
self._process_none_parameters()
|
|
338
|
+
elif isinstance(criteria_parameters, tuple):
|
|
339
|
+
# Range parameters with GMS types
|
|
340
|
+
if gms_type_info and isinstance(gms_type_info, tuple):
|
|
341
|
+
self._process_range_parameters_with_types(
|
|
342
|
+
criteria_parameters, gms_type_info
|
|
343
|
+
)
|
|
344
|
+
else:
|
|
345
|
+
self._process_range_parameters(criteria_parameters)
|
|
346
|
+
else:
|
|
347
|
+
# Single value with GMS type
|
|
348
|
+
if gms_type_info and not isinstance(gms_type_info, tuple):
|
|
349
|
+
self._process_single_value_parameters_with_type(
|
|
350
|
+
criteria_parameters, gms_type_info
|
|
351
|
+
)
|
|
352
|
+
else:
|
|
353
|
+
self._process_single_value_parameters(criteria_parameters)
|
|
354
|
+
|
|
355
|
+
def _process_criteria_parameters(
|
|
356
|
+
self,
|
|
357
|
+
criteria_parameters: Optional[SmartColumnMetricAssertionParameters],
|
|
358
|
+
) -> None:
|
|
359
|
+
"""Process the new consolidated criteria_parameters with automatic type inference."""
|
|
360
|
+
if criteria_parameters is None:
|
|
361
|
+
self._process_none_parameters()
|
|
362
|
+
elif isinstance(criteria_parameters, tuple):
|
|
363
|
+
self._process_range_parameters(criteria_parameters)
|
|
364
|
+
else:
|
|
365
|
+
self._process_single_value_parameters(criteria_parameters)
|
|
366
|
+
|
|
367
|
+
def _process_none_parameters(self) -> None:
|
|
368
|
+
"""Process None criteria_parameters."""
|
|
369
|
+
# No parameters - validation is now handled at the client level
|
|
370
|
+
# This allows both creation and update scenarios to be handled appropriately
|
|
371
|
+
self.criteria_parameters = None
|
|
372
|
+
self.criteria_type = None
|
|
373
|
+
|
|
374
|
+
def _process_range_parameters(self, criteria_parameters: tuple) -> None:
|
|
375
|
+
"""Process tuple criteria_parameters for range operators."""
|
|
376
|
+
# Range parameters
|
|
377
|
+
if not _is_range_required_for_operator(self.operator):
|
|
378
|
+
raise SDKUsageError(
|
|
379
|
+
f"Operator {self.operator} does not support range parameters. "
|
|
380
|
+
"Provide a single value instead of a tuple."
|
|
381
|
+
)
|
|
382
|
+
|
|
383
|
+
# Infer range type automatically
|
|
384
|
+
inferred_range_type = self._infer_criteria_type_from_parameters(
|
|
385
|
+
criteria_parameters
|
|
386
|
+
)
|
|
387
|
+
|
|
388
|
+
# Validate and parse the range type
|
|
389
|
+
validated_range_type = _try_parse_and_validate_range_type(inferred_range_type)
|
|
390
|
+
|
|
391
|
+
# Validate and parse the range values
|
|
392
|
+
validated_range = _try_parse_and_validate_range(
|
|
393
|
+
criteria_parameters, validated_range_type, self.operator
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
# Store validated parameters
|
|
397
|
+
self.criteria_parameters = validated_range
|
|
398
|
+
self.criteria_type = validated_range_type
|
|
399
|
+
|
|
400
|
+
def _process_single_value_parameters(
|
|
401
|
+
self, criteria_parameters: Union[str, int, float]
|
|
402
|
+
) -> None:
|
|
403
|
+
"""Process single value criteria_parameters."""
|
|
404
|
+
# Single value parameters
|
|
405
|
+
if _is_no_parameter_operator(self.operator):
|
|
406
|
+
raise SDKUsageError(
|
|
407
|
+
f"Value parameters should not be provided for operator {self.operator}"
|
|
408
|
+
)
|
|
409
|
+
if not _is_value_required_for_operator(self.operator):
|
|
410
|
+
raise SDKUsageError(
|
|
411
|
+
f"Operator {self.operator} does not support value parameters. "
|
|
412
|
+
"Use criteria_parameters=None or omit criteria_parameters."
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
# Infer value type automatically
|
|
416
|
+
inferred_value_type = self._infer_criteria_type_from_parameters(
|
|
417
|
+
criteria_parameters
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
# Validate value if required
|
|
421
|
+
if _is_value_required_for_operator(self.operator):
|
|
422
|
+
# Validate and parse the value type - make sure it's a single type, not a tuple
|
|
423
|
+
if isinstance(inferred_value_type, tuple):
|
|
424
|
+
raise SDKUsageError("Single value type expected, not a tuple type")
|
|
425
|
+
|
|
426
|
+
validated_value_type = _try_parse_and_validate_value_type(
|
|
427
|
+
inferred_value_type
|
|
428
|
+
)
|
|
429
|
+
validated_value = _try_parse_and_validate_value(
|
|
430
|
+
criteria_parameters, validated_value_type
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
# Store validated parameters
|
|
434
|
+
self.criteria_parameters = validated_value
|
|
435
|
+
self.criteria_type = validated_value_type
|
|
436
|
+
else:
|
|
437
|
+
# Store raw parameters for operators that don't require validation
|
|
438
|
+
self.criteria_parameters = criteria_parameters
|
|
439
|
+
self.criteria_type = inferred_value_type
|
|
440
|
+
|
|
441
|
+
def _process_single_value_parameters_with_type(
|
|
442
|
+
self,
|
|
443
|
+
criteria_parameters: Union[str, int, float],
|
|
444
|
+
gms_type: models.AssertionStdParameterTypeClass,
|
|
445
|
+
) -> None:
|
|
446
|
+
"""Process single value criteria_parameters using explicit GMS type information."""
|
|
447
|
+
# Single value parameters
|
|
448
|
+
if _is_no_parameter_operator(self.operator):
|
|
449
|
+
raise SDKUsageError(
|
|
450
|
+
f"Value parameters should not be provided for operator {self.operator}"
|
|
451
|
+
)
|
|
452
|
+
if not _is_value_required_for_operator(self.operator):
|
|
453
|
+
raise SDKUsageError(
|
|
454
|
+
f"Operator {self.operator} does not support value parameters. "
|
|
455
|
+
"Use criteria_parameters=None or omit criteria_parameters."
|
|
456
|
+
)
|
|
457
|
+
|
|
458
|
+
# Use GMS type instead of inferring
|
|
459
|
+
validated_value_type = _try_parse_and_validate_value_type(gms_type)
|
|
460
|
+
validated_value = _try_parse_and_validate_value(
|
|
461
|
+
criteria_parameters, validated_value_type
|
|
462
|
+
)
|
|
463
|
+
|
|
464
|
+
# Store validated parameters
|
|
465
|
+
self.criteria_parameters = validated_value
|
|
466
|
+
self.criteria_type = validated_value_type
|
|
467
|
+
|
|
468
|
+
def _process_range_parameters_with_types(
|
|
469
|
+
self,
|
|
470
|
+
criteria_parameters: tuple,
|
|
471
|
+
gms_types: tuple,
|
|
472
|
+
) -> None:
|
|
473
|
+
"""Process range criteria_parameters using explicit GMS type information."""
|
|
474
|
+
# Range parameters with GMS types
|
|
475
|
+
if _is_no_parameter_operator(self.operator):
|
|
476
|
+
raise SDKUsageError(
|
|
477
|
+
f"Range parameters should not be provided for operator {self.operator}"
|
|
478
|
+
)
|
|
479
|
+
if not _is_range_required_for_operator(self.operator):
|
|
480
|
+
raise SDKUsageError(
|
|
481
|
+
f"Operator {self.operator} does not support range parameters. "
|
|
482
|
+
"Use a single value or criteria_parameters=None."
|
|
483
|
+
)
|
|
484
|
+
|
|
485
|
+
if len(criteria_parameters) != 2:
|
|
486
|
+
raise SDKUsageError("Range parameters must be a tuple of exactly 2 values")
|
|
487
|
+
|
|
488
|
+
min_value, max_value = criteria_parameters
|
|
489
|
+
min_type, max_type = gms_types
|
|
490
|
+
|
|
491
|
+
# Use GMS types instead of inferring
|
|
492
|
+
validated_min_type = _try_parse_and_validate_value_type(min_type)
|
|
493
|
+
validated_max_type = _try_parse_and_validate_value_type(max_type)
|
|
494
|
+
|
|
495
|
+
validated_min_value = _try_parse_and_validate_value(
|
|
496
|
+
min_value, validated_min_type
|
|
497
|
+
)
|
|
498
|
+
validated_max_value = _try_parse_and_validate_value(
|
|
499
|
+
max_value, validated_max_type
|
|
500
|
+
)
|
|
501
|
+
|
|
502
|
+
# Store validated parameters
|
|
503
|
+
self.criteria_parameters = (validated_min_value, validated_max_value)
|
|
504
|
+
self.criteria_type = (validated_min_type, validated_max_type)
|
|
505
|
+
|
|
506
|
+
def _create_monitor_info(
|
|
507
|
+
self,
|
|
508
|
+
assertion_urn: AssertionUrn,
|
|
509
|
+
status: models.MonitorStatusClass,
|
|
510
|
+
schedule: models.CronScheduleClass,
|
|
511
|
+
) -> models.MonitorInfoClass:
|
|
512
|
+
"""
|
|
513
|
+
Create a MonitorInfoClass with all the necessary components.
|
|
514
|
+
"""
|
|
515
|
+
source_type, field = self._convert_assertion_source_type_and_field()
|
|
516
|
+
return models.MonitorInfoClass(
|
|
517
|
+
type=models.MonitorTypeClass.ASSERTION,
|
|
518
|
+
status=status,
|
|
519
|
+
assertionMonitor=models.AssertionMonitorClass(
|
|
520
|
+
assertions=[
|
|
521
|
+
models.AssertionEvaluationSpecClass(
|
|
522
|
+
assertion=str(assertion_urn),
|
|
523
|
+
schedule=schedule,
|
|
524
|
+
parameters=self._get_assertion_evaluation_parameters(
|
|
525
|
+
str(source_type), field
|
|
526
|
+
),
|
|
527
|
+
),
|
|
528
|
+
],
|
|
529
|
+
settings=models.AssertionMonitorSettingsClass(
|
|
530
|
+
adjustmentSettings=models.AssertionAdjustmentSettingsClass(
|
|
531
|
+
sensitivity=self._convert_sensitivity(),
|
|
532
|
+
exclusionWindows=self._convert_exclusion_windows(),
|
|
533
|
+
trainingDataLookbackWindowDays=self.training_data_lookback_days,
|
|
534
|
+
),
|
|
535
|
+
),
|
|
536
|
+
),
|
|
537
|
+
)
|
|
538
|
+
|
|
539
|
+
def _create_assertion_info(
|
|
540
|
+
self, filter: Optional[models.DatasetFilterClass]
|
|
541
|
+
) -> AssertionInfoInputType:
|
|
542
|
+
"""
|
|
543
|
+
Create a FieldAssertionInfoClass for a smart column metric assertion.
|
|
544
|
+
|
|
545
|
+
Args:
|
|
546
|
+
filter: Optional filter to apply to the assertion.
|
|
547
|
+
|
|
548
|
+
Returns:
|
|
549
|
+
A FieldAssertionInfoClass configured for smart column metric.
|
|
550
|
+
"""
|
|
551
|
+
# Get the field spec for the column
|
|
552
|
+
field_spec = self._get_schema_field_spec(self.column_name)
|
|
553
|
+
|
|
554
|
+
# Create the field metric assertion
|
|
555
|
+
field_metric_assertion = models.FieldMetricAssertionClass(
|
|
556
|
+
field=field_spec,
|
|
557
|
+
metric=self.metric_type,
|
|
558
|
+
operator=self.operator,
|
|
559
|
+
parameters=self._create_assertion_parameters(),
|
|
560
|
+
)
|
|
561
|
+
|
|
562
|
+
# Create the field assertion info
|
|
563
|
+
return models.FieldAssertionInfoClass(
|
|
564
|
+
type=models.FieldAssertionTypeClass.FIELD_METRIC,
|
|
565
|
+
entity=str(self.dataset_urn),
|
|
566
|
+
filter=filter,
|
|
567
|
+
fieldMetricAssertion=field_metric_assertion,
|
|
568
|
+
fieldValuesAssertion=None, # Explicitly set to None since this is a field metric assertion
|
|
569
|
+
)
|
|
570
|
+
|
|
571
|
+
def _convert_schedule(self) -> models.CronScheduleClass:
|
|
572
|
+
"""
|
|
573
|
+
Create a schedule for a smart column metric assertion.
|
|
574
|
+
|
|
575
|
+
Returns:
|
|
576
|
+
A CronScheduleClass with appropriate schedule settings.
|
|
577
|
+
"""
|
|
578
|
+
if self.schedule is None:
|
|
579
|
+
return DEFAULT_DAILY_SCHEDULE
|
|
580
|
+
|
|
581
|
+
return models.CronScheduleClass(
|
|
582
|
+
cron=self.schedule.cron,
|
|
583
|
+
timezone=self.schedule.timezone,
|
|
584
|
+
)
|
|
585
|
+
|
|
586
|
+
def _convert_schema_field_spec_to_freshness_field_spec(
|
|
587
|
+
self, field_spec: models.SchemaFieldSpecClass
|
|
588
|
+
) -> models.FreshnessFieldSpecClass:
|
|
589
|
+
"""
|
|
590
|
+
Convert a SchemaFieldSpecClass to a FreshnessFieldSpecClass.
|
|
591
|
+
"""
|
|
592
|
+
return models.FreshnessFieldSpecClass(
|
|
593
|
+
path=field_spec.path,
|
|
594
|
+
type=field_spec.type,
|
|
595
|
+
nativeType=field_spec.nativeType,
|
|
596
|
+
kind=models.FreshnessFieldKindClass.HIGH_WATERMARK,
|
|
597
|
+
)
|
|
598
|
+
|
|
599
|
+
def _get_assertion_evaluation_parameters(
|
|
600
|
+
self, source_type: str, field: Optional[FieldSpecType]
|
|
601
|
+
) -> models.AssertionEvaluationParametersClass:
|
|
602
|
+
"""
|
|
603
|
+
Get evaluation parameters for a smart column metric assertion.
|
|
604
|
+
Converts SchemaFieldSpecClass to FreshnessFieldSpecClass if needed.
|
|
605
|
+
"""
|
|
606
|
+
if field is not None:
|
|
607
|
+
if isinstance(field, models.SchemaFieldSpecClass):
|
|
608
|
+
field = self._convert_schema_field_spec_to_freshness_field_spec(field)
|
|
609
|
+
assert isinstance(field, models.FreshnessFieldSpecClass), (
|
|
610
|
+
"Field must be FreshnessFieldSpecClass for monitor info"
|
|
611
|
+
)
|
|
612
|
+
return models.AssertionEvaluationParametersClass(
|
|
613
|
+
type=models.AssertionEvaluationParametersTypeClass.DATASET_FIELD,
|
|
614
|
+
datasetFieldParameters=models.DatasetFieldAssertionParametersClass(
|
|
615
|
+
sourceType=source_type,
|
|
616
|
+
changedRowsField=field,
|
|
617
|
+
),
|
|
618
|
+
)
|
|
619
|
+
|
|
620
|
+
def _convert_assertion_source_type_and_field(
|
|
621
|
+
self,
|
|
622
|
+
) -> tuple[str, Optional[FieldSpecType]]:
|
|
623
|
+
"""
|
|
624
|
+
Convert detection mechanism into source type and field specification for column metric assertions.
|
|
625
|
+
|
|
626
|
+
Returns:
|
|
627
|
+
A tuple of (source_type, field) where field may be None.
|
|
628
|
+
Note that the source_type is a string, not a models.DatasetFieldAssertionSourceTypeClass (or other assertion source type) since
|
|
629
|
+
the source type is not a enum in the code generated from the DatasetFieldSourceType enum in the PDL.
|
|
630
|
+
|
|
631
|
+
Raises:
|
|
632
|
+
SDKNotYetSupportedError: If the detection mechanism is not supported.
|
|
633
|
+
SDKUsageError: If the field (column) is not found in the dataset,
|
|
634
|
+
and the detection mechanism requires a field. Also if the field
|
|
635
|
+
is not an allowed type for the detection mechanism.
|
|
636
|
+
"""
|
|
637
|
+
source_type = models.DatasetFieldAssertionSourceTypeClass.ALL_ROWS_QUERY
|
|
638
|
+
field = None
|
|
639
|
+
SUPPORTED_DETECTION_MECHANISMS = [
|
|
640
|
+
_AllRowsQuery().type,
|
|
641
|
+
_AllRowsQueryDataHubDatasetProfile().type,
|
|
642
|
+
_ChangedRowsQuery(column_name="").type,
|
|
643
|
+
]
|
|
644
|
+
|
|
645
|
+
if isinstance(self.detection_mechanism, _ChangedRowsQuery):
|
|
646
|
+
source_type = models.DatasetFieldAssertionSourceTypeClass.CHANGED_ROWS_QUERY
|
|
647
|
+
column_name = self._try_parse_and_validate_column_name_is_valid_type(
|
|
648
|
+
self.detection_mechanism.column_name, # The high watermark column name
|
|
649
|
+
allowed_column_types=HIGH_WATERMARK_ALLOWED_FIELD_TYPES,
|
|
650
|
+
)
|
|
651
|
+
field = self._get_schema_field_spec(column_name)
|
|
652
|
+
elif isinstance(self.detection_mechanism, _AllRowsQuery):
|
|
653
|
+
source_type = models.DatasetFieldAssertionSourceTypeClass.ALL_ROWS_QUERY
|
|
654
|
+
# For query-based detection, we don't need a field specification
|
|
655
|
+
# as the query itself defines what data to analyze
|
|
656
|
+
elif isinstance(
|
|
657
|
+
self.detection_mechanism,
|
|
658
|
+
(_AllRowsQueryDataHubDatasetProfile, _DatasetProfile),
|
|
659
|
+
):
|
|
660
|
+
source_type = (
|
|
661
|
+
models.DatasetFieldAssertionSourceTypeClass.DATAHUB_DATASET_PROFILE
|
|
662
|
+
)
|
|
663
|
+
# Note: This is only valid on the all rows query
|
|
664
|
+
else:
|
|
665
|
+
raise SDKNotYetSupportedError(
|
|
666
|
+
f"Detection mechanism {self.detection_mechanism} is not supported for smart column metric assertions, please use a supported detection mechanism: {', '.join(SUPPORTED_DETECTION_MECHANISMS)}"
|
|
667
|
+
)
|
|
668
|
+
|
|
669
|
+
return source_type, field
|
|
670
|
+
|
|
671
|
+
def _create_assertion_parameters(self) -> models.AssertionStdParametersClass:
|
|
672
|
+
"""
|
|
673
|
+
Create assertion parameters based on the operator type and provided values.
|
|
674
|
+
|
|
675
|
+
Returns:
|
|
676
|
+
An AssertionStdParametersClass with the appropriate parameters.
|
|
677
|
+
|
|
678
|
+
Raises:
|
|
679
|
+
SDKUsageError: If the parameters are invalid for the operator type.
|
|
680
|
+
"""
|
|
681
|
+
if self.operator in SINGLE_VALUE_OPERATORS:
|
|
682
|
+
if self.criteria_parameters is None or isinstance(
|
|
683
|
+
self.criteria_parameters, tuple
|
|
684
|
+
):
|
|
685
|
+
raise SDKUsageError(
|
|
686
|
+
f"Single value is required for operator {self.operator}"
|
|
687
|
+
)
|
|
688
|
+
if self.criteria_type is None or isinstance(self.criteria_type, tuple):
|
|
689
|
+
raise SDKUsageError(
|
|
690
|
+
f"Single value type is required for operator {self.operator}"
|
|
691
|
+
)
|
|
692
|
+
return models.AssertionStdParametersClass(
|
|
693
|
+
value=models.AssertionStdParameterClass(
|
|
694
|
+
value=str(self.criteria_parameters),
|
|
695
|
+
type=self.criteria_type,
|
|
696
|
+
),
|
|
697
|
+
)
|
|
698
|
+
elif self.operator in RANGE_OPERATORS:
|
|
699
|
+
if not isinstance(self.criteria_parameters, tuple):
|
|
700
|
+
raise SDKUsageError(
|
|
701
|
+
f"Range parameters are required for operator {self.operator}"
|
|
702
|
+
)
|
|
703
|
+
if not isinstance(self.criteria_type, tuple):
|
|
704
|
+
raise SDKUsageError(
|
|
705
|
+
f"Range type is required for operator {self.operator}"
|
|
706
|
+
)
|
|
707
|
+
return models.AssertionStdParametersClass(
|
|
708
|
+
minValue=models.AssertionStdParameterClass(
|
|
709
|
+
value=str(self.criteria_parameters[0]),
|
|
710
|
+
type=self.criteria_type[0],
|
|
711
|
+
),
|
|
712
|
+
maxValue=models.AssertionStdParameterClass(
|
|
713
|
+
value=str(self.criteria_parameters[1]),
|
|
714
|
+
type=self.criteria_type[1],
|
|
715
|
+
),
|
|
716
|
+
)
|
|
717
|
+
elif self.operator in NO_PARAMETER_OPERATORS:
|
|
718
|
+
return models.AssertionStdParametersClass()
|
|
719
|
+
else:
|
|
720
|
+
raise SDKUsageError(f"Unsupported operator type: {self.operator}")
|
|
721
|
+
|
|
722
|
+
def _try_parse_and_validate_column_name_is_valid_type(
|
|
723
|
+
self,
|
|
724
|
+
column_name: str,
|
|
725
|
+
allowed_column_types: list[
|
|
726
|
+
models.DictWrapper
|
|
727
|
+
] = ALLOWED_COLUMN_TYPES_FOR_SMART_COLUMN_METRIC_ASSERTION,
|
|
728
|
+
) -> str:
|
|
729
|
+
"""
|
|
730
|
+
Parse and validate a column name. Determine from the field spec if the column exists and is of the appropriate type for the metric type.
|
|
731
|
+
Validate that this is a column that is valid for the metric type, see also getEligibleFieldColumns and related functions in the frontend
|
|
732
|
+
"""
|
|
733
|
+
field_spec = self._get_schema_field_spec(column_name)
|
|
734
|
+
self._validate_field_type(
|
|
735
|
+
field_spec,
|
|
736
|
+
column_name,
|
|
737
|
+
allowed_column_types,
|
|
738
|
+
"smart column metric assertion",
|
|
739
|
+
)
|
|
740
|
+
return column_name
|
|
741
|
+
|
|
742
|
+
def _assertion_type(self) -> str:
|
|
743
|
+
"""Get the assertion type."""
|
|
744
|
+
return models.AssertionTypeClass.FIELD
|
|
745
|
+
|
|
746
|
+
def _validate_field_type_and_operator_compatibility(
|
|
747
|
+
self, column_name: str, operator: models.AssertionStdOperatorClass
|
|
748
|
+
) -> None:
|
|
749
|
+
"""Validate that the field type is compatible with the operator.
|
|
750
|
+
|
|
751
|
+
See FIELD_VALUES_OPERATOR_CONFIG in the frontend for the allowed operators for each field type.
|
|
752
|
+
|
|
753
|
+
Args:
|
|
754
|
+
column_name: The name of the column to validate.
|
|
755
|
+
operator: The operator to validate against.
|
|
756
|
+
|
|
757
|
+
Raises:
|
|
758
|
+
SDKUsageError: If the field type is not compatible with the operator.
|
|
759
|
+
"""
|
|
760
|
+
field_spec = self._get_schema_field_spec(column_name)
|
|
761
|
+
allowed_operators = FIELD_VALUES_OPERATOR_CONFIG.get(field_spec.type, [])
|
|
762
|
+
if operator not in allowed_operators:
|
|
763
|
+
raise SDKUsageError(
|
|
764
|
+
f"Operator {operator} is not allowed for field type {field_spec.type} for column '{column_name}'. Allowed operators: {', '.join(str(op) for op in allowed_operators)}"
|
|
765
|
+
)
|
|
766
|
+
|
|
767
|
+
def _validate_field_type_and_metric_type_compatibility(
|
|
768
|
+
self, column_name: str, metric_type: models.FieldMetricTypeClass
|
|
769
|
+
) -> None:
|
|
770
|
+
"""Validate that the metric type is compatible with the field type.
|
|
771
|
+
|
|
772
|
+
See FIELD_METRIC_TYPE_CONFIG in the frontend for the allowed metric types for each field type.
|
|
773
|
+
|
|
774
|
+
Args:
|
|
775
|
+
column_name: The name of the column to validate.
|
|
776
|
+
metric_type: The metric type to validate.
|
|
777
|
+
|
|
778
|
+
Raises:
|
|
779
|
+
SDKUsageError: If the metric type is not compatible with the field type.
|
|
780
|
+
"""
|
|
781
|
+
field_spec = self._get_schema_field_spec(column_name)
|
|
782
|
+
field_type = field_spec.type
|
|
783
|
+
|
|
784
|
+
if field_type not in FIELD_METRIC_TYPE_CONFIG:
|
|
785
|
+
raise SDKUsageError(
|
|
786
|
+
f"Column {column_name} is of type {field_type}, which is not supported for smart column metric assertions"
|
|
787
|
+
)
|
|
788
|
+
|
|
789
|
+
allowed_metric_types = FIELD_METRIC_TYPE_CONFIG[field_type]
|
|
790
|
+
if metric_type not in allowed_metric_types:
|
|
791
|
+
raise SDKUsageError(
|
|
792
|
+
f"Metric type {metric_type} is not allowed for field type {field_type}. Allowed metric types: {', '.join(str(mt) for mt in allowed_metric_types)}"
|
|
793
|
+
)
|